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Abstract. Collection efficiency transfer functions that com-
pensate for wind-induced collection loss are presented and
evaluated for unshielded precipitation gauges. Three novel
transfer functions with wind speed and precipitation fall ve-
locity dependence are developed, including a function from
computational fluid dynamics modelling (CFD), an experi-
mental fall velocity threshold function (HE1), and an experi-
mental linear fall velocity dependence function (HE2). These
functions are evaluated alongside universal (KUniversal) and
climate-specific (KCARE) transfer functions with wind speed
and temperature dependence. Transfer function performance
is assessed using 30 min precipitation event accumulations
reported by unshielded and shielded Geonor T-200B3 precip-
itation gauges over two winter seasons. The latter gauge was
installed in a Double Fence Automated Reference (DFAR)
configuration. Estimates of fall velocity were provided by the
Precipitation Occurrence Sensor System (POSS). The CFD
function reduced the RMSE (0.08 mm) relative to KUniversal
(0.20 mm), KCARE (0.13 mm), and the unadjusted measure-
ments (0.24 mm), with a bias error of 0.011 mm. The HE1
function provided a RMSE of 0.09 mm and bias error of
0.006 mm, capturing the collection efficiency trends for rain
and snow well. The HE2 function better captured the over-
all collection efficiency, including mixed precipitation, re-
sulting in a RMSE of 0.07 mm and bias error of 0.006 mm.
These functions are assessed across solid and liquid hydrom-
eteor types and for temperatures between −22 and 19 ◦C.
The results demonstrate that transfer functions incorporating
hydrometeor fall velocity can dramatically reduce the un-
certainty of adjusted precipitation measurements relative to
functions based on temperature.
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1 Introduction

Automated catchment-type precipitation gauge measure-
ments are critical as references for, and input to, weather,
climate, hydrology, transportation, and remote sensing appli-
cations. The systematic bias and uncertainty of gauge mea-
surements due to wind-induced undercatch are a major chal-
lenge, particularly with respect to the measurement of mixed
and solid precipitation (Rasmussen et al., 2012; Kochen-
dorfer et al., 2018). For example, an unshielded weighing
precipitation gauge can capture less than 50 % of the ac-
tual amount of solid precipitation falling in air when the
wind speed exceeds 5 m s−1 (Kochendorfer et al., 2017b).
This measurement challenge has prompted (1) modelling
studies to better understand and visualize the undercatch of
hydrometeors by precipitation gauges and (2) the develop-
ment of transfer functions to adjust measurements for un-
dercatch effects. Previous work in each of these domains is
outlined in Sect. 1.1 and 1.2, respectively. The objectives of
the present study, which implements numerical modelling
and experimental analysis to develop transfer functions with
wind speed and hydrometeor fall velocity dependence, are
presented in Sect. 1.3.
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1.1 Modelling studies

Computational fluid dynamics (CFD) studies have been used
to simulate the airflow around precipitation gauges and the
associated collection efficiencies for rain and solid precipita-
tion (Nešpor and Sevruk, 1999; Constantinescu et al., 2007;
Colli, 2014; Colli et al., 2014, 2015, 2016a, b; Thériault et
al., 2012, 2015; Baghapour and Sullivan, 2017; Baghapour
et al., 2017). These studies have demonstrated the influence
of wind speed, turbulence, hydrometeor characteristics (size,
density, drag, terminal velocity), and gauge and shield geom-
etry on precipitation gauge undercatch. For rainfall, Nešpor
and Sevruk (1999) showed increases in wind-induced error
for smaller drop sizes with lower terminal velocities, with
errors increasing for higher wind speeds. The conversion
factor (inverse of integral collection efficiency) varied with
the precipitation intensity and rainfall type, which influenced
the distribution of hydrometeor sizes and terminal velocities.
Thériault et al. (2012) demonstrated similar trends for snow-
fall, with collection efficiencies varying significantly with the
type of solid precipitation and size distribution. Simulated
collection efficiencies for wet snow and dry snow hydrom-
eteors captured the general upper and lower bounds of ex-
perimental observations, respectively, with the lower collec-
tion efficiency for dry snow hydrometeors attributed to their
lower terminal velocity and interaction with the local airflow
around the gauge.

For a Geonor gauge with a single-Alter shield, Théri-
ault et al. (2012) used a constant drag coefficient hydrom-
eteor tracking model to develop a series of transfer functions
based on wind speed for different hydrometeor types. Colli et
al. (2015) extended this work to show the influence of differ-
ent hydrometeor drag models on collection efficiency results.
Empirical drag model results (Khvorostyanov and Curry,
2005), based on the relative hydrometeor-to-air velocity over
the hydrometeor trajectory, were shown to yield higher col-
lection efficiencies compared with constant drag coefficient
results that can overestimate drag values. Colli et al. (2015)
developed transfer functions based on wind speed for un-
shielded and single-Alter-shielded gauges for three specific
hydrometeor size distributions. Further studies, using com-
putationally intensive large eddy simulation (LES) models,
better resolved the intensity and spatial extent of turbulence
around the gauge orifice, which can lead to temporal varia-
tions in collection efficiency results (Colli et al., 2016a, b;
Baghapour and Sullivan, 2017; Baghapour et al., 2017). The
degree of turbulence was found to vary depending on the spe-
cific shield configuration and wind speed (Baghapour et al.,
2017).

1.2 Transfer functions

Intercomparisons of precipitation gauges have served as the
primary mechanism for developing transfer functions. In
the 1998 World Meteorological Organization (WMO) Solid

Precipitation Measurement Intercomparison, transfer func-
tions were determined experimentally by comparing mea-
surements from different gauges (primarily manual) with
those from a manual collector with a Tretyakov shield in
the WMO Double Fence Intercomparison Reference (DFIR)
configuration (Goodison et al., 1998). Precipitation events
were monitored by observers, who reported the amount and
type of snow, wind speed, and temperature statistics for each
event. Events were defined based on the duration of con-
tinuous snowfall when the reference DFIR precipitation ac-
cumulation was greater than or equal to 3 mm. Adjustment
functions for unshielded gauge collection efficiencies were
recommended for snow, mixed precipitation, and rain, based
on the wind speed at gauge height (Goodison, 1978; Goodi-
son et al., 1998; Yang et al., 1998). While these adjustments
could be applied to manual precipitation accumulation mea-
surements, their application to automated measurements at
shorter timescales, and where the precipitation type may not
be well defined, presents a significant challenge (Colli, 2014;
Colli et al., 2014, 2016a, b; Thériault et al., 2015, 2012).

The WMO commissioned another intercomparison, the
Solid Precipitation Intercomparison Experiment (SPICE), to
assess various automated technologies for the measurement
of precipitation accumulation and snow depth and to recom-
mend automated field reference systems (Nitu et al., 2018).
An automated precipitation gauge configured with a single-
Alter shield within a DFIR fence was chosen as the field
reference configuration for precipitation accumulation; this
was referred to as the Double Fence Automated Reference
(DFAR) configuration. Transfer functions for unshielded and
shielded gauges were derived as an exponential function of
wind speed following the approach of Goodison (1978) and
using 30 min precipitation events from the SPICE dataset
(Kochendorfer et al., 2017a). Separate functions were devel-
oped for solid precipitation and mixed precipitation, as de-
fined by air temperature ranges: less than −2 ◦C for solid
precipitation and between −2 and 2 ◦C for mixed precipita-
tion.

Using Bayesian analysis of Norwegian measurement
data, Wolff et al. (2015) developed a precipitation phase-
independent, continuous transfer function with respect to
wind speed and air temperature for a single-Alter-shielded
Geonor precipitation gauge. A similar, but less complex,
function was developed by Kochendorfer et al. (2017a, 2018)
using the SPICE dataset, including results from eight mea-
surement sites in Canada, Norway, Finland, Spain, Switzer-
land, and the USA. The application of this “universal” func-
tion to precipitation accumulation measurements from un-
shielded weighing gauges in SPICE was shown to reduce
the overall bias relative to the DFAR; however, reductions
in the root mean square error (RMSE) were less significant
(Kochendorfer et al., 2017a, b, 2018; Wolff et al., 2015).

When applying universal adjustments with wind speed
and air temperature dependence, the errors can vary signif-
icantly by site, presumably driven by differences in clima-
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tology (Smith et al., 2020; Kochendorfer et al., 2017a). This
has motivated further work on climate-specific transfer func-
tions (Koltzow et al., 2020; Smith et al., 2020). Other studies
have proposed the use of precipitation intensity for the im-
proved adjustment of solid precipitation (Chubb et al., 2015;
Colli et al., 2020). Another potential avenue for reducing er-
rors in adjusted measurements is by improving the ability of
transfer functions to distinguish among different precipita-
tion types and their aerodynamic properties (Thériault et al.,
2012; Wolff et al., 2015; Nešpor and Sevruk, 1999).

