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Abstract. Drought affects many regions worldwide, and fu-
ture climate projections imply that drought severity and fre-
quency will increase. Hence, the impacts of drought on
the environment and society will also increase considerably.
Monitoring and early warning systems for drought rely on
several indicators; however, assessments of how these in-
dicators are linked to impacts are still lacking. Here, we
explore the links between different drought indicators and
drought impacts within six sub-regions in Spain. We used
impact data from the European Drought Impact Report In-
ventory database and provide a new case study to evaluate
these links. We provide evidence that a region with a small
sample size of impact data can still provide useful insights
regarding indicator—impact links. As meteorological drought
indicators, we use the Standardised Precipitation Index and
the Standardised Precipitation Evapotranspiration Index; as
agricultural and hydrological drought indicators, we use a
Standardised Soil Water Content Index and a Standardised
Streamflow Index and a Standardised Reservoir Storage In-
dex. We also explore the links between drought impacts and
teleconnection patterns and surface temperature by conduct-
ing a correlation analysis, and then we test the predictability
of drought impacts using a random forest model. Our results
show that meteorological indices are best linked to impact
occurrences overall and at long timescales between 15 and
33 months. However, we also find robust links for agricul-
tural and hydrological drought indices, depending on the sub-
region. The Arctic Oscillation, Western Mediterranean Oscil-
lation, and the North Atlantic Oscillation at long accumula-
tion periods (15 to 48 months) are top predictors of impacts

in the northwestern and northeastern regions, the community
of Madrid, and the southern regions of Spain, respectively.
We also find links between temperature and drought impacts.
The random forest model produces skilful models for most
sub-regions. When assessed using a cross-validation analy-
sis, the models in all regions show precision, recall, or R2
values higher than 0.97, 0.62, and 0.68, respectively. Thus,
our random forest models are skilful in predicting drought
impacts and could potentially be used as part of an early
warning system.

1 Introduction

Drought, as defined by Wilhite and Glantz (1985), “is a con-
dition relative to some long-term average condition of bal-
ance between rainfall and evapotranspiration in a particular
area, a condition often perceived as 'normal””’. The predic-
tion of drought onset or end is a complex task. Drought sever-
ity is also difficult to measure or quantify. This is because
drought depends on several factors, for instance, the dura-
tion, intensity, and the geographical extent of the event. Ad-
ditional factors specific to each region also play a large role,
such as the water demand with respect to water supply. All
of these characteristics make drought difficult to identify and
quantify. Drought has far-reaching impacts on society and
the environment that may last for long time periods (Wilhite
and Glantz, 1985).

There is not a common and straightforward definition of
drought; however, all types of drought originate from a lack
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of precipitation. Many different definitions of drought have
been developed by different disciplines. There are four main
types of disciplinary definitions, i.e. meteorological, agri-
cultural, hydrological, and socioeconomic. Meteorological
drought often uses precipitation as its atmospheric parame-
ter. Agricultural drought considers links between meteoro-
logical drought and its impacts on agriculture. Hydrological
drought accounts for the repercussions of dry periods on sur-
face and subsurface hydrology, for instance, on streamflow,
groundwater, and reservoirs. Finally, socioeconomic drought
considers the effects that drought has on the supply and de-
mand of economic goods (Wilhite and Glantz, 1985).

There is already evidence that climate change, as a re-
sult of anthropogenic actions, has increased the risk of me-
teorological drought in southern Europe (Gudmundsson and
Seneviratne, 2016). Similarly, warmer temperatures have in-
creased atmospheric evaporative demand, which has in turn
increased drought severity over the past 50 years (Vicente-
Serrano et al., 2014b). Climate change projections point to-
wards a reduction in the water resources in Spain. Hydraulic
infrastructures have been designed with safety margins; how-
ever, these may be surpassed due to the effects of climate
change. Increased evapotranspiration, as a result of increased
temperatures, together with a possible increase in the length
of the irrigation period, might increase the water demand for
irrigation and for agricultural use, which currently accounts
for more than 70 % of total water demand. In addition, the
energy sector is also dependent on the availability of wa-
ter, which also makes it vulnerable to increased drought risk
(Ministerio para la Transicion Ecolégica y el Reto Demogra-
fico, 2020). Vulnerability to water scarcity and drought is
also likely to increase due to challenges such as a growing
population, population migration to more arid regions, ur-
banisation, increasing tourism, and pollution (Rossi and Can-
celliere, 2013). As a result, the consequences of drought on
the environment and society are becoming more important.
Spain is a country that already has an intense use of water
resources; hence, it is crucial to reinforce water management
to provide future water security.

In order to lessen the impacts of drought on society and
the environment, efficient mitigation measures are necessary.
This means that effective drought monitoring and early warn-
ing systems (DEWSs) are essential. DEWSs reduce societal
vulnerability to drought by maximising the lead time of early
warnings to allow more time for the implementation of mit-
igation measures (Pozzi et al., 2013). These systems usu-
ally rely on different drought indicators that represent dif-
ferent parts of the water cycle. Drought indicators describe
drought conditions, and examples of commonly used vari-
ables are precipitation, temperature, streamflow, groundwa-
ter and reservoir levels, soil moisture, and snowpack (Svo-
bodaet al., 2016). DEWSs use a large variety of drought indi-
cators, and the most commonly used one is the Standardised
Precipitation Index (SPI; McKee et al., 1993). DEWSs usu-
ally use indicators based on variables that can be measured
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with ease and that are readily obtainable in time (Bachmair
etal., 2016a). However, Bachmair et al. (2016a) revealed that
although there has been increasing efforts on the research
and practice of drought indicators, DEWSs are still not well
linked with assessments on how drought impacts the envi-
ronment and society. This is because links between drought
indicators and impacts have not been sufficiently studied.
This means that impact data are not being used to determine
whether indicators are linked to the impacts of drought. The
authors call for drought to be framed as a coupled dynamical
system of the environment and society to fully understand
drought impacts.

Drought-related impacts are complex to study and docu-
ment because many sectors depend on water availability to
produce goods and provide services. Bachmair et al. (2016a)
also revealed that there are very few systematic approaches
for the collection of impact data, except for agricultural
drought. A good example of efforts to improve such docu-
mentation exists in Europe, where a drought impact inven-
tory has been created, i.e. the European Drought Impact Re-
port Inventory (EDII; Stahl et al., 2016). This database col-
lects reported drought impacts for different European coun-
tries. Impacts are classified into major impact categories
(e.g. agriculture and livestock farming, wildfires, public wa-
ter supply, and forestry), and each category has several sub-
types. Also, each drought impact event has, at the very least,
information on the source of information, location, duration,
and impact category and has a description.

Here, we investigate the links between different drought
indicators and reported impacts from the EDII database for
Spain. The time period studied is from August 1975 to
May 2013. We aim to assess two meteorological indicators,
the SPI and the Standardised Precipitation Evapotranspira-
tion Index (SPEI; Vicente-Serrano et al., 2010), two hydro-
logical indicators, streamflow and reservoir storage levels,
and an agricultural indicator, soil water content. The main
motivation for this study is to provide a new case study for
the evaluation of these links and to test the usefulness of im-
pact data in this region. Impact data from the EDII has al-
ready shown links with drought indicators in similar studies
(Bachmair et al., 2015, 2016b; Stagge et al., 2015).

The first objective of the study is to investigate how strong
and robust the link between drought indicators and drought
impacts is. We conduct a correlation analysis, and to fur-
ther examine these indicator—impact links, we then use ma-
chine learning (a random forest model) to model and predict
drought impact occurrences. Another goal of this analysis
is to test the potential of such a method, with the available
data, to predict future impacts. We aim to determine whether
drought impacts can be skilfully predicted in this region.

To our knowledge, links between teleconnection patterns
or temperature and drought impacts using the EDII database
have not been studied before. We therefore investigate five
teleconnection patterns (Feldstein and Franzke, 2017), the El
Nifno—Southern Oscillation (ENSO), the North Atlantic Os-
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cillation (NAO), the East Atlantic (EA) pattern, the Western
Mediterranean Oscillation (WeMO), and the Arctic Oscilla-
tion (AO), as well as a surface temperature index, as possible
predictors of drought impact occurrences. We aim to investi-
gate whether these climate indices show links and are better
predictors of impacts than the previously presented drought
indicators. Our next objective is to determine what type of in-
dicators are the best predictors of impacts in each sub-region.
Last, the incompleteness of the impact reports from the EDII
database challenges the quantification of impact occurrences,
hence, we also investigate different ways to take incomplete
reports into account. We investigate whether different impact
quantification methods change the results in a significant way
and, if so, how.

Our paper is structured as follows: in Sect. 2, we introduce
the study area, the drought indicators, climate indices ,and
vulnerability factors used and their data sets. Also, we show
how we deal with incomplete impact data and the methods
for the data analysis. In Sect. 3, we present the results of
our correlation and random forest analyses. In Sect. 4, we
provide a discussion of our results and conclude.

