Articles | Volume 25, issue 10
https://doi.org/10.5194/hess-25-5473-2021
https://doi.org/10.5194/hess-25-5473-2021
Research article
 | 
15 Oct 2021
Research article |  | 15 Oct 2021

Unshielded precipitation gauge collection efficiency with wind speed and hydrometeor fall velocity

Jeffery Hoover, Michael E. Earle, Paul I. Joe, and Pierre E. Sullivan

Related authors

Unshielded Precipitation Gauge Collection Efficiency with Wind Speed and Hydrometeor Fall Velocity. Part II: Experimental Results
Jeffery Hoover, Michael E. Earle, and Paul I. Joe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-554,https://doi.org/10.5194/hess-2020-554, 2020
Revised manuscript has not been submitted
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Exploring patterns in precipitation intensity–duration–area–frequency relationships using weather radar data
Talia Rosin, Francesco Marra, and Efrat Morin
Hydrol. Earth Syst. Sci., 28, 3549–3566, https://doi.org/10.5194/hess-28-3549-2024,https://doi.org/10.5194/hess-28-3549-2024, 2024
Short summary
Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates
Aart Overeem, Hidde Leijnse, Gerard van der Schrier, Else van den Besselaar, Irene Garcia-Marti, and Lotte Wilhelmina de Vos
Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024,https://doi.org/10.5194/hess-28-649-2024, 2024
Short summary
Technical Note: Smartphone-based evapotranspiration monitoring
Adriaan J. Teuling and Jasper F. D. Lammers
EGUsphere, https://doi.org/10.5194/egusphere-2023-3096,https://doi.org/10.5194/egusphere-2023-3096, 2024
Short summary
Statistical characteristics of raindrop size distribution during rainy seasons in complicated mountain terrain
Wenqian Mao, Wenyu Zhang, and Menggang Kou
Hydrol. Earth Syst. Sci., 27, 3895–3910, https://doi.org/10.5194/hess-27-3895-2023,https://doi.org/10.5194/hess-27-3895-2023, 2023
Short summary
Evaluation of precipitation measurement methods using data from a precision lysimeter network
Tobias Schnepper, Jannis Groh, Horst H. Gerke, Barbara Reichert, and Thomas Pütz
Hydrol. Earth Syst. Sci., 27, 3265–3292, https://doi.org/10.5194/hess-27-3265-2023,https://doi.org/10.5194/hess-27-3265-2023, 2023
Short summary

Cited articles

Baghapour, B. and Sullivan, P. E.: A CFD study of the influence of turbulence on undercatch of precipitation gauges, Atmos. Res., 197, 265–276, https://doi.org/10.1016/j.atmosres.2017.07.008, 2017. 
Baghapour, B., Wei, C., and Sullivan, P. E.: Numerical simulation of wind-induced turbulence over precipitation gauges, Atmos. Res., 189, 82–98, https://doi.org/10.1016/j.atmosres.2017.01.016, 2017. 
Biral: Biral micro rain radar, available at: https://www.biral.com/product/micro-rain-radar/, last access: 25 June 2019. 
Bloemink, H. J. I. and Lanzinger, E.: Precipitation type from Thies disdrometers, Bucharest, Romania, 4–7, 2005. 
Canada: Precipitation Occurrence Sensor System (POSS) Technical Manual, Environment Canada, Toronto, Canada, 1995. 
Download
Short summary
Transfer functions with dependence on wind speed and precipitation fall velocity are evaluated alongside transfer functions with wind speed and temperature dependence for unshielded precipitation gauges. The transfer functions with fall velocity dependence reduced the RMSE of unshielded gauge measurements relative to the functions based on wind speed and temperature, demonstrating the importance of fall velocity for precipitation gauge collection efficiency and transfer functions.