1.3 Objectives

In this work, adjustment functions incorporating hydrome-
teor fall velocity are developed to reduce the uncertainty
(RMSE) in collection efficiency and precipitation accumu-
lation estimates from unshielded Geonor T-200B3 precipita-
tion gauges. The unshielded gauge configuration allows for
the assessment of a broader range of collection efficiencies,
as the degree of undercatch is generally more pronounced for
unshielded gauges relative to shielded configurations. Fur-
ther, by focussing on the unshielded configuration, no as-
sumptions are required regarding the behaviour of the shield
slats and their role in momentum reduction and turbulence
generation around the gauge.

A combined modelling and experimental approach is used
in this study. In the modelling component, computational
fluid dynamics and Lagrangian analysis is used to charac-
terize the gauge collection efficiency dependence explicitly
in terms of wind speed and hydrometeor fall velocity and
to derive a corresponding transfer function. Details of the
modelling work are included in the Supplement. In the ex-
perimental component, fall velocity and precipitation type
estimates from the Precipitation Occurrence Sensor System
(POSS) are used to investigate how the hydrometeor prop-
erties influence the relationships among measured catch effi-
ciency, wind speed, and temperature. Two additional trans-
fer functions are derived experimentally with wind speed
and fall velocity dependence. These new transfer functions
are assessed against transfer functions with dependence on
wind speed and air temperature, including one of the uni-
versal functions developed by Kochendorfer et al. (2017a)
and a climate-specific function derived herein using a similar
methodology.

2 Method

2.1 CFD model

A computational fluid dynamics model was used to charac-
terize the collection efficiency dependence with wind speed
and hydrometeor fall velocity. The model is detailed in the
Supplement (Sect. S1.1). Briefly, a high-resolution three-
dimensional computer aided design model of the Geonor
T-200B3 600 mm capacity gauge (hereafter Geonor gauge)

with 2 m gauge orifice height was developed for the analy-
sis. Time-averaged Navier–Stokes equations and a k–ε tur-
bulence model with 5 % turbulence intensity at the inlet
(Kato and Launder, 1993) were used to model the airflow
around the gauge for horizontal wind speeds (Uw) from 0
to 10 m s−1, applied in 1 m s−1 increments. Separate simu-
lations were conducted for each wind speed using monodis-
persed hydrometeors (Sect. S1.2) and size distributions for
specified hydrometeor types (Sect. S1.3).

2.2 Instrumentation

Experimental measurements were performed in conjunc-
tion with SPICE over the 2013/14 and 2014/15 winter pe-
riods (1 November to 30 April) at the Centre for Atmo-
spheric Research Experiments (CARE) site in Egbert, On-
tario, Canada. Measurements of precipitation accumulation
were performed using 600 mm capacity Geonor T-200B3
gauges in unshielded and reference DFAR configurations.
Both gauges were securely mounted on concrete founda-
tions to limit wind-induced vibrations. The performance of
these gauges was confirmed by full-scale field verifications
at the start and end of testing, with annual maintenance to in-
spect, clean, level, and recharge each gauge. The gauges were
charged with a mixture of antifreeze (60 % methanol and
40 % propylene glycol) and oil (Esso Bayol 35 in 2013/14,
discontinued; Exxon Mobil Isopar M in 2014/15).

Measurements of precipitation occurrence were obtained
using the Thies Laser Precipitation Monitor (LPM) installed
inside the inner fence of the DFAR. Wind speed and direc-
tion measurements at 2 m gauge height were performed with
a Vaisala WS425 ultrasonic wind sensor adjacent to the un-
shielded gauge. Temperature was measured with a Yellow
Springs International model 44212 thermistor in an aspirated
Stevenson screen. Further details are available in the SPICE
final report (Nitu et al., 2018).

2.3 Data sampling, quality control, and precipitation
event selection

The instruments were sampled using a Campbell Scientific
CR3000 data logger. For each Geonor T-200B3 precipitation
gauge, the frequency and precipitation accumulation for each
of the three transducers was reported at 6 s intervals, the lat-
ter computed from the former using manufacturer-provided
calibration coefficients. Minutely measurements of precipi-
tation occurrence from the Thies LPM were recorded. The
scalar average wind speed and vector average wind direction
were recorded over 1 min intervals. Based on SPICE proce-
dures, these data were processed using a format check to re-
place missing data with null values, a range check to identify
and remove outliers outside the manufacturer-specified out-
put thresholds, a jump filter to remove spikes exceeding max-
imum point-to-point variation thresholds, and a Gaussian fil-
ter to smooth out high-frequency noise in Geonor precipita-
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tion accumulation measurements (Nitu et al., 2018). Periods
of instrument maintenance and power outages were removed
from the analysis. The Geonor accumulation data were ag-
gregated to 1 min intervals for subsequent analysis.

Precipitation events were identified during both measure-
ment periods using the SPICE event selection procedure
(Nitu et al., 2018). These events were defined as 30 min pe-
riods with at least 0.25 mm of precipitation recorded by the
reference DFAR precipitation gauge and at least 60 % pre-
cipitation occurrence reported by the Thies LPM. The use of
the LPM as a secondary confirmation of precipitation occur-
rence minimizes the likelihood of events with false precip-
itation due to dumps of snow or ice into the gauge, wind-
induced vibrations, or other factors. Following the approach
of Kochendorfer et al. (2018), a minimum 0.075 mm accu-
mulation threshold was applied for the unshielded gauge to
ensure that measurements exceeded the gauge uncertainty
and that derived collection efficiency values were reliable.
The 30 min event duration was chosen to be sufficiently long
to reduce noise and ensure high confidence in measured pa-
rameters and sufficiently short to avoid the influence of di-
urnal temperature variations, while also providing a larger
number of events for analysis relative to longer durations.
Note that unless otherwise stated, all precipitation events re-
ferred to hereafter are 30 min events derived using the above
approach.

2.4 POSS fall velocity and precipitation type

The POSS is a small upward-facing bistatic X band radar ca-
pable of measuring the precipitation fall velocity based on
the Doppler frequency shift of the received signal (Canada,
1995; Sheppard, 1990, 2007; Sheppard et al., 1995; Shep-
pard and Joe, 1994, 2000, 2008). During periods of precip-
itation, the POSS outputs both the mean and mode received
signal frequency derived from the Doppler frequency spec-
trum over the previous minute. The mean precipitation fall
velocity (Uf_mean) is estimated from the transmitted wave-
length (λ) and the mean frequency (fmean) of the measured
Doppler power density spectrum for falling precipitation hy-
drometeors.

Uf_mean =
fmeanλ

2
(1a)

The mode precipitation fall velocity (Uf_mode) is described
by a similar function, based on the mode frequency (fmode)
of the measured Doppler power density spectrum.

Uf_mode =
fmodeλ

2
(1b)

For each 30 min event, the mean and mode event fall ve-
locity correspond to the average of all minutely mean and
mode values, respectively. The transfer functions presented
in this work were derived using both forms of event fall ve-
locity and assessed in terms of the RMSE and bias error (BE)

of adjusted measurements relative to the DFAR. The spe-
cific fall velocity indicated for each transfer function corre-
sponds to that which produced the lowest RMSE and BE. The
POSS also provides a minutely precipitation type output cor-
responding to very light, light, moderate, and heavy precipi-
tation for rain, snow, hail, and undefined precipitation. Each
event is classified as “rain” or “snow”, corresponding to a
minimum 70 % occurrence of that precipitation type over the
event period (i.e. at least 21 min of precipitation occurrence).
“Mixed” precipitation events correspond to the presence of
both “rain” and “snow” for the remaining events not classi-
fied as rain or snow. “Undefined” precipitation corresponds
to events where the precipitation is not captured by the three
other classifications.

2.5 Transfer functions with wind speed and
temperature

Due to the systematic error associated with gauge under-
catch, the unshielded gauge can capture less precipitation
than the true amount falling in the air. The measured col-
lection efficiency (CEm) is defined as the ratio of the precip-
itation accumulation reported by the unshielded gauge (Pun)
relative to that reported by the DFAR (PDFAR) for each event
and is given by

CEm =
Pun

PDFAR
. (2)

Assuming that the gauge measurement uncertainties are in-
dependent and random with equivalent accumulations (corre-
sponding to a collection efficiency equal to 1) and uncertain-
ties, the uncertainty in the collection efficiency (σCE) scales
with the relative magnitude of the gauge uncertainty (σP ) and
the event accumulation value (P ) by error propagation.

σCE =

√
2σP
P

(3)

Collection efficiency transfer functions attempt to capture
the performance of the unshielded gauge relative to the ref-
erence configuration based on wind speed, temperature, or
other meteorological parameters. They can then be applied to
adjust precipitation accumulations from an unshielded gauge
in operational settings where reference measurements are not
available.