2 Methods and data
2.1 Study area

Spain is located in a geographical area with a high recur-
rence of drought events due to it being in a transition zone
between polar and subtropical atmospheric circulation influ-
ences (Sivakumar et al., 2011). Its precipitation and runoff
patterns are highly diverse and complex, which is character-
istic of the Mediterranean area. As described by Vide (1994),
the characteristic climate of Spain has the following:

— modest rainfall overall,

— high interannual variability, with a high amount of rain-
fall occurring during relatively few days,

— long dry periods,

— an arid climate, meaning the amount of potential evap-
otranspiration is greater than rainfall,

— large regional variations in seasonal rainfall patterns,
and

— anomalies that may be related to atmospheric telecon-
nection patterns.

Because of the chaotic patterns of precipitation, Spaniards
have been attempting to increase water availability for at
least the last 2000 years (del Moral and Sauri, 1999). Wa-
ter scarcity and frequent droughts are recurrent problems that
Spain suffers, and this is mainly because the spatial and tem-
poral distribution of its water resources is irregular. This also
occurs because water demands are highest in the more water
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scarce areas and during the seasons when precipitation is the
lowest and evapotranspiration the highest. Climate change
will most likely exacerbate the existing problems with wa-
ter resources (Estrela and Vargas, 2012; Ministerio de Medio
Ambiente, 2005).

Droughts cause extensive impacts in Spain; for instance,
during a very intense drought event in 1991-1995, the water
supply was restricted for more than 25 % of the total popula-
tion (12 million people). In the most affected regions, evacu-
ation plans were enacted. Agricultural production was also
severely affected (del Moral and Hernandez-Mora, 2015).
The major drought event in 2004-2005 led to social unrest
and created disputes over future water infrastructure (Igle-
sias et al., 2009). Drought periods can impose significant
costs on farmers and affect crop productivity (e.g. Iglesias
et al., 2003; Austin et al., 1998; Pascoa et al., 2017; Pena-
Gallardo et al., 2019). Moreover, vegetation activity has been
shown to be linked to the interannual variability in drought
(Vicente-Serrano et al., 2019), and drought has been related
to burned areas from wildfires (Russo et al., 2017). Drought
events have also shown links with daily mortality across
Spain (Salvador et al., 2020). Overall, the economic damages
of drought are severe. According to the international Emer-
gency Events Database (EM-DAT; Guha-Sapir et al., 2016),
Spain ranked fourth worldwide and first in Europe for total
economic damages resulting from drought events from 1990
to 2018 (USD 7.7 billion).

We chose to perform this study in the specific region of
Spain because this region is severely impacted by droughts;
hence, a better understanding of indicator—impact links here
is urgently needed. Such links have been already been suc-
cessfully investigated in five other European regions (Bach-
mair et al., 2015, 2016b; Stagge et al., 2015). We focus on
characterising these links in six sub-regions within Spain be-
cause studying a small region means that indicator—impact
links can be better detected and quantified (Blauhut et al.,
2016).

We also chose this region to investigate indicator—impact
links in a region that has a very dense network of reservoirs
and to investigate the timescales at which drought conditions
lead to drought impacts. As described by Gonzalez-Hidalgo
etal. (2018), Spain has a high density of hydraulic reservoirs.
Spain has, after China, the second largest number of dams in
the world. This is because Spain’s climate is characterised by
dry summers and high interannual variability. Such a dense
network increases Spain’s resilience to short-term droughts
by guaranteeing water supply during these events. However,
at longer timescales, drought conditions still produce severe
drought impacts to water supply; conditions that last more
than 2 or 3 years have been shown to reach the limits of
the capacity of these infrastructures (Gonzalez-Hidalgo et al.,
2018).
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2.2 Drought indicators and data sets

As drought indicators, we considered the SPI, the SPEI,
and a streamflow index because these are commonly used
in DEWSs (Bachmair et al., 2016a). The SPI and especially
SPEI have also shown higher correlations than other drought
indices with crop yields in Spain (Pefia-Gallardo et al., 2019).
Furthermore, we included an additional hydrological indica-
tor (using reservoir storage data) and an agricultural drought
index (using soil water content data) to compare their perfor-
mance against the other types. Soil moisture has been found
to be an important factor when studying drought impacts on
the productivity of some agricultural crops in Spain (Sainz
de la Maza and Del Jesus, 2020). Furthermore, the multi-
scalar nature of all these drought indicators is useful when
assessing the timescales of drought impacts. We also ex-
plored the use of several teleconnection patterns (Feldstein
and Franzke, 2017) as predictors of drought impacts.

The SPI is a commonly used drought index that is simple
to compute. It can be used to compare droughts in differ-
ent regions, and it can be temporally aggregated over differ-
ent timescales (Guttman, 1999). It calculates “the precipita-
tion deviation for a normally distributed probability density
with a mean of zero and standard deviation of unity” (Mc-
Kee et al., 1993). It is computed by fitting precipitation data
to a distribution and then transforming it to a normal distri-
bution (McKee et al., 1993). In this study, we calculated the
SPI using the SPEI R package (Vicente-Serrano et al., 2010;
Begueria et al., 2014). We used a gamma probability distri-
bution to model the observed precipitation values.

The SPEI is a similar index to the SPI, but instead of
being computed with precipitation values only, it is based
on climatic water balance. The climatic water balance is a
monthly difference between precipitation and potential evap-
otranspiration (PET) at different timescales. This provides
a measure of the accumulated water surplus or deficit. We
used the approach of Vicente-Serrano et al. (2014b) to cal-
culate the PET; this is a simple approach that only requires
data for monthly mean temperature and uses the Thornth-
waite equation (Thornthwaite, 1948). To obtain the final in-
dex, the same procedure as for the SPI was followed; how-
ever, a log-logistic probability distribution was used to model
the precipitation—PET values. We also calculated the SPEI
with the SPEI R package. This index accounts for the effects
of temperature variability on drought. The advantages of this
index, especially under global warming conditions, are that it
identifies increased drought severity when the water demand
is higher as a result of increased evapotranspiration. In addi-
tion, its multi-scalar nature allows its use for drought analysis
and monitoring (Vicente-Serrano et al., 2010).

Volumetric soil water is the volume of water (m’) in a
soil layer (m?). We used this variable to create an agricul-
tural drought indicator, a Standardised Soil Water Content In-
dex (SSWI), using the Standardised Drought Analysis Tool-
box (Hao and AghaKouchak, 2014; Farahmand and AghaK-
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ouchak, 2015a). This toolbox provides a generalised frame-
work for deriving nonparametric univariate indices that can
be interpreted similarly to the rest of the indices used in
this study. This index was calculated at four different soil
depths (defined by the data set used), hereafter referred to as
SSWI1, SSWI2, SSWI3, and SSWI4. To create a Standard-
ised Streamflow Index (SSFI) and a Standardised Reservoir
Storage Index (SRSI), we standardised streamflow and reser-
voir values using the same methodology as for SPI. We also
computed a Standardised Temperature Index (STI) using the
same methodology, with surface temperature data only.

All of the indices were aggregated over different
timescales. The aggregation of the SPI, SPEI, SSFI, and
SRSI was done prior to fitting them to a distribution and
transforming to the normal distribution. This means that the
data for the current month and past X months was used to
compute the value for a given month. The aggregation pe-
riod is hereafter labelled with the suffix “-X” (e.g. SPI-X).
Similarly, for the SSWI, the aggregation was done prior to
computing the empirical distribution.

We chose teleconnection patterns that could potentially
be relevant as drought predictors. The chosen climate in-
dices have shown correlations with precipitation in Spain
(e.g. Rodé et al., 1997; Martinez-Artigas et al., 2021; Rios-
Cornejo et al., 2015), and the NAO, EA, AO, and WeMO
have also shown links with the drought index, SPEI (Man-
zano et al., 2019). The effects of the NAO on droughts us-
ing the SPI and/or SPEI at the European scale are also well
studied (Vicente-Serrano et al., 2011; Kingston et al., 2015).
Furthermore, empirical links between drought impacts and
ENSO and NAO in Spain have already been established. For
instance, Gimeno et al. (2002) looked at the influence of
ENSO and the NAO on the most important Spanish crops.
They detected significant effects on the yield for most of
these crops. They found low yields during La Nifia years
and higher yields during positive NAO phases. All of the cli-
mate indices were aggregated by computing a moving aver-
age over X months.

We used the Iberia0l daily precipitation and tempera-
ture observational gridded data set to calculate the SPI
and SPEI (http://hdl.handle.net/10261/183071, last access:
9 March 2020; Gutiérrez et al., 2019; Herrera et al., 2019).
This is a high-resolution data set produced using a dense
network of stations over the Iberian Peninsula, with 3481
and 276 stations for precipitation and temperature, respec-
tively. Gridded values are provided at a spatial resolution of
0.1°, and they cover the entire time period studied here. This
data set has been shown to produce more realistic patterns
in the case of precipitation than other frequently used data
sets. We used data from individual streamflow and reservoir-
level monitoring stations from Ministerio para la Transicién
Ecolégica y el Reto Demogréfico (2022) to calculate the
SSFI and SRSI. There were a total of 1447 and 367 stream-
flow and reservoir storage monitoring stations, respectively;
however, after removing stations with more than 20 % miss-
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ing data, data from 786 and 322 stations remained. We ob-
tained volumetric soil water content data from the ERAS-
Land data set (Mufioz Sabater, 2019). This is a reanalysis
data set that provides estimates for land variables. It has a
horizontal spatial resolution of 0.1° x 0.1° and has a verti-
cal resolution that consists of four levels of the surface at
0-7cm (layer 1), 7-28 cm (layer 2), 28-100cm (layer 3),
and 100-289 cm (layer 4). We obtained data for the NAO,
EA, AO, and ENSO from the NOAA Climate Prediction
Center (https://psl.noaa.gov/data/climateindices/list/, last ac-
cess: 2 August 2021 and https://www.cpc.ncep.noaa.gov/
data/teledoc/ea.shtml, last access: 2 August 2021) and data
for the WeMO (Martin-Vide and Lopez-Bustins, 2006) from
http://www.ub.edu/gc/wemo/ (last access: 2 August 2021).
We used data from these data sets for the period 1975-2013,
except for volumetric soil water content data, where we used
data from 1981-2013, since data were only available starting
from 1981. We also aggregated all the indices over a range of
timescales. These ranges differed depending on up to which
timescales the indicator—impact correlation strengths were
greatest. These were 1-33 months for the SPI, SPEI, and
SRSI and 1-48 months for the SSWI, STI, and teleconnec-
tion patterns.

The nomenclature of territorial units for statistics (Nomen-
clature des Unités territoriales statistiques — NUTS) classifi-
cation divides economic territories of the European Union
(Eurostat, 2020). NUTS-1 regions represent major socioeco-
nomic regions, and these were the sub-regions we consid-
ered in this study. These were the northwest (NW), northeast
(NE), community of Madrid (MA), centre (CE), east (E), and
south (S). The Canary Islands were excluded due to a lack of
impact data in this region. We aggregated all of the indica-
tors studied over each NUTS-1 region and produced a mean
monthly time series for each sub-region using the R package
panas (De Felice, 2020).

2.3 Drought vulnerability and data sets

To understand how a region is impacted by drought, drought
risk needs to be considered as a function of the hazard, vul-
nerability, and exposure to drought events. “Vulnerability
refers to the propensity of exposed elements such as human
beings, their livelihoods, and assets to suffer adverse effects
when impacted by hazard events” and “exposure refers to the
inventory of elements in an area in which hazard events may
occur” (Cardona et al., 2012). Exposure varies spatially, and
vulnerability depends on social and economic factors of a re-
gion, which can greatly change over time (Wilhite, 2000).
To explain the drought impacts beyond the hazard, we
also investigated whether adding vulnerability factors as
drought impact predictors would increase the predictability
of drought impact models. We used data for public water
supply, unemployment rate, population density, gross domes-
tic product (GDP) per capita, and gross value added (GVA)
by industry (except construction), by agriculture, forestry,
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and fishing, and by the Statistical Classification of Eco-
nomic Activities in the European Community (NACE) ac-
tivities. We also used land cover data from the CORINE
Land Cover data set and calculated the percentage of each
land cover class per NUTS-1 region. A monthly time series
was created for each vulnerability factor from yearly or 6-
year data by linearly interpolating the data points. We ob-
tained the data from the Instituto Nacional de Estadistica
(https://www.ine.es, last access: 6 September 2021), Euro-
stat (https://ec.europa.eu/eurostat/, last access: 10 Novem-
ber 2021), and the CORINE Land Cover data set (https://
land.copernicus.eu/pan-european/corine-land-cover, last ac-
cess: 12 November 2021). Most of these factors have been re-
viewed and tested as drought vulnerability factors by Blauhut
et al. (2016).

2.4 Drought impact data

We retrieved drought impact information from the EDII. This
database had 388 impact report entries for Spain, which cov-
ered the time period from August 1975 to May 2013. Each re-
ported impact has three spatial references which correspond
to the three levels of the NUTS regions. We aggregated the
impact information by NUTS-1 region and did not differenti-
ate impact types from one another; hence, we treated all im-
pacts as equal and of a general type. The impact categories
considered in the EDII were as follows:

Agriculture and livestock farming

Forestry

Freshwater aquaculture and fisheries

Energy and industry

Waterborne transportation

Tourism and recreation

Public water supply

Water quality

Freshwater ecosystem: habitats, plants and wildlife

Terrestrial ecosystem: habitats, plants and wildlife

Soil system

Wildfires

Air quality

Human health and public safety

Conflicts.
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In order to evaluate links between indicators and im-
pacts, we mainly followed the methodology by Bachmair
et al. (2015, 2016b), who assessed links between hydro-
meteorological indicators and impacts for Germany and the
UK. We first explored correlations between indicators and
impacts, and we then used a random forest model to evalu-
ate the predictive potential and predictor importance of the
different indicators. Before conducting the analysis, we first
converted impact reports into a monthly time series of the
number of drought impact occurrences for each sub-region.
To do this, we imposed criteria to convert a single drought
impact report (an entry from the EDII) into a drought impact
occurrence, which will be referred to as DIO. We converted
impact reports into a monthly time series by creating a DIO
for every month in between the start and end date. However,
a large proportion of the reports were incomplete. The data
had the following five main problems:

1. The specific sub-region affected was not indicated.

2. The start and the end year were indicated, but there was
no indication of the start and end month.

3. The start year was indicated, but there was no indication
of the end year or start and end month.

4. The start month was indicated, but there was no indica-
tion of the end month and year.

5. The start month and the end year were indicated, but
there was no indication of the end month.

In total, 24 % of the reports had problem 1, 33 % had problem
2,37 % had problem 3, 9 % had problem 4, and 3 % had prob-
lem 5. Therefore, to overcome and estimate the uncertainty
in our analysis as a result of the incompleteness of the data,
we developed different counting methods. This meant that
we tested the effects of including or excluding reports with
these problems. The counting methods (CM) are described
in Table 1.

We visually examined impact reports, specifically their du-
rations and descriptions, to make sure that their quantifica-
tion to impact occurrences was sensible regarding the na-
ture of each impact. For instance, we made sure that impacts
that usually do not last more than 1 month by nature were
reported in such a way. Some of these impact types were
wildfires, air quality, human health, and public safety. Quan-
tifying more long-lasting impacts, such as impacts on agri-
culture and livestock and freshwater and terrestrial ecosys-
tems, was more challenging, since determining their exact
start and end dates is not possible. However, we still used
the start and end dates of these reports, since we believe that
these represent the period during which sectors were most
affected by drought impacts. For example, for a report that
stated that “livestock farming economic losses are estimated
to be EUR 39.372 million for the period 1 November 2004—
30 April 2005” (Stahl et al., 2016), we assumed that the oc-
currence of these economic losses corresponds to the period
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during which the sector was most affected by drought im-
pacts.

Figure 1 shows the distribution of impacts types for each
NUTS-1 region and for the whole of Spain using the most
and least censoring counting methods. It shows that most of
the impacts recorded in the EDII for Spain were on agricul-
ture and livestock farming, public water supply, and fresh-
water ecosystems. Also, depending on the censoring criteria,
the distribution of impact types varied slightly. For instance,
the most censoring counting methods showed a larger pro-
portion of impacts on terrestrial ecosystems in the S region
and for the whole of Spain. The least censoring methods also
had a larger variety of impact types.

Aggregating all impact types to a single category is not
an optimal choice, since focusing on sector-specific drought
impact occurrences separately would produce more informa-
tive results. However, each sub-region contains three or fewer
types of impact categories, except the S region which con-
tains eight (Fig. 1, CM1). This meant that there were not
enough data points to investigate categories separately.

Figure 2 shows the time series of total DIOs for Spain and
also shows identified precipitation deficit episodes in which
Spain suffered major impacts due to severe drought and water
scarcity events (Hervds-Gamez and Delgado-Ramos, 2019;
Ministerio de Agricultura, Pesca y Alimentacion). Historical
drought periods identified by Sainz de la Maza and Del Jesus
(2020), determined from economic impacts of past droughts,
are also shown. The latter authors identified these by using
data from the EM-DAT and from another study (Ollero Lara
et al., 2018) that used insurance data by the Entidad Es-
tatal de Seguros Agrarios (National Agricultural Insurance
Agency). Figure 2 shows that most of the DIOs occurred
during the identified historical drought periods by the au-
thors mentioned. A slight disagreement occurs in 2008 until
late 2009, where DIOs continue to occur even though the re-
ported drought episodes end in 2007. Moreover, Fig. 3 shows
the time series of DIOs for all sub-regions (see Fig. S1 in
the Supplement for DIOs when using the two least censor-
ing counting methods). We observe that, during each drought
episode, DIOs do not always occur in all sub-regions, and
that the amounts and patterns of DIOs do change between
counting methods, depending on the harshness of the censor-
ing criteria.