Padj =
Pun

CE
(4)

Kochendorfer et al. (2017a, 2018) used SPICE measure-
ment data from eight test sites to develop an exponential and
trigonometric transfer function based on wind speed (Uw)
and air temperature (T ). This is referred to as KUniversal in
this work (Eq. 5a). For wind speeds above a threshold value
(Uwt) of 7.2 m s−1, the wind speed is fixed at the threshold
value (Eq. 5b) to avoid the potential for erroneous catch effi-
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ciency values at higher wind speeds that were not well repre-
sented in the SPICE measurement dataset. Based on a simi-
lar rationale, no adjustment is applied for temperatures above
5 ◦C. Note that while Kochendorfer et al. (2017b) considered
wind speeds at both gauge height and at 10 m,Uw will denote
the gauge height wind speed in this work.

CEK (Uw ≤ Uwt,T )

= exp
[
−b1Uw

(
1− tan−1 (b2T )+ b3

)]
(5a)

CEK (Uw >Uwt,T )

= exp
[
−b1Uwt

(
1− tan−1 (b2T )+ b3

)]
(5b)

The coefficients for KUniversal are provided in Table 1.
Using the same formulation, a site-specific transfer func-

tion based on wind speed and temperature was derived using
the CARE dataset, for comparison with KUniversal. Best-fit
regression coefficients were determined by varying the tem-
perature threshold below 5 ◦C with the collection efficiency
constrained to 1 above the threshold value. Solving Eq. (5a)
for the temperature when the collection efficiency equals 1
provides an additional constraint on the b3 coefficient as a
function of the b2 coefficient and temperature threshold (Tt).

b3 = tan−1 (b2Tt)− 1 (5c)

The coefficients for the CARE site-specific transfer function,
referred to as KCARE in this work, are provided in Table 1.
The temperature threshold was varied over the measurement
range in 0.01 ◦C increments to provide the lowest overall
RMSE.

3 Results

3.1 Precipitation type

Using the minutely POSS precipitation type output, events
were classified as “rain”, “snow”, “mixed”, or “undefined”
following the methodology in Sect. 2.4. The relative occur-
rence of different precipitation types as reported by the POSS
for the event dataset is summarized in Table 2. The fall ve-
locities in Table 2 were estimated by the POSS following the
methodology in Sect. 2.4; the temperatures were estimated
from a YSI44212 thermistor in an aspirated Stevenson screen
as described in Sect. 2.2.

Based on the mean fall velocities and temperatures for
each precipitation event (Fig. 1, Table 2), snow events oc-
curred at temperatures below 0.5 ◦C and with fall veloc-
ities of 0.93 to 2.32 m s−1. Mixed events were character-
ized by mean temperatures between −7.0 and 2.1 ◦C and
mean fall velocities between 1.2 and 4.6 m s−1, while un-
defined precipitation events occurred at mean temperatures
between −5.4 and 6.6 ◦C and fall velocities between 1.0 and
4.3 m s−1. Rain events were characterized by mean temper-
atures between −4.8 and 18.9 ◦C and mean fall velocities

Figure 1. Mean air temperature and fall velocity for 30 min events
with rain, snow, mixed, and undefined precipitation (see Table 2 for
summary).

between 1.4 and 6.4 m s−1. Over the temperature range be-
tween−5 and 2 ◦C, rain, snow, mixed, and undefined precip-
itation types were all present, demonstrating the challenge of
estimating precipitation type using temperature alone (e.g. as
done for theKUniversal andKCARE transfer functions). Within
this temperature range, a wide variety of mean fall velocities,
between 1 and 6 m s−1, is also apparent.

3.2 Collection efficiency

3.2.1 CFD model

Simulations were run for wind speeds from 0 and 10 m s−1

and monodispersed hydrometeors with fall velocities be-
tween 0.25 and 10 m s−1. Details of the simulations are pro-
vided in Sect. S1.2. The numerical results for monodispersed
hydrometeors demonstrate a clear dependence on the hy-
drometeor fall velocity (Fig. 2). Hydrometeors with higher
fall velocities exhibit increased collection efficiency, and the
collection efficiency tends to decrease with increasing wind
speed. Rain, dry snow, and wet snow hydrometeors with
1.0 m s−1 fall velocity exhibit a similar collection efficiency
decrease with increasing wind speed, despite differences in
diameter, density, and mass. For rain and ice pellet hydrom-
eteors with 5.0 m s−1 fall velocities, the results are close to 1
and nearly identical at all wind speeds, irrespective of differ-
ences in density. Here, the circles for rain overlap the squares
for ice pellets in Fig. 2. Rain and wet snow with identical
fall velocities between 1.0 and 2.5 m s−1 also exhibit similar
results for wind speeds under 5 m s−1. Collection efficiency
differences across all hydrometeor types with identical fall
velocities are within 0.18, with root mean square differences
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Table 1. Unshielded Geonor T-200B3 precipitation gauge collection efficiency transfer function coefficients for solid and mixed precipitation
with 30 min scalar mean wind speed Uw at gauge height for KUniversal function with wind speed and air temperature T dependence, with
constant value above wind speed threshold with Kochendorfer et al. (2017a) coefficients; KCARE function with wind speed and air temper-
ature dependence, with constant value above wind speed threshold; present study CFD model with dependence on wind speed and mode
hydrometeor fall velocity Uf_mode; HE1 model with dependence on wind speed and mean hydrometeor fall velocity Uf_mean threshold; and
HE2 model with wind speed and mode hydrometeor fall velocity dependence and mode hydrometeor fall velocity threshold.

Coefficients

Description Eq. Function b1 b2 b3 b4 Threshold

KUniversal (5) f (Uw,T ) 0.0785 0.729 0.407 – Uwt = 7.2 m s−1, T ≤ 5 ◦C
KCARE (5) f (Uw,T ) 0.1651 0.186 −0.757 – Uwt = 7.2 m s−1, T ≤ 1.33 ◦C
CFD (6) f (Uw,Uf_mode) 0.908 1.387 0.143 2.422 Uw ≤ 10 m s−1

HE1 (7) f (Uw,Uf_mean) 0.139 – – – Uf_mean ≤ 1.93 m s−1, Uw ≤ 5.75 m s−1

HE2 (8) f (Uw,Uf_mode) 0.244 0.0869 – – Uf_mode ≤ 2.81 m s−1, Uw ≤ 0.8/(b1− b2Uf)

Table 2. Mean fall velocities and temperatures of precipitation
events by type classification.

Precipitation Fall velocities Temperatures Events
phase (m s−1) (◦C) (no.)

Snow 0.93 to 2.32 < 0.5 233
Mixed 1.2 to 4.6 −7.0 to 2.1 45
Undefined 1.0 to 4.3 −5.4 to 6.6 40
Rain 1.4 to 6.4 −4.8 to 18.9 196

Figure 2. Flow simulation results for Geonor unshielded gauge col-
lection efficiency based on wind speed and hydrometeor fall ve-
locity for rain, ice pellets, wet snow, dry snow, and CFD transfer
function.

of 0.05, over all wind speeds and hydrometeor fall velocities
studied.

3.2.2 Experimental results

The unshielded gauge collection efficiency results are shown
as a function of the 30 min DFAR event accumulations in
Fig. 3a and stratified by precipitation type classification. The

collection efficiency for rain shows less scatter and less un-
certainty for higher reference precipitation accumulations.
The dashed lines in Fig. 3a show the decrease in the collec-
tion efficiency uncertainty with increasing precipitation ac-
cumulation for a collection efficiency equal to 1 and a pre-
cipitation accumulation uncertainty of 0.1 mm (k = 2) given
by Eq. (3). These lines appear to capture the overall trend ob-
served for rain events. The snowfall events show a markedly
different trend, however, with collection efficiencies as low
as 0.3.

The collection efficiency for all events as a function of
mean wind speed and precipitation type classification is
shown in Fig. 3b. For rain events, the collection efficiencies
are close to 1. For snow, an approximately linear decrease
in the collection efficiency with mean wind speed is appar-
ent, with the collection efficiency decreasing to 0.3 at a wind
speed of 5 m s−1. Mixed precipitation collection efficiencies
span a range of values between those of rain and snow. For
undefined precipitation, some events have collection efficien-
cies close to 1 at high wind speeds, similar to rain events,
while others appear to decrease with increasing wind speed
in a similar fashion to that observed for snow events.

The dependence of collection efficiencies on the mean
wind speed over four separate mean temperature ranges is
shown in Fig. 3c. For mean event temperatures above 2 ◦C,
the collection efficiencies are generally close to 1, typical of
rain. For temperatures between −5 and −2 ◦C and between
−2 and 2 ◦C, a range of collection efficiency values are ob-
served, from those typical of snow to those typical of rain.
This variation is attributed to the wide range of fall veloci-
ties within this temperature range, which includes snow, rain,
and mixed precipitation events (Fig. 3b). At colder tempera-
tures, below−5 ◦C, collection efficiencies appear to decrease
approximately linearly with wind speed, consistent with the
trend observed for snow events in Fig. 3b.