2.5 Correlation analysis

For each NUTS-1 region, we selected a subset of years from
August 1975 to December 2013 for the analysis. This selec-
tion excluded years where no impact occurrences were re-
ported. We then included each month of each selected year in
a censored time series. We did this to exclude years in which
regions may have experienced drought impacts but which
may not have been recorded in the EDII. The lengths of the
censored time series are shown in Table 2. To determine the
relationship between drought indicators and drought impacts,

https://doi.org/10.5194/hess-26-1821-2022
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Table 1. How drought impact occurrences (DIOs) are counted in each counting method.

1827

CM1 CM2 CM3 CM4
Problem 1 Not included Not included Not included DIOs created for all
NUTS-1 regions
Problem 2 Not included Not included Monthly DIOs created Monthly DIOs created
until December of the until December of the
end year end year
Problem 3 Not included Not included Monthly DIOs created Monthly DIOs created
for the start year for the start year
Problem 4 A DIO created for the A DIO created for the A DIO created for the A DIO created for the
specified month only specified month only specified month only specified month only
Problem 5 If start and end is in the If start and end is in the Monthly DIOs created Monthly DIOs created

same year, then a DIO is
created at the start month
only, otherwise, monthly
DIOs are created until De-
cember of the previous-to-
last year

same year, then a DIO is
created at the start month
only,

otherwise, monthly DIOs
are created until December
of the end year

until December of the
end year

until December of the
end year

100

@
& 75
Q.
E
<
2 50
S
€
¢ 25
& Hlm=
0
MA CE E S SPAIN MA CE E S SPAIN
Reglon

. Agriculture and Livestock Farming

B Public Water Supply

[ Freshwater Ecosystem: Habitats, Plants and Wildlife [l Air Quality

B wildfires

I Human Health and Public Safety
Energy and Industry

B Wwater Quality
NA

. Terrestrial Ecosystem: Habitats, Plants and Wildlife
Conflicts

0 Forestry
[ Tourism and Recreation

Figure 1. Distribution of impact types for Spain and the sub-regions studied. Results for the most and least censoring counting methods

(CM1 and CM4) are shown.

we first conducted a cross-correlation analysis. We calculated
the Spearman rank correlation coefficients (Spearman, 1961)
and the significance levels for the time series of different in-
dicator versus the time series of DIOs for each NUTS-1 re-
gion. For each indicator, we spatially aggregated the indica-
tors over each NUTS-1 region using their mean.

https://doi.org/10.5194/hess-26-1821-2022

2.6 Random forest analysis

A random forest (Breiman, 2001) is a machine learning ap-
proach that uses ensemble trees. This approach has already
been used to link drought indicators to impacts (Bachmair
et al., 2016b, 2017) and even to forecast drought impacts
(Sutanto et al., 2019). A random forest is a tree-based en-
semble; each tree depends on a random sample of predictor
variables and a random response variable. The model then

Hydrol. Earth Syst. Sci., 26, 1821-1844, 2022
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Figure 2. Total monthly DIOs in Spain (bars) from 1975 to 2013, using different counting methods (CM1-CM4). Important historical

drought periods identified in other studies are highlighted.

Table 2. Information on DIOs for the different sub-regions and the
length of the time series for analysis for the most censoring counting
method (CM1).

NUTS-1 Number  Length of censored
region of DIOs  time series (months)
NW 25 36
NE 76 84
MA 13 36
CE 109 72
E 83 84
S 289 156

creates a prediction function to predict the response variable
by constructing ensembles of trees. The predictions over all
trees are combined by being averaged (in regression models)
or by selecting the class that is more frequently predicted
(in classification models) (Cutler et al., 2012). Random for-
est models are appealing because the predictor and response
variables can either be continuous or categorical variables. It
is a fast model to run computationally, and very few tuning
parameters are required. Apart from training and making pre-
dictions, they can also provide variable importance measures.
Random forest models also require minimal human supervi-
sion (Cutler et al., 2012).

In this study, we used random forest models to model
drought impacts, using the R package randomForest (Liaw
and Wiener, 2002). We trained two models for each NUTS-1
region, i.e. a regression and a classification model. For the re-
gression models, we used a time series of normalised DIOs as
the response variable and the monthly time series of drought
indicators as predictors. The number of DIOs was normalised

Hydrol. Earth Syst. Sci., 26, 1821-1844, 2022

by dividing them by the total number of DIOs for each re-
gion. This allowed for a fair comparison of the model errors
between regions and counting methods. For the classifica-
tion models, we used a binary time series of impacts, which
was constructed by categorising the response variable by set-
ting DIO = 0 to no impact and DIO > 0 to impact. Including
this binary signal time series also considered the fact that the
reporting of drought impacts might have changed over the
years due to improvements in reporting and data collection.
For instance, it excluded a potential bias in DIOs (upward
trend observable in Fig. 2).

Unlike the correlation analysis, the DIO time series were
not censored in this analysis. As predictors, we included all
the indicators mentioned earlier aggregated over the differ-
ent timescales. We identified the best predictors for each re-
gion using the variable importance feature. The algorithm es-
timates the variable importance by examining by how much
the prediction error increases when that variable is excluded
from the model (Liaw and Wiener, 2002).

The main input parameters in a random forest model are
the number of trees, ntree, and the number of variables ran-
domly sampled at each split, mtry. As Breiman (2001) men-
tions, for a large number of trees, and as the number of trees
increases, the generalisation error converges to its limiting
value. We set ntree equal to 1000. In order to select the opti-
mal mtry parameter for each model, we used the R package
caret (Kuhn, 2008) for tuning the models. We also used this
package to perform a cross-validation analysis.

To assess the predictive potential of the random forest
models, we first conducted a 10-fold cross-validation anal-
ysis using all of the available data (June 1983 to Decem-
ber 2013) repeated five times. We used the root mean squared
error (RMSE) and R? performance metrics to evaluate the re-
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Figure 3. Monthly DIOs (bars) in each sub-region from 1975 to 2013, using the most censoring counting methods (CM1 and CM2). Important

historical drought periods identified in other studies are highlighted.

gression models. To assess the classification models, we used
receiver operating characteristic (ROC) curves and area un-
der the ROC curve (AUC). The AUC assesses the quality of
a forecast of binary outcomes. These measures consider the
proportion of impact occurrences correctly predicted and the
proportion of (wrongly) predicted occurrences when there
were none (Mason and Graham, 2002). Because we found
large imbalances in the event classes (a large number of no
impact events with respect to impact events), we also used
precision, recall, and F score metrics to assess the models.
These metrics better assess model performance in this case
(Davis and Goadrich, 2006). Precision is the number of im-
pact occurrences correctly predicted as a proportion of the
total impact occurrence predictions made, and recall is the
proportion of impact occurrences correctly predicted (Davis
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and Goadrich, 2006). The F score is a combination of preci-
sion and recall as their harmonic mean (Hripcsak and Roth-
schild, 2005).

In order to further evaluate the performance of the models,
we randomly partitioned the data into a training and testing
part, with a 75:25 split. We tuned and trained the models (us-
ing a 10-fold repeated cross-validation) to then predict the
testing set. In this analysis, we also compared the two types
of models, i.e. classification and regression. We did this by
converting the outputs of the regression model into binary
classes. The threshold to classify the outputs was set to 0.5,
1, 1.25, and 1.5; outputs below each threshold were classi-
fied as no impact, and outputs above each threshold as im-
pact. These thresholds were then normalised by dividing by
the total number of impact occurrences in each region.

Hydrol. Earth Syst. Sci., 26, 1821-1844, 2022
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3 Results
3.1 Correlation analysis

Figure 4 shows significant correlations for the indicators in
most regions. This indicates that there are clear links between
drought indicators and impact occurrences for most regions.
Overall, the results from this analysis show that drought im-
pact occurrences are negatively correlated to the drought in-
dicators studied, and when not, the correlation values were
usually weak or not significant. Drought indices are nega-
tive during a period of drought; this means that when the
drought indicator severity increases, then the impact occur-
rences tend to increase and vice versa. The NE and CE re-
gions show the lowest correlations for all indicators; this in-
dicates that these regions show the weakest links with impact
occurrences. In this analysis, neither the total number of im-
pact occurrences nor the length of the censored time series
(see Table 2) seemed to be related to correlation strength. For
instance, these two regions were the regions with the fourth-
and second-highest number of impact occurrences, respec-
tively, but they showed the weakest links. As mentioned ear-
lier, the drought risk is also affected by a region’s exposure to
drought. This could explain why we find the weakest hazard—
impact correlations in two of the least populated regions (NE
and CE), since the impacts are reported by a region only
when it has been exposed to the hazard and has been vul-
nerable to it.

The SPI and SPEI showed a similar performance to one
another, with the exception of the S region, where the SPI
showed a larger number of significant and strong correla-
tions. Aggregations over timescales of 18-21 months showed
the highest correlations for both indicators. Moreover, the
agricultural indicator, SSWI3 showed the greatest number of
significant and strong correlations out of the remaining soil
layers. SSWI4 outperformed SPI and SPEI in the S region at
a timescale of 18 months; however, its overall performance
was lower, especially in the CE and NE regions. The hydro-
logical indicator, SSFI, showed strong and significant corre-
lations in most regions but underperformed in the CE region,
when compared to the SPI and SPEI. It also showed very
similar patterns to the SSWI but with a slightly better per-
formance in the NE region. SRSI showed strong significant
correlations in the MA and S regions and had slightly lower
strength in the NE and E regions.

When comparing the correlation patterns across different
counting methods, we found that, overall, the two most cen-
soring counting methods had the highest average correlation
coefficients and smallest average p values over all regions,
indicators, and aggregation timescales. Correlation patterns
remained very similar for the two most censoring counting
methods, except for the SRSI, in that one method showed
significant correlations in one region (NW) and did not show
this when using the other method. The two least censoring
methods showed similar patterns to the two other methods in
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four sub-regions (MA, CE, E, and S); however, most signif-
icant correlations disappeared in the remaining two regions
(NW and NE; see Fig. S2). We found that, generally, the less
censoring the method, the lower the correlation strengths.
These results indicate that counting methods do, to some
extent, affect correlation patterns and strengths between in-
dicators and impact occurrences. The results obtained here
indicate that it is important to investigate different count-
ing methods when working with incomplete impact data. In
the following, we will use the two most censoring count-
ing methods to determine the links between indicators and
impacts, since the results were most consistent when using
these two counting methods. The predictors that showed the
highest correlation strengths using these counting methods
are displayed in Table 3. A comparison of the correlations
of CM1 and CM2 in Table 3 shows that correlations are usu-
ally very close in value. The two counting methods also show
similar results, since the same indicators are usually present
in both columns, especially for the drought indices.

Overall, the teleconnection patterns and STI (Fig. 5)
showed strong and significant correlations with impact oc-
currences for many sub-regions and timescale aggregations
when using the two most censoring counting methods. How-
ever, the main difference when compared to the correlation
patterns with the drought indicators in Figs. 4 and S2, is
that the correlation directions varied across the different sub-
regions and counting methods here. This behaviour can be
due to there being a negative linear relationship between the
two variables or due to a lag between indices and impact oc-
currences. For example, although STI correlated negatively
with impacts in the MA region, when we compared both time
series (not shown) we saw that impact occurrences appeared
during an abnormally hot period but appeared at a time when
there was a short period of decreasing temperatures. This
suggests that there is lag between elevated temperatures and
impact occurrences in this region. Excluding the MA and
S regions, the STI and impact occurrences showed positive
correlations. This suggests that there is a positive linear rela-
tionship between temperature anomalies and drought impact
occurrences.

The correlation patterns using the two most censoring
counting methods (Fig. 5) showed that EA at 24-39 months
has the strongest correlations in the NW region, with AO at
39-48 months and STI at 6—12 months in the NE region, EA
at 27-39 months, AO at 9 months and STI at 27-30 months
in the MA region, WeMO at 12-24 months and AO at 30-
39 months in the CE region, WeMO at 27-36 months in the
E region, and ENSO at 30-36 months, STI at 27-30 months,
and NAO at 48 months in the S region. These results are also
displayed in Table 3. Out of all the teleconnection patterns,
the NAO and AO showed very similar correlation patterns to
each other, which is to be expected since both are dynami-
cally related (Feldstein and Franzke, 2006).

The third most censoring counting method showed simi-
lar patterns to the two most censoring methods, except for
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Table 3. Correlation coefficients (p) between drought indicators and climate indices, and impact occurrences for the two most censoring
counting methods (CM1 and CM2). The indices are ordered by decreasing correlation strength and the timescale at which the indices are

aggregated (sc) is shown.

CMI | cM2 | cM1 | cM2
Region Indicator  sc P ‘ Indicator  sc P ‘ Indicator  sc P ‘ Indicator  sc 0
NW SPEI 18 —0.684 | SSWI4 39 0.826 | ENSO 27 —0.680 | EA 24 —0.669
SPI 18 —0.674 | SSWI4 3  —0.687 | NAO 12 0.679 | EA 27  —0.576
SSWI1 9 —0.674 | SSWI4 6 —0.676 | EA 39 —0.676 | WeMO 12 —0.536
SSWI2 9 —0.674 | SPI 21 —0.653 | NAO 18 0.660 | STI 3 0.534
SPEIL 21  —0.662 | SSWI1 9 —0.647 | NAO 48 0.657 | WeMO 9 —0.533
SPI 24 —0.651 | SSWI1 6 —0.644 | NAO 15 0.650 | WeMO 6 —0.494
SPI 21  —0.651 | SSWI4 1 —0.638 | ENSO 18 —0.642 | STI 30 —0.491
SSFI 15 —0.647 | SRSI 18 —0.630 | NAO 9 0.635 | EA 39 —0.482
SSFI 9 —0.644 | SSWI4 9 —0.627 | NAO 30 0.633 | EA 30 —0.453
SSFI 18 —0.641 | SPEI 9 —0.622 | AO 15 0.625 | NAO 48 0.438
NE SRSI 54  —0.456 | SRSI 27 —0.519 | STI 6 0.555 | AO 39 0.550
SSWI2 48 0.428 | SRSI 24 —-0.509 | AO 42 0.546 | AO 42 0.550
SSWI1 48 0.410 | SRSI 30 —0.507 | AO 39 0.540 | STI 12 0.541
SSWI3 45 0.410 | SRSI 39 —-0.476 | AO 48 0.538 | STI 9 0.528
SSWI3 48 0.391 | SRSI 33  —-0.475 | AO 45 0.527 | AO 45 0.508
SRSI 15 —0.390 | SRSI 36 —0.458 | STI 9 0.498 | AO 33 0.508
SRSI 21 —0.388 | SRSI 21 —-0453 | AO 33 0492 | AO 48 0.507
SRSI 24 —0.385 | SRSI 42  —0.414 | NAO 12 0491 | AO 12 0.506
SRSI 51 —0.380 | SRSI 18 —0.384 | AO 36 0.485 | AO 36 0.498
SRSI 18 —0.376 | SSWI3 6 0.361 | AO 30 0.483 | AO 30 0.492
MA SSFI 18 —0.782 | SSFI 18 —0.782 | EA 27 —0.732 | EA 27 —0.732
SSFI 15 —0.777 | SSFI 15 -0.777 | AO 9 —0.688 | AO 9 —0.688
SSWI2 18 —0.777 | SSWI2 18 —0.777 | STI 27 —0.649 | STI 27  —0.649
SSWI3 18 —0.765 | SSWI3 18 —0.765 | EA 30 -0.610 | EA 30 —0.610
SRSI 6 —0.760 | SRSI 6 —0.760 | EA 42 —0.571 | EA 42 —0.571
SSWI1 18 —0.749 | SSWI1 18 —0.749 | STI 30 —0.565 | STI 30 —0.565
SSWI3 15 —0.743 | SSWI3 15 —-0.743 | EA 33 —0.515 | EA 33 —0.515
SRSI 9 —0.732 | SRSI 9 —0.732 | EA 24 —0.482 | EA 24 —0.482
SPI 18 —0.721 | SPI 18 —0.721 | STI 24 —0.470 | STI 24 —0.470
SSWI1 21 —0.721 | SSWI1 21 —0.721 | NAO 36 0.465 | NAO 36 0.465
CE SPEI 24  —0.554 | SPEI 24 —0.567 | WeMO 15 —0.701 | WeMO 15 —0.711
SPEI 21  —0.540 | SPEI 21 —-0.567 | AO 30 -0.687 | AO 30 —0.684
SPEI 18 —0.494 | SPEI 18 —0.523 | AO 33 —0.645 | WeMO 18 —0.649
SPEIL 27 —0.482 | SPEI 15 —0.508 | WeMO 18 —0.641 | AO 39 —0.648
SPEIL 15 —0.470 | SPEI 12 —0.500 | WeMO 24 —0.633 | AO 33 —0.647
SPEI 12 —0.458 | SPEI 27 —0.496 | WeMO 12 —0.628 | WeMO 12 —0.645
SRSI 36 0.431 | SPEI 30 —0.461 | WeMO 21  —0.622 | WeMO 24 —0.637
SPEI 30 —0.430 | SRSI 36 0.457 | WeMO 27 —0.614 | AO 36 —0.630
SPEI 33  —0.412 | SPEI 33  —-0.431 | AO 39  —0.610 | WeMO 21 —0.630
SRSI 33 0.402 | SPEI 9 —0.427 | AO 36 —0.605 | WeMO 9 —0.625
E SSWI3 36  —0.772 | SSWI3 36 —0.847 | WeMO 33 —0.653 | WeMO 33 —0.635
SSWI3 33  —0.751 | SSWI3 33 —0.839 | WeMO 36 —0.628 | WeMO 30 —0.613
SSWI3 39  —0.743 | SSWI3 39 —0.803 | WeMO 30 —0.615 | WeMO 36  —0.609
SSWI3 30 —0.720 | SSWI2 36 —0.797 | WeMO 27  —0.612 | WeMO 27  —0.607
SSWI2 33  —0.720 | SSWI2 33 —0.794 | WeMO 12 —0.593 | WeMO 24 —0.568
SSWI4 9 —0.718 | SSWI3 30 —0.790 | WeMO 24  —0.584 | EA 21 0.559
SSWI2 39 —0.716 | SSWI2 39  —0.790 | WeMO 9 —0.580 | EA 24 0.551
SSWI2 36 —0.713 | SSWI1 36 —0.777 | WeMO 39 —0.569 | WeMO 39  —0.545
SSWIi4 6 —0.712 | SSWI4 9 —0.773 | WeMO 15 —0.540 | EA 12 0.538
SSWIi4 12 —0.709 | SSWI1 39 —0.769 | WeMO 6 —0.525 | EA 18 0.531
S SRSI 1 —0.714 | SRSI 1 —0.732 | ENSO 33 0.685 | ENSO 33 0.683
SRSI 3  —0.712 | SRSI 3  —0.730 | ENSO 36 0.682 | ENSO 36 0.683
SRSI 6 —0.707 | SRSI 6 —0.726 | ENSO 30 0.676 | ENSO 30 0.676
SRSI 9 —0.700 | SRSI 9 —0.720 | STI 27 —0.673 | NAO 48 0.673
SRSI 12 —0.697 | SRSI 12 —-0.717 | STI 30 —0.670 | STI 30 —0.664
SRSI 15 —0.680 | SRSI 15 —0.700 | NAO 48 0.667 | STI 27 —0.663
SRSI 18 —0.660 | SRSI 18 —0.681 | STI 33  —0.659 | ENSO 27 0.658
SRSI 21 —0.644 | SRSI 21  —0.666 | ENSO 27 0.656 | STI 33 —0.657
SSFI 1 —0.635 | SSWI3 15 —0.651 | STI 24  —0.653 | ENSO 39 0.655
SSFI 6 —0.623 | SSWI3 18 —0.651 | ENSO 39 0.644 | ENSO 24 0.641
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Figure 4. Correlation coefficients (p) between time series of drought indicators and impact occurrences for each sub-region, using one of the
most censoring counting methods (CM1). Asterisks indicate the significance (p < 0.05).