Stratifying the collection efficiency results as a function
of mean event wind speed by the mode fall velocity shows
more distinct trends (Fig. 3d) relative to those observed when
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Figure 3. Collection efficiency of the unshielded gauge as a function of (a) precipitation accumulation and event precipitation type (dashed
lines illustrate accumulation uncertainty threshold), (b) wind speed and event precipitation type, (c) wind speed and mean air temperature T
categories, and (d) wind speed and mode fall velocity Uf_mode categories.

stratifying by temperature (Fig. 3c). Collection efficiencies
are close to 1 for fall velocities greater than 2.5 m s−1, gen-
erally corresponding to rain. Conversely, fall velocities be-
low 1.5 m s−1 show an approximately linear decrease in col-
lection efficiency with increasing wind speed up to about
6 m s−1. A number of the values with higher collection ef-
ficiencies in this low fall velocity range correspond to mixed
precipitation, where both snow and rain may be present. Be-
tween 1.5 and 2.5 m s−1 fall velocity, intermediate collec-
tion efficiency values are evident, with collection efficien-
cies transitioning from lower to higher values, despite a fewer
number of observations in this range.

3.3 Derivation of fall velocity transfer functions from
CE results

3.3.1 CFD model

The simulation results in Sect. 3.2.1 demonstrate that the col-
lection efficiency is dependent on the free-stream wind speed

(Uw) and hydrometeor fall velocity (Uf). The CFD transfer
function, CECFD, is presented based on a polynomial fit to
wind speed and an exponential hydrometeor fall velocity de-
pendence, with both velocities having units of metres per sec-
ond (m s−1).

CECFD = 1− b1Uwe
−b2Uf + b3U

2
we
−b4Uf (6)

This expression was selected due to its ability to capture the
nonlinearity in the collection efficiency up to 10 m s−1 wind
speed, as well as the nonlinear fall velocity dependence with
collection efficiencies approaching 1 for higher fall veloci-
ties. Table 1 shows the best-fit coefficients (RMSE of 0.03)
from a combined nonlinear regression for dry snow (0.5 and
0.75 m s−1 fall velocities), wet snow (1.0, 1.25, . . . , 2.5 m s−1

fall velocities), and rain (5 and 10 m s−1 fall velocities). A
single CFD curve was used for each fall velocity in the fit to
ensure that the transfer function was unbiased over the entire
range of fall velocities studied.

The CFD transfer function is compared with the CFD
results in Fig. 3. For hydrometeor fall velocities above
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Figure 4. Geonor unshielded gauge collection efficiency for the ex-
ponential fit model with hydrometeor fall velocity and wind speed.

5.0 m s−1, the collection efficiency expression is within
−0.13 and 0.10 of CFD results over all hydrometeor types.
For fall velocities between 1.25 and 2.5 m s−1, the fit is
within±0.06 over all wind speeds. For fall velocities of 0.25
to 1.0 m s−1, the fit captures the rapid decrease in collection
efficiency with wind speed well overall, with a maximum dif-
ference of 0.16 for dry snow at 5 m s−1 wind speed. The CFD
transfer function captures the collection efficiency trends for
the different hydrometeor types well, with RMSE values of
0.04 for rain, 0.02 for ice pellets, 0.02 for wet snow, and 0.05
for dry snow.

The CFD transfer function dependence with fall velocity
is shown in Fig. 4. For a given wind speed, the collection
efficiency increases nonlinearly with hydrometeor fall veloc-
ity. For fall velocities above 3 m s−1, the collection efficiency
is close to 1. The collection efficiency rapidly decreases as
the fall velocity is reduced, particularly below 2.5 m s−1 fall
velocity. Increasing the wind speed decreases the collection
efficiency.

To extend the approach from monodispersed to polydis-
persed hydrometeors, integral forms of the collection ef-
ficiency expression with wind speed and fall velocity de-
pendence were defined for rain and snow, as detailed in
Sect. S1.3. Using these expressions, collection efficiencies
were derived for specified hydrometeor types and precipita-
tion intensities over wind speeds from 0 to 10 m s−1. Fig-
ure 5 shows the integral collection efficiency as a function
of hydrometeor fall velocity for precipitation type (thun-
derstorm rain, orographic rain, dendrites and aggregates of
plates, rimed dendrites, and dendrites), precipitation inten-
sity (0.1 to 20 mm h−1 for rainfall and 0.5 to 2.5 mm h−1 for
snowfall), and wind speed (1, 3, and 6 m s−1). Here, the fall
velocity at the median volume diameter is used as an estimate
for the fall velocity distribution. The results take a similar

Figure 5. Integral Geonor unshielded gauge collection efficiency
with hydrometeor fall velocity at median volume diameter for rain-
fall and snowfall types at 1, 3, and 6 m s−1 wind speeds.

form to that of the CFD transfer function shown in Fig. 4,
with collection efficiencies increasing nonlinearly with hy-
drometeor fall velocity for a given wind speed. Dendrites,
with the lowest fall velocity, exhibit the lowest integral col-
lection efficiency. Rimed dendrites and dendrites and aggre-
gates of plates with higher fall velocity exhibit higher col-
lection efficiency. In this fall velocity range below 1.5 m s−1,
the collection efficiency rapidly increases approximately lin-
early with fall velocity. For orographic rain and thunderstorm
rain, with even higher fall velocity, the integral collection ef-
ficiency nonlinearly approaches 1. As wind speeds increase
from 1 to 6 m s−1, collection efficiencies for all precipitation
types are shifted down at the lower end of the fall velocity
spectrum below 2 m s−1 and still converge to 1 at higher fall
velocities, close to 5 m s−1.

For snowfall, the integral collection efficiency difference
across dendrites, rimed dendrites, and dendrites and aggre-
gates of plates is less than 0.06 for 0.5, 1.5, and 2.5 mm h−1

precipitation intensities at 6 m s−1 wind speed and within
0.03 for the same precipitation intensities at 3 m s−1 wind
speed. For rainfall, the integral collection efficiency dif-
ference is less than 0.01 at 3.8 m s−1 fall velocity, where
orographic rain and thunderstorm rain overlap. Orographic
rain exhibits median volume diameter fall velocities between
1.6 and 3.9 m s−1 for precipitation intensities from 0.1 to
10 mm h−1. Thunderstorm rain exhibits median volume di-
ameter fall velocities between 3.8 and 5.6 m s−1 for precipi-
tation intensities from 1 to 20 mm h−1.

3.3.2 Experimental results

Two additional transfer functions were formulated based on
the apparent linear dependence of CE on wind speed for dif-
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ferent hydrometeor fall velocity regimes observed in exper-
imental results (Fig. 3d). These functions are applicable to
all hydrometeor types and have different fall velocity thresh-
olds to describe the transition of precipitation phase from the
lower fall velocities characteristic of snow to the higher fall
velocities characteristic of rain and mixed precipitation.

The first transfer function, referred to as HE1, is based
on the assumption of a linear decrease in collection effi-
ciency (CEHE1) with wind speed (Uw) for hydrometeors
with mean fall velocity (Uf_mean) below 1.93 m s−1, gener-
ally corresponding to snowfall. This linear decrease is ex-
trapolated up to a 5.75 m s−1 wind speed threshold (Eq. 7a),
above which the collection efficiency for snowfall is 0.2
(Eq. 7b), following the general approach of Kochendorfer et
al. (2017a). For hydrometeors with mean fall velocity greater
than 1.93 m s−1, corresponding to mixed and liquid precip-
itation, the collection efficiency is 1 (Eq. 7c). The fall ve-
locity threshold was varied over the measurement fall ve-
locity range in 0.01 m s−1 increments, with the threshold of
1.93 m s−1 found to provide the lowest overall RMSE.

CEHE1

(
Uw ≤ 5.75ms−1,Uf_mean ≤ 1.93ms−1

)
= 1− b1Uw (7a)

CEHE1

(
Uw > 5.75ms−1,Uf_mean ≤ 1.93ms−1

)
= 0.2 (7b)

CEHE1

(
Uf_mean > 1.93ms−1

)
= 1 (7c)

The second transfer function, referred to as HE2, adds an-
other dimension to describe the slope of the linear decrease
in CE with increasing wind speed: the hydrometeor fall ve-
locity. For mode fall velocity (Uf_mode) below 2.81 m s−1 and
wind speed Uw below the threshold value, which is also de-
pendent on the fall velocity, the collection efficiency (CEHE2)
is assumed to decrease linearly with decreasing wind speed
for a given hydrometeor fall velocity (Eq. 8a). For mode fall
velocity below 2.81 m s−1 and wind speed above the thresh-
old value, the collection efficiency is 0.2 (Eq. 8b). For mode
fall velocity above 2.81 m s−1, the collection efficiency is
equal to 1 (Eq. 8c). The fall velocity threshold was varied
over the measurement fall velocity range in 0.01 m s−1 in-
crements, with the threshold of 2.81 m s−1 found to provide
the lowest overall RMSE.

CEHE2

(
Uw ≤

0.8
b1− b2Uf_mode

,Uf_mode ≤ 2.81ms−1
)

= 1−
(
b1− b2Uf_mode

)
Uw (8a)

CEHE2

(
Uw >

0.8
b1− b2Uf_mode

,Uf_mode ≤ 2.81ms−1
)
= 0.2 (8b)

CEHE2

(
Uf_mode > 2.81ms−1

)
= 1 (8c)

3.4 Assessment of transfer functions

3.4.1 Collection efficiency

Observed collection efficiencies were compared with ad-
justed values using both existing transfer functions from

SPICE and those presented in this work. Results are pre-
sented in Fig. 6, with relevant transfer function parameters
compiled in Table 1 and resulting bias errors, root mean
square errors, and correlation coefficients (r) presented in Ta-
ble 3. To further contextualize the assessment of the different
transfer functions, the RMSE results are presented for differ-
ent precipitation classifications, temperature ranges, and fall
velocity ranges in Table 4.

Both KUniversal and the climate-specific KCARE transfer
function have continuous temperature dependence and dis-
play similar profiles at −8 ◦C, with the collection efficiency
for the KCARE transfer function decreasing more gradually
with wind speed compared to the KUniversal transfer func-
tion at −4 and 0 ◦C (Fig. 6a). Using the approach outlined
in Sect. 2.5, a temperature threshold (Tt) of 1.33 ◦C for the
best-fit KCARE transfer function was found to minimize the
precipitation accumulation RMSE. The overall collection ef-
ficiency root mean square error is reduced from 0.15 for the
KUniversal transfer function to 0.12 for the KCARE transfer
function (Table 3). The bias error is also reduced from 0.07
for the KUniversal transfer function to −0.005 for the best-
fit KCARE transfer function. For KUniversal and KCARE, re-
spectively, the RMSE is reduced from 0.17 to 0.12 for rain
and from 0.27 to 0.20 for mixed precipitation, with slightly
elevated RMSE from 0.09 to 0.13 for undefined precipita-
tion and 0.09 to 0.11 for snow (Table 4a). For mean event
temperatures between −2 and 2 ◦C, and between −5 and
−2 ◦C, respectively, the RMSE values of 0.19 and 0.21 for
the KUniversal transfer function are relatively large compared
to the 0.13 and 0.17 values for the KCARE transfer function
(Table 4b). This results from the more gradual decrease in
theKCARE transfer function with wind speed over these tem-
perature ranges (Fig. 6a).

A comparison of the CFD transfer function with observed
CE is shown in Fig. 6b. Overall, the measured data have less
scatter when stratified by fall velocity than when stratified
by temperature (Table 3, Fig. 6a and b). The CFD transfer
function provides a lower overall RMSE (0.08) and higher
r (0.949) relative to the KUniversal and KCARE transfer func-
tions based on temperature. Reductions in the collection effi-
ciency RMSE using the CFD transfer function are most pro-
nounced for rain and mixed precipitation (Table 4a) and for
mean event temperatures between −2 and 2 ◦C and between
−5 and −2 ◦C (Table 4b) compared with the KUniversal and
KCARE functions. Collection efficiency RMSE values are be-
tween 0.08 and 0.10 over all fall velocity classes, despite
fewer numbers of events with fall velocities between 1.5 and
2.5 m s−1 (Table 4c).

The HE1 transfer function provides good agreement with
observed data in the mean fall velocity regimes relevant to
snow and rain (Fig. 6c), resulting in an overall RMSE of 0.10,
BE of 0.0004, and r of 0.928 (Table 3). The RMSE for mixed
precipitation is 0.16, which is lower than that of the KCARE
transfer function with temperature (0.20) but higher that of
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Figure 6. Collection efficiency of unshielded gauge as a function of wind speed for (a) mean air temperature T categories for the KUniversal
and KCARE transfer functions, (b) mode fall velocity Uf_mode categories with the CFD transfer function, (c) mean fall velocity Uf_mean
categories for the HE1 transfer function, and (d) mode fall velocity Uf_mode categories with the HE2 transfer function.

Table 3. Unshielded gauge 30 min event bias error (BE), root mean square error (RMSE), correlation coefficient (r), and number of events
(N ) for collection efficiency and precipitation accumulation between the unshielded and reference DFAR shielded Geonor T-200B3 gauge
for unadjusted comparison, KUniversal transfer function with wind speed and air temperature dependence, KCARE transfer function with
wind speed and air temperature dependence, present study CFD transfer function with wind speed and mode fall velocity dependence, HE1
transfer function with wind speed and mean fall velocity dependence, and HE2 transfer function with wind speed and mode fall velocity
dependence. Statistics are based on the comparison of experimental results from the CARE site between 1 November and 30 April 2013/14
and 2014/15.

Collection efficiency Precip. accum. (mm)

Description BE RMSE r BE RMSE r N

Unadjusted – – – −0.13 0.24 0.900 514
KUniversal 0.07 0.15 0.853 0.07 0.20 0.949 514
KCARE −0.005 0.12 0.878 0.002 0.13 0.963 514
CFD −0.02 0.08 0.949 0.011 0.08 0.986 514
HE1 0.0004 0.10 0.928 0.006 0.09 0.983 514
HE2 −0.009 0.08 0.950 0.006 0.07 0.988 514
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Table 4. Unshielded gauge 30 min event collection efficiency RMSE results stratified by (a) POSS precipitation type, (b) temperature, and
(c) fall velocity. Results are shown forKUniversal transfer function with wind speed and air temperature dependence,KCARE transfer function
with wind speed and air temperature dependence, present study CFD transfer function with wind speed and mode fall velocity dependence,
HE1 transfer function with wind speed and mean fall velocity dependence, and HE2 transfer function with wind speed and mode fall velocity
dependence. Statistics are based on the comparison of experimental results from the CARE site between 1 November and 30 April 2013/14
and 2014/15.

RMSE

(a) Rain Mixed Undefined Snow
Description (N = 196) (N = 45) (N = 40) (N = 233)

KUniversal 0.17 0.27 0.09 0.09
KCARE 0.12 0.20 0.13 0.11
CFD 0.08 0.09 0.09 0.09
HE1 0.07 0.16 0.08 0.10
HE2 0.08 0.10 0.09 0.08

(b) T > 2 ◦C −2 ◦C<T ≤ 2 ◦C −5 ◦C<T ≤−2 ◦C T ≤−5 ◦C
Description (N = 150) (N = 89) (N = 134) (N = 141)

KUniversal 0.08 0.19 0.21 0.11
KCARE 0.07 0.13 0.17 0.10
CFD 0.09 0.08 0.08 0.09
HE1 0.07 0.10 0.11 0.10
HE2 0.09 0.08 0.07 0.08

(c) Uf > 2.5 m s−1 2 m s−1 <Uf ≤ 2.5 m s−1 1.5 m s−1 <Uf ≤ 2 m s−1 Uf ≤ 1.5 m s−1

Description (N = 212) (N = 15) (N = 40) (N = 247)

KUniversal 0.19 0.23 0.16 0.09
KCARE 0.13 0.17 0.12 0.11
CFD 0.08 0.10 0.08 0.09
HE1 0.08 0.13 0.15 0.10
HE2 0.08 0.12 0.08 0.08

the CFD model (0.09), which varies continuously with fall
velocity (Table 4a).

The HE2 function better captures the observed collection
efficiencies for mode fall velocities between the snow and
rain regimes (Fig. 6d), improving the overall RMSE to 0.08
and r to 0.95, while increasing slightly the BE (−0.009) rel-
ative to HE1 (Table 3). Note the distinction between mean
fall velocity for HE1 and mode fall velocity for HE2 (and
CFD). In general, the Doppler frequency spectrum tends to
be skewed such that mode fall velocities are slightly lower
than the mean fall velocities, impacting the fits to observed
data. The HE2 transfer function provides similar results to
that of the CFD transfer function, with slightly higher RMSE
values for mixed precipitation and slightly reduced RMSE
values for snow (Table 4a) and temperatures below −2 ◦C
(Table 4b). For intermediate fall velocities between 2.0 and
2.5 m s−1, the HE2 transfer function, with a linear change in
collection efficiency with fall velocity, has a higher RMSE
(0.12) than that for the CFD function (0.10), which exhibits
a nonlinear change in collection efficiency with fall velocity
(Table 4c). Only 15 events were recorded in this interme-
diate fall velocity range with higher uncertainty relative to
the CFD function. In contrast, 212 events were recorded at

fall velocities above 2.5 m s−1 and 247 events at fall veloci-
ties below 1.5 m s−1, representing a greater proportion of the
events with lower RMSE relative to the CFD function.