two sub-regions (NW and NE) where the most significant
correlation patterns disappeared or changed direction. The
least censoring method overall still showed significant cor-
relations but with decreased strength. Therefore, we again
find that counting methods sometimes affected correlation
patterns. We must also take into account that a correlation
analysis only assesses links between two variables; however,
the pathways by which these patterns affect drought condi-
tions and the propagation to impacts are usually complex.
Possible interactions between different teleconnection pat-
terns or other atmospheric phenomena were not modelled in
this analysis due to its bivariate nature.

3.2 Random forest analysis
3.2.1 Cross-validation analysis

The performance of the regression random forest models is
shown in Fig. 6. RMSE values ranged from 0.0008 to 0.007
across all counting methods. Since impact occurrences were
normalised in this analysis, these values should be inter-
preted as a fraction of the total number of the impact occur-
rences for each model. Overall, R? values ranged from 0.68
to 0.97; this meant that the models explained the variance ob-
served relatively well. However, when interpreting these re-
sults, one must note that a metric such as RMSE is expected
to be small. This is because (as explained further in this sec-
tion) the models tended to underpredict the number of DIOs.
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We need to consider that the time series of occurrences does
not contain a lot of DIOs compared to the (larger) number
of time steps with zero DIOs. The RMSE is expected to be
relatively small, especially because the model is good at not
predicting DIOs when there are none (high specificity) and
because there were more actual DIOs than those predicted.
In Fig. 7 we assess the performance of the classification
of random forests. The classification model outputs predic-
tions as either probabilities for each class or directly outputs
the class. For this reason, the performance measures are dif-
ferent than in Fig. 6. We see that, generally, the precision
of all models was higher than the recall. This means that
the models predicted fewer than actual impact occurrences
(low/moderate recall), but the predictions of impact occur-
rences were usually correct (high precision). In other words,
the model had a low false positive rate and a slightly higher
false negative rate. Moreover, recall generally appeared to
be highest for the models with more balanced data sets; this
was not the case for precision. AUC values were very high
for all models (> 0.95). However, this seems to be because
specificity values were very high when compared to sensi-
tivity values, and AUC is based on both of these measures.
This means that there were very few incorrect predictions of
DIOs, and there were more DIOs than those predicted.
Precision values were very high for all the models; when
the models predicted an impact occurrence, the predictions
were correct for 97 %—100 % of the time. Recall values var-
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Figure 5. Correlation coefficients (p) between time series of climate indices and impact occurrences for each sub-region using one of the
most (CM1) and the third most (CM3) censoring counting methods. Asterisks indicate the significance (p < 0.05).

ied more than precision between regions, and the standard er-
rors were higher. However, all models predicted at least 62 %
and up to 98 % of the impact occurrences. Since the F score
metric combines both precision and recall, we used this mea-
sure to conclude that the best-performing counting method
was the one with the least censoring criteria. However, the
rest of the methods had very similar average F scores, and
their censoring level did not notably affect their F scores.
Furthermore, the results from the two most censoring count-
ing methods showed that the three regions with the largest
number of impact occurrences showed higher recall values
than the rest of the regions. The precision across the dif-
ferent sub-regions did not show much variation. These re-
gions also showed the best performance overall when using
the regression models (Fig. 6). This suggests that, in order to
have models with better skill and especially better recall, we
need data sets with a greater number of impact occurrences,
which means longer impact time series. When interpreting
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the model performance metrics in Figs. 6, 7, and 8, one must
be aware that a new model was run each time (for each plot),
which was tuned using the corresponding performance met-
ric (see Sect. S1 for further details).

When comparing counting methods, we also found that a
small sample size (low numbers of impact occurrences) lim-
its the model’s performance. We found that, generally, the
less strict the censoring criteria, the better the model per-
formance; this is displayed in Figs. 6 and 7. When using
the classification models, the balance between the two class
types affected model performance; the more balanced the
class type is, the better the performance will be. However,
although the least censoring method shows the best perfor-
mance, this method could be excluding specific indicator—
impact links at the NUTS-1 level, since this method counts
impacts that affected the whole country as impacts that oc-
curred independently in all sub-regions. This shows that the
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choice of a counting method is important when modelling
impacts and can significantly affect model performance.

3.2.2 Comparison of regression and classification
models using a train—test analysis

Figure 8 shows the performance of the regression and classi-
fication random forest models after being trained and tested
on 75 % and 25 % of the data, respectively. To do this, the
regression model’s output was converted to the categorical
classes of impact or no impact. We tested different thresh-
olds to convert the model outputs and found that, when the
threshold was lowered, the recall increased, and the precision
decreased. The opposite happened when the threshold was
increased. We tested the following thresholds: 0.5, 1, 1.25,
and 1.5. Model performance in this analysis was found to
be slightly worse than in the cross-validation analysis. It is
important to note that model performance for a region can
vary, depending on how the data are partitioned for testing
and training the model. Hence, model performance does not
only depend on the strengths between the predictor and the
response variable but also on the particular splitting. For in-
stance, if an important event or pattern remains in the testing
set, it will not be used in the training of the model; hence, it
will decrease the model’s predictive ability.

Although classification models appear to be better at pre-
dicting impact events in this analysis, these models did not
contain any information on impact severity, whereas regres-
sion models did. Since both the model types performed well,
we suggest further evaluation of these to predict impacts, for
example, by using a classification model with more classes
(to represent different impact severities) or using a different
threshold to divide the two classes in this study. Also, similar
to the previous cross-validation analysis (Sect. 3.1), here we
see more clearly that, overall, regions with a higher number
of total impact occurrences performed best here; these are the
S, CE, and E regions.

3.3 Predictor importance

Figure 9 shows the predictor importance using the two most
censoring counting methods and regression random forest
models. The overall patterns of predictor importance did not
change significantly when we compared them to the clas-
sification models (not shown). This, and the fact that both
regression and classification models showed similar perfor-
mance (Sect. 3.2.2), also confirms that the discussed poten-
tial bias in reporting culture over time does not seem to affect
our random forest results. The top predictors for each region
are summarised in Fig. 10.