3.4.2 Precipitation accumulation

The unadjusted and adjusted accumulated precipitation val-
ues are compared with reference DFAR accumulation mea-
surements in Fig. 7. Bias, RMSE, and correlation coefficient
results are shown in Table 3. Similar to the approach for as-
sessing transfer functions based on collection efficiency re-
sults in Sect. 3.4.1, the precipitation accumulation RMSE re-
sults for each transfer function are assessed by precipitation
classification, temperature range, and fall velocity range in
Table 5.

In the comparison of unadjusted accumulation measure-
ments with reference values (Fig. 7a), some values fall along
the 1-to-1 line, while others are considerably lower. The val-
ues along the 1-to-1 line generally correspond to rain events
with high precipitation fall velocity or to events with low
mean wind speeds. The RMSE for the unadjusted unshielded
gauge measurements relative to the DFAR is 0.24 mm, with
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Table 5. Unshielded gauge 30 min event RMSE (mm) results stratified by (a) POSS precipitation type, (b) temperature, and (c) fall velocity.
Results are shown for unadjusted comparison,KUniversal transfer function with wind speed and air temperature dependence,KCARE transfer
function with wind speed and air temperature dependence, present study CFD transfer function with wind speed and mode fall velocity
dependence, HE1 transfer function with wind speed and mean fall velocity dependence, and HE2 transfer function with wind speed and
mode fall velocity dependence. Statistics are based on the comparison of experimental results from the CARE site between 1 November and
30 April 2013/14 and 2014/15.

RMSE (mm)

(a) Rain Mixed Undefined Snow
Description (N = 196) (N = 45) (N = 40) (N = 233)

Unadjusted 0.04 0.15 0.09 0.35
KUniversal 0.25 0.33 0.05 0.10
KCARE 0.14 0.22 0.06 0.11
CFD 0.04 0.07 0.04 0.11
HE1 0.04 0.17 0.04 0.10
HE2 0.04 0.09 0.04 0.09

(b) T > 2 ◦C −2 ◦C<T ≤ 2 ◦C −5 ◦C<T ≤−2 ◦C T ≤−5 ◦C
Description (N = 150) (N = 89) (N = 134) (N = 141)

Unadjusted 0.04 0.14 0.23 0.39
KUniversal 0.05 0.25 0.29 0.12
KCARE 0.04 0.11 0.20 0.12
CFD 0.05 0.06 0.08 0.11
HE1 0.04 0.12 0.09 0.10
HE2 0.05 0.07 0.08 0.09

(c) Uf > 2.5 m s−1 2 m s−1 <Uf ≤ 2.5 m s−1 1.5 m s−1 <Uf ≤ 2 m s−1 Uf ≤ 1.5 m s−1

Description (N = 212) (N = 15) (N = 40) (N = 247)

Unadjusted 0.04 0.06 0.16 0.34
KUniversal 0.26 0.22 0.22 0.10
KCARE 0.15 0.14 0.15 0.11
CFD 0.04 0.05 0.06 0.10
HE1 0.04 0.06 0.16 0.10
HE2 0.04 0.06 0.07 0.09

a bias error of−0.13 mm and correlation coefficient of 0.900
(Table 3).

Using the KUniversal transfer function, with wind and tem-
perature dependence, shifts the adjusted values up to and
above the 1-to-1 line (Fig. 7b). This yields a positive bias er-
ror of 0.07 mm, reduced RMSE of 0.20 mm, and correlation
coefficient of 0.949 (Table 3) relative to the unadjusted mea-
surements (Fig. 7a). While the KUniversal transfer function
greatly reduces the RMSE for snow from 0.35 to 0.10 mm
compared with unadjusted values, the RMSE is increased
from 0.04 to 0.25 mm for rain and from 0.15 to 0.33 mm
for mixed precipitation (Table 5a). Compared with the unad-
justed results, RMSE increases for theKUniversal function are
also apparent for temperatures between −2 and 2 ◦C and be-
tween−5 and−2 ◦C (Table 5b) and for fall velocities greater
than 1.5 m s−1 (Table 5c).

Applying the site-specific KCARE transfer function, based
on the best-fit results to the CARE SPICE dataset, results in
a reduced bias error of 0.002 mm, lower RMSE of 0.13 mm,
and higher correlation coefficient of 0.963 (Table 3) relative

to the KUniversal results, with the scatter in adjusted accumu-
lations more evenly balanced across the 1-to-1 line (Fig. 7c).
The scatter in adjusted values using theKCARE transfer func-
tion results primarily from mixed precipitation (Table 5a) at
temperatures between −5 and −2 ◦C (Table 5b). Compared
to the KUniversal transfer function, the KCARE transfer func-
tion has lower RMSE values for rain (0.14 mm) and mixed
precipitation (0.22 mm), with 0.01 mm higher RMSE for un-
defined precipitation and snow (Table 5a). The more rapid
increase in collection efficiency with temperature for KCARE
relative to KUniversal reduces the overadjustment of some of
the rain and mixed precipitation events at temperatures be-
tween −5 and −2 ◦C, at the expense of the underadjust-
ment of some snow events in this temperature range. It is
also worth noting that the adjusted precipitation accumula-
tion RMSE for the KCARE transfer function is larger than
that for unadjusted results for rain and mixed precipitation,
similar to the results for KUniversal. Both the KUniversal and
KCARE transfer functions with temperature show signs of
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Figure 7. Unshielded and reference DFAR 30 min event precipita-
tion accumulation comparison for (a) unadjusted precipitation ac-
cumulation, (b) KUniversal continuous transfer function with wind
speed and air temperature dependence, (c) KCARE continuous
transfer function with wind speed and air temperature dependence,
(d) CFD transfer function with wind speed and fall velocity depen-
dence, (e) HE1 transfer function with wind speed and fall velocity
dependence, and (f) HE2 transfer function with wind speed and fall
velocity dependence.

heteroscedasticity, with an increased spread of values with
increasing magnitude of event precipitation accumulation.

Applying the CFD transfer function results in a greatly re-
duced spread of values about the 1-to-1 line (Fig. 7d). The
spread does not appear to increase with increasing precipita-
tion accumulation. The overall RMSE is reduced to 0.08 mm,
2.5 times lower than that for the KUniversal transfer function,
with a bias error of 0.011 mm and correlation coefficient of
0.986 (Table 3). The RMSE is reduced from 0.25 mm for the
KUniversal transfer function to 0.04 mm using the CFD trans-
fer function for rain and from 0.33 to 0.07 mm (4.7 times
lower) for mixed precipitation, while RMSE results for unde-
fined precipitation and snow are within 0.01 mm (Table 5a).
Reductions in the RMSE using the CFD transfer function

compared with the KUniversal transfer function are most pro-
nounced for mean event temperatures between −5 and 2 ◦C
(Table 5b). Over this temperature range, rain, mixed precip-
itation, and snow may be present, corresponding to a wide
range of fall velocities and collection efficiencies. The CFD
transfer function is better able to distinguish among these
precipitation types – and their respective collection efficien-
cies – based on its dependence on hydrometeor fall velocity.
Across the fall velocity classifications in Table 5c, the RMSE
using the CFD transfer function increases from 0.04 mm for
fall velocities greater than 2.5 m s−1 to 0.10 mm for fall ve-
locities less than 1.5 m s−1. As shown in Table 5c, the RMSE
for the CFD transfer function matches the value for unad-
justed measurements at fall velocities greater than 2.5 m s−1,
where collection efficiencies are close to 1. At lower fall
velocities, where the bias due to gauge undercatch is more
prevalent, the RMSE values for the CFD function are lower
than those for the unadjusted measurements.

Using the HE1 transfer function results in similar over-
all improvement in the agreement between adjusted and
DFAR accumulation values as observed for the CFD function
(Fig. 7e). The adjusted values appear to be distributed sym-
metrically about the 1-to-1 line. Furthermore, there is close
agreement over the full range of accumulation values; that is,
the spread in values does not increase with the magnitude of
precipitation accumulation. This results in a lower RMSE of
0.09 mm and a higher correlation coefficient of 0.983 rela-
tive to the KCARE transfer function results. While the RMSE
for rain (0.04 mm) using the HE1 transfer function is im-
proved compared with the KCARE transfer function results,
the RMSE for mixed precipitation is only marginally better
(0.17 mm).

Applying the HE2 transfer function provides further im-
provement, with adjusted accumulation values more tightly
clustered around the 1-to-1 line (Fig. 7f). The overall RMSE
is 0.07 mm, which is 3.3 times lower than that for the unad-
justed unshielded gauge measurements and 1.8 times lower
than the KCARE transfer function based on mean event tem-
perature and wind speed. The HE2 transfer function exhibits
the lowest overall RMSE for snow (0.09 mm), with a RMSE
of 0.09 mm for mixed precipitation, which is slightly higher
than that for the CFD function (0.07 mm) but much lower
than that for theKCARE (0.22 mm) and HE1 (0.17 mm) trans-
fer functions. Further, the correlation coefficient of 0.988 is
the highest among the transfer functions assessed.

The resulting CARE dataset from this study (Hoover at al.,
2021) includes the reference, adjusted, and unadjusted (un-
shielded) precipitation accumulation with event start time,
scalar average gauge height wind speed, mean air tempera-
ture, POSS precipitation type, POSS mode fall velocity, and
POSS mean fall velocity for each 30 min precipitation event.
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4 Discussion

4.1 CFD model

The numerical model results for monodispersed hydromete-
ors capture the three-dimensional airflow and hydrometeor
kinematics and illustrate the reductions in collection effi-
ciency with increasing wind speed and decreasing hydrom-
eteor fall velocity (Fig. 2). These results demonstrate that
collection efficiencies are similar for different hydrometeor
types with different sizes, densities, masses, and drag val-
ues (spherical drag model) but similar fall velocities. This
enables the characterization of collection efficiency indepen-
dent of hydrometeor characteristics other than fall velocity,
allowing for the broad application of transfer functions with
wind speed and fall velocity dependence to various hydrom-
eteor types.

A slight nonlinearity in the collection efficiency relation-
ship with wind speed is apparent in Fig. 2, with the collection
efficiency decreasing more rapidly at lower wind speeds and
more gradually at higher wind speeds. This wind speed de-
pendence has been demonstrated in previous studies (Neš-
por and Sevruk, 1999; Thériault et al., 2012; Colli et al.,
2016a; Baghapour et al., 2017) and is generally attributed to
the three-dimensional velocity profile around the gauge influ-
encing the trajectories and catchment of incoming hydrom-
eteors. A strong nonlinear dependence on the hydrometeor
fall velocity is apparent in Figs. 3 and 5. Hydrometeors with
fall velocities above 5 m s−1 exhibit collection efficiencies
close to 1, while lower hydrometeor fall velocities influence
the rate of decrease of collection efficiency with wind speed.
Collection efficiency decreases are most pronounced below
2.0 m s−1 hydrometeor fall velocity, where a wide range of
collection efficiencies are possible. This demonstrates the
challenge in adjusting liquid, solid, and mixed precipita-
tion accumulations in situations where different hydrometeor
types and sizes – and with very different fall velocities – can
occur. These findings support the conclusions of Thériault et
al. (2012), who demonstrated large collection efficiency dif-
ferences across dry snow and wet snow hydrometeors with
different terminal velocities. The present findings also sup-
port those of Nešpor and Sevruk (1999), who showed that
the wind-induced error increases rapidly for smaller raindrop
sizes with lower terminal velocities.

The CFD transfer function presented in Eq. (6) (coeffi-
cients in Table 1) is based on the computational fluid dy-
namics results for an unshielded Geonor T-200B3 600 mm
capacity precipitation gauge for wind speeds up to 10 m s−1.
The CFD transfer function captures the nonlinear change in
collection efficiency well, with wind speed and hydrometeor
fall velocity observed in the numerical model results across
rain, ice pellet, wet snow, and dry snow hydrometeor types
(Fig. 2). This expression was derived from simulation results
up to 10 m s−1 wind speed and should be used with caution
at higher wind speeds. Further, this transfer function has not

been assessed experimentally for snow above 6 m s−1 wind
speed in the present study for the CARE dataset. Adjusted
precipitation accumulation estimates in this regime, where
fall velocities are low and wind speeds are high, can be highly
uncertain and should be treated with caution (Smith et al.,
2020). Assessment of the transfer function at other sites un-
der such conditions is an area for future work. Application
to other gauge or shield combinations should also be inves-
tigated, as the flow dynamics around the gauge orifice are
dependent on the specific gauge and shield geometry.

The CFD transfer function formulation based on the fall
velocity can be applied broadly across rain and snow types
for the unshielded Geonor gauge configuration. These results
are based on time-averaged simulations, which provide an
estimate of the mean velocities through the domain and have
been shown to provide good overall agreement with experi-
mental results (Baghapour et al., 2017). Further study using
LES models, which can better resolve the eddy dynamics and
temporal variations in the flow, and under different boundary
conditions and turbulence scales representing different site
conditions is recommended to better understand the collec-
tion efficiency under conditions with high wind speeds and
low hydrometeor fall velocities.

Integral collection efficiency differences across precipita-
tion types are small when stratified by wind speed and hy-
drometeor fall velocity (Fig. 5). This results from the abil-
ity of the hydrometeor fall velocity to capture differences in
the integral collection efficiency across different hydrome-
teor types and precipitation intensities. The small differences
in collection efficiency across different hydrometeor types
with the same fall velocity are attributed to the varying con-
tribution from higher fall velocity hydrometeors, with col-
lection efficiencies approaching 1, in the mass-weighted dis-
tribution of hydrometeor fall velocities. The results in Fig. 5
follow the general nonlinear profile of the CFD transfer func-
tion (Eq. 6, Fig. 4), with the hydrometeor fall velocity defin-
ing the integral collection efficiency magnitude for a given
wind speed. Results for the same wind speed range and pre-
cipitation types that are stratified by wind speed and precip-
itation intensity, and by wind speed alone, are provided in
Sect. S2.2 and discussed in Sect. S3.2; these results show
much larger variability across hydrometeor types relative to
those in Fig. 5.

4.2 Assessment of transfer functions

Transfer functions were derived using accumulated precipi-
tation amounts reported by automatic weighing precipitation
gauges over 30 min periods. This approach is consistent with
that used in SPICE (Nitu et al., 2018) and the related deriva-
tion of transfer functions (Kochendorfer et al., 2017a). While
automatic precipitation gauges can report at a temporal reso-
lution of 1 min, or even higher, the extension of the transfer
function derivation and evaluation to other temporal periods,
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or different accumulation thresholds, is beyond the scope of
this work.

The Kochendorfer et al. (2017a) universal transfer func-
tion with wind speed and air temperature dependence,
KUniversal, was derived from measurements at eight SPICE
sites in the interest of making the transfer function broadly
applicable across different climates. This broad applicability
is furthered by the widespread availability of air temperature
and wind speed measurements at meteorological stations.
Recent studies have demonstrated that the performance of
KUniversal can vary substantially by site (Smith et al., 2020).
Therefore, climate-specific KCARE transfer function coeffi-
cients were also derived for comparison in the present study.

The KCARE transfer function has a lower temperature
threshold and exhibits larger increases in collection effi-
ciency with increasing temperature relative to KUniversal
(Fig. 6a). These differences improved the overall RMSE for
KCARE by reducing the overadjustment of some rain and
mixed precipitation events; however, this improvement came
at the expense of underadjusting some snow events at warmer
temperatures. The use of this approach warrants further study
over longer periods to better understand the performance im-
pacts of seasonal variability and assessment at other sites
and climate regions with different precipitation characteris-
tics and proportions.

Both the KUniversal and KCARE transfer functions per-
formed well for snow but were limited by their ability to dis-
tinguish among snow, rain, and mixed precipitation at tem-
peratures between −5 and 2 ◦C. The largest uncertainties
in collection efficiency and adjusted accumulation estimates
were observed over this temperature range. Adjustments us-
ing wind speed and hydrometeor fall velocity, however, ad-
dressed this shortcoming and provided improved collection
efficiency and adjusted accumulation estimates. The CFD
transfer function, derived from time-averaged numerical sim-
ulation results over a wide range of wind speeds and hydrom-
eteor fall velocities, resulted in low RMSE values overall and
across rain, snow, mixed, and undefined precipitation types.
These results reinforce the fundamental importance of both
wind speed and hydrometeor fall velocity on gauge collec-
tion efficiency demonstrated by the CFD model results and
results from earlier studies (Nešpor and Sevruk, 1999; Théri-
ault et al., 2012).

The CFD transfer function exhibited the lowest RMSE of
all transfer functions for mixed precipitation and for inter-
mediate fall velocities between 1.5 and 2.5 m s−1 (Table 4c),
which is attributed to its nonlinear increase in collection
efficiency with fall velocity. As this transfer function was
derived theoretically, it is applicable across different sites
and climate regimes with different types and relative pro-
portions of hydrometeors. The present results also support
the methodology for the CFD model, which can be extended
to other shield and gauge combinations. For larger shields,
it may be important to employ a more realistic vertical wind

profile, with a zero-slip boundary condition at the earth’s sur-
face.