Overall, the meteorological indicator, SPEI, was a top pre-
dictor in the CE and MA, at timescales between 24-33 and
15-18 months, respectively. In the E and in MA, agricul-
tural indices were top predictors at timescales of 12-21 and
18 months, respectively. The hydrological indicator, SSFI,
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was a top predictor in the NW at a timescale of 21 months.
The other hydrological indicator, SRSI, was a top predictor
in the S region, at timescales of 1-6 months. Out of all the
teleconnection patterns, AO, NAO, and WeMO were the top
predictors, with the AO in the NW and NE at timescales be-
tween 15-21 months, the NAO in the S region between 36—
48 months, and the WeMO in MA aggregated at 12 months.

We found that both analyses (correlation strength and ran-
dom forest variable importance) tended to show similar pre-
dictor importance results in most sub-regions. When assess-
ing the best drought indicators using both methods, the MA,
CE, E, and S regions showed similar results. For the climate
indices, the NE, followed by the S, showed the most agree-
ment. These results indicate that, for these top predictors, the
indicator—impact relationship is linear.

The results presented here are based on the most censoring
counting methods (CM1 and CM2), since these showed the
highest correlation strengths in the correlation analysis. Even
though these two methods showed a lower predictive skill in
the random forest models, we attribute this to the reduced
number of impact occurrences. If we compare these results
to the ones using CM3, the results remain mostly the same in
half of the regions. We excluded CM4 from this analysis.

3.4 Drought vulnerability analysis

Including drought vulnerability factors when modelling
drought impacts has been shown to increase model perfor-
mance (Blauhut et al., 2016); however, because most of the
vulnerability factors studied here (e.g. GDP per capita, public
water supply, unemployment, GVA by industry except con-
struction, agriculture, forestry, and fishing, and by all NACE
activities) were only available starting from the years 1999
or 2000, models built with these factors were not as robust as
the rest of our models. Therefore, we cannot assume that the
results found would reproduce themselves for the rest of the
study period.

However, from an exploratory analysis, we find that vul-
nerability factors, in particular the land cover types of for-
est and seminatural areas and agricultural areas, and factors,
such as unemployment rate and GVA by industry (except
construction), do increase the accuracy of the models when
they are included in especially two regions (CE and E). Also,
the exclusion of the drought indices does not substantially
decrease the model performance in either the regression or
classification random forest models. Therefore, we conclude
that including drought vulnerability factors, in some cases,
does seem to improve the accuracy of some models. This is
shown in the variable importance results (Fig. 11). Regions
that had very few DIOs (NW and S) were not considered in
this analysis. Since this analysis is limited by the availability
of vulnerability data (the period studied here missed the first
two drought events), we cannot assume that these conclu-
sions hold true for our main results, especially considering
that these models are not as robust.
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4 Discussion and conclusion

In this study, we systematically investigated the link between
drought impacts in Spain and drought indicators and telecon-
nection patterns. We also investigated the potential for vul-
nerability factors to be used as impact drivers. This means
that we used a hybrid data approach, as defined by Blauhut
(2020), to investigate drought risk as a function of hazard
indicators, exposure and vulnerability factors, and impact
information using a statistical model. We found significant
links between the drought indicators and climate indices, and
drought impact reports from the EDII database. We assessed
these links by, first, using a correlation analysis and, sec-
ond, by modelling drought impacts using drought indicators
and teleconnection patterns as predictors in a random for-
est model. While random forest models seemed to be limited
by the amount of impact occurrence data, they were skil-
ful in predicting drought impact occurrences. Furthermore,
we have shown that using drought impact reports from the
EDII with a random forest model for Spain, a region with
a reduced number of impact report entries, already provides
good predictability of impacts for several sub-regions, mak-
ing us confident in the robustness of our results. Drought im-
pact information from this database has already been suc-
cessfully linked to drought hazards and shown to have po-
tential for impact forecasting (Blauhut et al., 2015, 2016;
Stagge et al., 2015; Sutanto et al., 2019; Bachmair et al.,
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2015, 2016b); it also proves to be useful here when assessing
links between different drought indicators and impacts.

We found strong and significant correlations between
drought indicators and reported impacts in most regions. We
also found spatial differences in indicator—impact correla-
tions. Out of all the indices, the SPI (followed by SPEI)
showed the strongest correlations overall and significant cor-
relations in all regions. Therefore, we recommend the use of
these indicators if only one indicator is to be used for pre-
dictive purposes. These meteorological indices have already
been linked to drought impacts in Spain or the Mediterranean
region in several studies. For example, the SPI has been used
to successfully forecast above-normal summer wildfire activ-
ity (Gudmundsson et al., 2014). The SPEI has been used to
detect drought impacts on vegetation activity (Gouveia et al.,
2017), and the SPI has been correlated to tree ring widths
to determine the impacts of drought on forest growth (Pasho
etal., 2011).

When comparing the most important predictors from both
analyses (correlation strength and random forest variable
importance), we found a general agreement for most sub-
regions. In the random forest analysis, the top predictors for
each region were the SSFI and AO in the NW, AO in the NE,
SSWI1-2, SPEI and WeMO in MA, SPEI in the CE, SSWI2-
4 in the E, and SRSI and NAO in the S region (see Fig. 10).
Our results show strong links between impacts and drought
indices and teleconnection patterns. Drought and its links to
teleconnection patterns is studied well in the literature (see
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Figure 9. Predictor importance when using the regression random forest models and the two most censoring counting methods. The top 10

predictors for each counting method and sub-region are shown.

Sect. 2.2); however, links between EDII impacts and telecon-
nection patterns have not been investigated before, and here
we show that, in some regions, they are better predictors of
drought impacts than commonly used drought indices.

By including the STI we also investigated links between
temperature and impact occurrences. The correlation results
showed mainly positive and significant correlations, which
suggest a relationship between these two variables. However,
the STI neither showed the strongest correlations nor great-
est variable importance (in the random forest analysis) when
compared to other drought indicators or teleconnection pat-
terns, except for the NE region, where it showed higher cor-
relation strengths than the rest of the indicators. Although we
do not recommend the use of this index as a single drought
predictor, we believe that its observed connection to drought
impacts is important and might become more important as
temperatures in Spain continue to increase, especially since
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there already is evidence of increasing trends in evapotran-
spiration in most meteorological stations in Spain due to de-
creased relative humidity and increased maximum tempera-
ture that has occurred since the 1960s (Vicente-Serrano et al.,
2014a). Moreover, Gonzalez-Hidalgo et al. (2018) pointed
out that, since 1990, the role of atmospheric evaporative
demand has been playing a large role in drought develop-
ment. They state that drought is being driven by temperature
conditions that affect atmospheric evaporative demand inde-
pendently of precipitation evolution. In our study, the SPEI,
which includes the effects that temperature has on evapotran-
spiration, showed higher correlations than the SPI in four out
of six regions (NW, NE, CE, and E), which again suggests
that including the effects of temperature when investigating
drought and its impacts is important.

Adequate drought management requires knowledge of the
time that different drought types take to propagate through
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different water resource systems. Both of our analyses mostly
agreed on the timescales at which different types of drought
started to cause impacts. The timescales that showed the
strongest links with impact occurrences depended on the
sub-region and the method for its analysis. However, using
both analyses, we found the strongest links overall to be at
timescales between 15-33 months for the meteorological in-
dices, between 6-33 months for the hydrological indicator
SSFI, between 1-18 months for the hydrological indicator
SRSI, and between 6-21 months for layers 1-3 of the agri-
cultural index. For the deepest soil layer, the correlation anal-
ysis showed strongest correlations at shorter timescales, i.e.
from 1-9 months. The timescales at which the meteorolog-
ical indices showed the strongest links were usually longer
than those found in Germany and similar to the UK (Bach-
mair et al., 2016b). In these regions, SPI and SPEI showed
the best links with impact occurrences at accumulation peri-
ods of 12-24 months for the UK and at accumulation periods
of 24 months for Germany. Stagge et al. (2015) found that
Norway, Bulgaria, and Slovenia responded even more rapidly
to meteorological drought than Germany and the UK, which
shows that Spain has the longest impact response out of these
countries.

Furthermore, our results show that systems that respond to
precipitation anomalies at the shortest timescales take longer
to propagate to impacts. For instance, we have shown that
the meteorological indices correlated with impacts at long
timescales. The agricultural index in the top three layers
(1-3) showed correlations at long timescales. Viewed dif-
ferently, the hydrological index showed strong correlations
overall at the earliest timescales. In our analysis, this indi-
cates that drought impacts respond to hydrological droughts
faster than meteorological and shallow layer soil moisture
droughts. This drought propagation chain has been suggested
by Van Loon and Laaha (2015), who detected propagation

Hydrol. Earth Syst. Sci., 26, 1821-1844, 2022

signals from meteorological to hydrological droughts. Our
results indicate that if we want to predict drought impacts at
short timescales, we should use hydrological drought indices.