The HE1 transfer function showed good results for snow,
supporting its use for the unshielded gauge. This approach
is straightforward to implement based on its simplicity and
is less reliant on the accuracy of fall velocity estimates be-
yond the fall velocity threshold. The collection efficiency
for the HE1 transfer function decreases to 0.2 at a wind
speed of 5.75 m s−1. This demonstrates the challenge of ad-
justing unshielded gauge snow measurements at windy sites,
where the captured accumulations may be small relative to
gauge uncertainties. This can lead to large uncertainty in ad-
justed measurements, as demonstrated by other studies ap-
plying transfer functions to unshielded gauge measurements
at windy sites (Smith et al., 2020). The CFD transfer function
results suggest a gradual decrease in collection efficiency at
higher wind speeds compared with the HE1 transfer func-
tion, as some hydrometeors with higher fall velocities are still
able to be captured by the gauge; however, these accumula-
tions remain small relative to gauge uncertainties, particu-
larly in windy conditions, making them difficult to assess ex-
perimentally. Further testing at other sites is recommended to
better understand the collection efficiency for low fall veloc-
ity hydrometeors (light snow) under windy conditions above
6 m s−1, which were not available in the CARE dataset.

A limitation of the HE1 transfer function is the minimal
improvement in the RMSE for mixed precipitation and fall
velocities between 1.5 and 2.0 m s−1 relative to the KCARE
function. This is due to the overadjustment of mixed pre-
cipitation events with fall velocities slightly below the cut-
off value and the underadjustment of mixed precipitation
events with fall velocities slightly above the cutoff. While the
RMSE for mixed precipitation is still lower than that for ad-
justments based on temperature and wind speed (KUniversal,
KCARE), further improvements are obtained using transfer
functions with continuous fall velocity dependence – specif-
ically, the CFD and HE2 transfer functions.

The HE2 transfer function, with a linear increase in collec-
tion efficiency with fall velocity, yields a greater reduction in
the RMSE for mixed precipitation relative to the HE1 trans-
fer function. The HE2 transfer function results show a higher
RMSE for mixed precipitation than those for the CFD func-
tion, possibly due to the nonlinearity in the latter with fall
velocity. The HE2 transfer function, however, yields the best
RMSE results for snow, temperatures below −5 ◦C, and fall
velocities below 1.5 m s−1. Adjusted uncertainties for snow
are approximately 2 times higher than those for rain and
show similar trends with increasing temperature and decreas-
ing fall velocity. The former may be due to the lower event
accumulations and greater adjustments for snow relative to
rain, with measured values in closer proximity to the gauge
uncertainty. The present approach of estimating the fall ve-
locity using the POSS appears to perform well, overall; how-
ever, further study to better characterize the fall velocity dis-
tribution and changes over 30 min time periods could lead to
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further improvements in the model under specific conditions
such as mixed precipitation. While this transfer function was
derived using the CARE dataset, it is more universally appli-
cable than adjustments based on temperature, for which the
relative proportions of rain, snow, and mixed precipitation at
warmer temperatures can influence fit results. Further test-
ing at other sites is recommended to assess this in different
climate regions, with different hydrometeor types and asso-
ciated fall velocities.

4.3 Application to operational networks

It is evident that the performance of catchment-type precip-
itation gauges is dependent on wind speed and the aerody-
namic properties of both the gauge and incident hydromete-
ors (Nešpor and Sevruk, 1999; Thériault et al., 2012; Colli
et al., 2016b). The modelling results of this study demon-
strated this dependence from a theoretical perspective, result-
ing in a transfer function that incorporates hydrometeor fall
velocity. The experimental results validated this approach,
which resulted in improved precipitation estimates from an
unshielded gauge relative to those using surface temperature
as a proxy for precipitation phase or type. Indeed, the use of
surface temperature in this manner can be instructive (Kien-
zle, 2008; Harder and Pomeroy, 2013) but does not capture
the conditions defining hydrometeor initiation and growth
aloft (Stewart et al., 2015).

In this study, the fall velocity of hydrometeors reported
by the POSS provided direct measurement of a key param-
eter related to the aerodynamics of the catchment process.
In Canada, the POSS was deployed operationally to report
present weather as part of an automatic weather station. In
operational monitoring networks, the hydrometeor fall veloc-
ity can be provided by disdrometers (Loffler-Mang and Joss,
2000; Sheppard and Joe, 2000; Bloemink and Lanzinger,
2005; Nitu et al., 2018), vertically pointing Doppler radars
(Biral, 2019), or multi-frequency radar techniques (Kneifel
et al., 2015). Globally, other types of disdrometers (e.g. OTT
Parsivel2, Thies Laser Precipitation Monitor) have been de-
ployed operationally and can also provide hydrometeor fall
velocities. The uncertainty in fall velocity estimates for dif-
ferent technologies, hydrometeor types, sizes, fall veloci-
ties, wind speeds, and wind directions remains to be as-
sessed. These sensors can also be useful for reporting present
weather and verifying the occurrence of precipitation based
on their high sensitivity (Nitu et al., 2018; Sheppard and Joe,
2000).

The results from this study demonstrate that the combined
use of accumulation reports from an unshielded weighing
gauge with fall velocities reported by a disdrometer, wind
speed measurements, and an appropriate transfer function
can greatly reduce the uncertainty of precipitation accumu-
lation measurements. The extension of the approach in the
present study to shielded precipitation gauges or gauge de-
signs with higher sensitivity may provide a means of further

reducing the measurement uncertainty for automatic gauges
in windy environments. Application to light snow events and
different event durations are other areas for future study.

5 Conclusions

Hydrometeors exhibit a wide variety of habits, sizes, shapes,
and densities, influencing their aerodynamics and, in turn,
their ability to be captured by the gauge. Numerical mod-
elling analysis for an unshielded Geonor T-200B3 600 mm
precipitation gauge demonstrated that collection efficiencies
are similar for different hydrometeor types with different
sizes, densities, masses, and drag values but similar fall ve-
locities. The model results illustrated that wind speed influ-
ences the updraft magnitude and local airflow around the
gauge orifice, while fall velocity affects the approach angle
and degree of coupling between the hydrometeor trajecto-
ries and the local airflow. An empirical collection efficiency
transfer function with wind speed and fall velocity depen-
dence was developed from the model results. Two additional
transfer functions with similar dependence were derived ex-
perimentally for unshielded Geonor T-200B3 precipitation
gauges.

These three collection efficiency transfer functions with
gauge height wind speed and precipitation fall velocity de-
pendence were assessed experimentally and compared to
universal and climate-specific transfer functions with wind
speed and temperature dependence. These functions employ
different models to adjust precipitation accumulation mea-
surements for wind-induced undercatch, including the fol-
lowing:

1. the nonlinear CFD transfer function model, with collec-
tion efficiency decreasing nonlinearly with wind speed
and increasing nonlinearly with precipitation fall veloc-
ity;

2. the HE1 transfer function, with a linear decrease in
collection efficiency down to 0.2 with wind speed for
30 min mean fall velocity below 1.93 m s−1 and a col-
lection efficiency of 1 above this fall velocity threshold;

3. the HE2 transfer function, with the linear wind speed
dependence down to 0.2 collection efficiency, transi-
tioning with increasing mode fall velocity to provide a
collection efficiency of 1 when the mode fall velocity
reaches 2.81 m s−1.

These transfer functions were assessed using accumula-
tion measurements from an unshielded precipitation gauge
and DFAR gauge over 30 min precipitation events during
two winter seasons at the CARE test site in Egbert, ON,
Canada. Estimates of fall velocity were provided by the
POSS upward-facing Doppler radar.

The transfer functions with mean wind speed and
fall velocity dependence improved the agreement between
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the 30 min adjusted precipitation accumulation values and
DFAR reference values relative to the KUniversal and KCARE
transfer functions with mean wind speed and air temperature
dependence. The CFD transfer function agreed well with ex-
perimental results over all observed fall velocities, support-
ing the use of the numerical modelling approach and pro-
viding the lowest RMSE for mixed precipitation. The HE1
transfer function captured the collection efficiency trends for
rain and snow well, with the collection efficiency for rain
close to 1 and the collection efficiency for snow decreasing
with wind speed. The HE2 transfer function better captured
the collection efficiency for mixed precipitation with fall ve-
locities between 1.2 and 4.6 m s−1.

The results of this study reinforce the important role of fall
velocity in collection efficiency shown in previous studies
(Nešpor and Sevruk, 1999; Thériault et al., 2012). Adjust-
ment approaches incorporating fall velocity show tremen-
dous value and potential, particularly where DFAR measure-
ments are not feasible, and can be applied where the pre-
cipitation type is complex (e.g. snow transitioning to rain),
uncertain, or even unknown. These approaches warrant fur-
ther investigation at different sites with different precipitation
characteristics, fall velocities, and wind speeds. Further study
to assess the collection efficiency relationships with wind
speed and precipitation fall velocity for different shield con-
figurations, as well as assessing the fall velocity using other
means, including disdrometers or remote sensing, is also rec-
ommended.
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