The agricultural index showed more significant and nega-
tive correlations in the two shallowest soil layers. A weaker
link between lower layer soil moisture and drought impacts
can be explained by the fact that the soil moisture content of
these layers, which are usually below the root zone of most
crops, has a slower and more aggregated behaviour. Aggre-
gating these indices then creates a more averaged time se-
ries with fewer anomalies, which then leads to lower correla-
tions. The agricultural indicator also revealed an anomalous
pattern in the NE region; it showed positive and significant
correlations at all soil depths. This may be explained by a
lower exposure to drought due to lower population density,
which also explains the weaker indicator—impact correlations
shown by the meteorological and hydrological drought indi-
cators. However, this pattern may also be (partly) explained
by the fact that this region reported drought impact occur-
rences in July—October 2009 (see Fig. 3), a period in which
there were no reports in other regions. A region can still be
suffering from drought impacts during a period where pre-
cipitation levels are above the climatological mean due to
long-lasting impacts of a previous drought (e.g. Boletin Ofi-
cial del Estado, 2009) and, hence, results in positive (or weak
negative) correlations.

Spain’s resilience to short-term droughts, due to its ex-
tensive network of hydraulic reservoirs, could explain why
we found most indicator—impact links at long timescales (es-
pecially meteorological indicators and teleconnection pat-
terns). We found that most of the links between meteorologi-
cal indicators and teleconnection patterns, and impact occur-
rences were strongest at timescales between 1-3 years and 1—
4 years, respectively, depending on the specific indicator and
sub-region. As mentioned earlier, drought conditions that last
more than 2 or 3 years have been shown to limit the capacity
of Spain’s hydraulic infrastructures (Gonzalez-Hidalgo et al.,
2018). In addition to reservoir systems, groundwater storage
also provides resilience (water supply to satisfy demands)
during periods of drought. Therefore, groundwater droughts
may play a role and be an additional factor that contributes
to these long accumulation periods. Especially since 15 %—
20 % of all water used in Spain is provided by groundwater
(Hernandez-Mora et al., 2003).

It is important to note that considering that there are not
many drought events within the study period and that im-
pacts are often clustered due to the nature of drought events,
the observed tendency for longer aggregation periods to show
stronger links to impacts can also be attributed to the meth-
ods used. This could be due to (or partly due to) aggregated
indices being more smoothed out and consequently extend-
ing the periods that are above and below the normal.

The most frequent types of reported impacts were agricul-
ture and livestock farming and public water supply (Fig. 1).
Both of these sectors depend on reservoir systems for storing

https://doi.org/10.5194/hess-26-1821-2022



H. Torell6-Sentelles and C. L. E. Franzke: Drought impact links to meteorological drought and predictability

=z
m

AO-39

AO-42

AO-48

AO-36

SPEI-6
Unemployment rate
Wetlands

Pastures

Public water supply

Maritime wetlands

ENSO-48
Forest and seminatural areas

Predictor
e}
m

Unemployment rate

Wetlands

Open spaces with little or no vegetation
Inland wetlands

Waterbodies

Inland waters

NAO-36

Permanent crops

o
(9]
-
o

—
(9]

1839

SSWI1-18
SRSI-6
SSwi2-18
SPEI-18
SSwi1-21
SPEI-15
SRSI-9
SSWI3-18
SPI-18
SSWI3-15

GVA by industry (except construction)
Agricultural areas

Forest and seminatural areas

Marine waters

Forests

Arable land

NAO-48

Heterogeneous agricultural areas
ENSO-27

STI-36

III|||H-I |||)>

o
[9)]
-
o
-
o

Increase in MSE (%)

Figure 11. Predictor importance when using regression random forest models built with vulnerability factors in addition to the drought
indices. Counting method CM1 is used. Models are built with data from 2000-2012.

water, since irrigation and public water supply are the two
sectors that consume most of the stored water from reser-
voirs. Our results show that SRSI is the best predictor of
impacts, outperforming all other indicators, in the S region.
The correlation analysis also showed strong and significant
correlations between SRSI and impacts for several regions.
This suggests that drought impacts in Spain depend on reser-
voir resilience, and this could explain why it takes a long
time for precipitation anomalies to propagate to impacts (and
the response to less frequent but longer drought periods).
Reservoir storage has been shown to respond to anomalies
in SPI and SPEI at long timescales in some Spanish regions
(Vicente-Serrano and Lépez-Moreno, 2005; Lorenzo-Lacruz
et al., 2010). This further demonstrates that, to understand
drought impacts at local scales, we need to consider the ef-
fects of local reservoir systems in addition to studying other
water resource systems.

The accuracy of our results is dependent on the accuracy
of the impact data used which is, specifically, the method
of quantification, the completeness of the data, and potential
sources of error. Since many impact reports were incomplete
and their quantification is subjective, we tested four different
versions of counting methods and investigated whether they
had an effect on the results. We mainly tested (1) whether
to count an impact that affects the entire country equally as
if it only occurred in one sub-region and (2) whether and
how to count impacts that lacked information on the start
or end date of the impact report. In the correlation analysis,
different counting methods mainly produced differences in
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the strength of the correlations. The least censoring counting
methods showed weaker correlations overall, and significant
correlations disappeared in one-third of the regions. How-
ever, in the random forest analysis, the least censoring count-
ing methods produced models with higher predictive skill
than the more censoring counting methods. Regions with the
most impact data also performed best. We infer that this is
because the performance of a random forest model highly
depends on the quantity of data used for its training. We
therefore conclude that, when working with impact data, it
is important to compare counting methods and to investigate
their effect on the results to overcome potential biases due to
subjectivity.

The vulnerability analysis revealed that some vulnerabil-
ity factors may also be appropriate drought impact drivers.
When we compare our vulnerability analysis results to the
results from Blauhut et al. (2016), who investigated drought
risk in Europe using vulnerability factors and drought hazard
indices, we find some similarities. For instance, they found
that, for the western Mediterranean region, some of the best
performing vulnerability factors included the area of agri-
culture, seminatural areas, and wetlands. These results agree
with our findings (see Fig. 11). They also did not find factors
such as GDP per capita or public water supply to be good
predictors. They also showed that, overall, vulnerability fac-
tors improved model accuracy.

The results of this study are limited by the availability of
drought impact data because there was just a small num-
ber of impact occurrences recorded for each drought event
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(when compared to other countries) and because the data
used only covered events until 2013. A later major drought
event (2017-2018) was not included because those data are,
so far, not publicly available and quality checked. There-
fore, we encourage future studies to (1) focus on conduct-
ing sector-specific analyses of impacts (e.g. Blauhut et al.,
2015, 2016; Stagge et al., 2015; Bachmair et al., 2016b), (2)
explore different types of impact data, for instance, agricul-
tural and economic data (e.g. Sainz de la Maza and Del Jesus,
2020), and (3) model exposure and vulnerability (in addition
to drought hazard) to understand how future drought risk will
change (Blauhut, 2020).

Code and data availability. The R package randomForest is
available at https://cran.r-project.org/web/packages/randomForest/
randomForest.pdf (Liaw and Wiener, 2002). The R pack-
age caret is available at https://doi.org/10.18637/jss.v028.105
(Kuhn, 2008). The R package panas is available at
https://github.com/matteodefelice/panas/ (De Felice, 2020).
The R package SPEI is available at http://sac.csic.es/spei (Begueria
and Vicente-Serrano, 2014). The Standardised Drought Analysis
Toolbox (SDAT) is available at http://amir.eng.uci.edu/software.php
(Hao et al., 2014; Farahmand and AghaKouchak, 2015a, b). The
research data used in this study are all publicly accessible. The
precipitation and temperature data sets used are available at
http://hdl.handle.net/10261/183071, last access: 5 March 2022
(Gutiérrez et al., 2019; Herrera et al., 2019). Data for stream-
flow and reservoir levels are available at https://sig.mapama.
gob.es/redes-seguimiento/index.html?herramienta=Aforos  (Min-
isterio para la Transicion Ecolégica y el Reto Demogréfico,
2022). Volumetric soil water content data from the ERAS5-Land
data set are available at https://doi.org/10.24381/cds.68d2bb30
(Mufioz Sabater, 2019). Data for the climate indices of NAO, EA,
AO, and ENSO, from the NOAA Climate Prediction Center, are
available at https://psl.noaa.gov/data/climateindices/list/ (NOAA,
2021a) and https://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml
(NOAA, 2021b), and the data for the WeMO are available at
http://www.ub.edu/gc/wemo/ (Martin-Vide and Lopez-Bustins,
2006). The data for the drought vulnerability factors are avail-
able at https://www.ine.es (Instituto Nacional de Estadistica,
2022a, b, c), https://ec.europa.eu/eurostat/ (Eurostat, 2022a, b, c, d)
and https://land.copernicus.eu/pan-european/corine-land-cover
(European Environment Agency, 2022). The results from
the cross-validation analysis and an explanation on how
to tune the random forest models can be obtained at
https://doi.org/10.5281/zenodo.6322803 (Torell6-Sentelles,
2022).
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