Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4651-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4651-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assimilation of citizen science data in snowpack modeling using a new snow data set: Community Snow Observations
Water Resources Science, Oregon State University, Corvallis, OR 97331, USA
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
David F. Hill
School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA
Katreen Wikstrom Jones
Alaska Division of Geological and Geophysical Surveys, Fairbanks, AK 99709, USA
Gabriel J. Wolken
Alaska Division of Geological and Geophysical Surveys, Fairbanks, AK 99709, USA
International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Anthony A. Arendt
Applied Physics Laboratory, University of Washington, WA 98105, USA
Christina M. Aragon
Water Resources Science, Oregon State University, Corvallis, OR 97331, USA
Christopher Cosgrove
Geography Department, Oregon State University, Corvallis, OR 97331,
USA
Community Snow Observations Participants
Citizen scientists participating in the project Community Snow Observations (CSO)
Related authors
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 2399–2419, https://doi.org/10.5194/nhess-25-2399-2025, https://doi.org/10.5194/nhess-25-2399-2025, 2025
Short summary
Short summary
This study assesses RAMMS::EXTENDED's predictive power in estimating avalanche runout distances critical for mountain road safety. Leveraging meteorological data and sensitivity analyses, it offers meaningful predictions, aiding near real-time hazard assessments and future model refinement for improved decision-making.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Christina Marie Aragon and David F. Hill
Hydrol. Earth Syst. Sci., 28, 781–800, https://doi.org/10.5194/hess-28-781-2024, https://doi.org/10.5194/hess-28-781-2024, 2024
Short summary
Short summary
A novel snow metric, snow water storage (SwS), is used to characterize the natural reservoir function of snowpacks, quantifying how much water is held in snow reservoirs and for how long. Despite covering only 16 % of US land area, mountainous regions contribute 72 % of the annual SwS. Recent decades show a 22 % decline in annual mountain SwS. Flexible snow metrics such as SwS may become more valuable for monitoring and predicting water resources amidst a future of increased climate variability.
Molly E. Tedesche, Erin D. Trochim, Steven R. Fassnacht, and Gabriel J. Wolken
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-143, https://doi.org/10.5194/tc-2022-143, 2022
Publication in TC not foreseen
Short summary
Short summary
Perennial snowfields in the Brooks Range of Alaska are critical for the ecosystem and provide caribou habitat. Caribou are a crucial food source for rural hunters. The purpose of this research is to map perennial snowfield extents using several remote sensing techniques with Sentinel-1 and 2. These include analysis of Synthetic Aperture Radar backscatter change and of optical satellite imagery. Results are compared with field data and appear to effectively detect perennial snowfield locations.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Cited articles
Anderton, S. P., White, S. M., and Alvera, B.: Evaluation of spatial
variability in snow water equivalent for a high mountain catchment,
Hydrol. Process., 18, 435–453, https://doi.org/10.1002/hyp.1319,
2004.
Baba, M., Gascoin, S., Jarlan, L., Simonneaux, V., and Hanich, L.: Variations
of the Snow Water Equivalent in the Ourika Catchment (Morocco) over
2000–2018 Using Downscaled MERRA-2 Data, Water, 1, 1120,
https://doi.org/10.3390/w10091120, 2018.
Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and
Dozier, J.: Mountain hydrology of the western United States, Water Resour.
Res., 42, W08432, https://doi.org/10.1029/2005WR004387, 2006.
Barnes, S. L.: A technique for maximizing details in numerical weather map
analysis, J. Appl. Meteorol., 3, 396–409,
https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2, 1964.
Barnes, S. L.: Mesoscale objective map analysis using weighted time-series
observations, Technical Report, National Severe Storms Lab., Norman,
Oklahoma, 1973.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature,
438, 303, https://doi.org/10.1038/nature04141, 2005.
Beamer, J. P., Hill, D. F., Arendt, A., and Liston, G. E.: High-resolution
modeling of coastal freshwater discharge and glacier mass balance in the
Gulf of Alaska watershed, Water Resour. Res., 52, 3888–3909,
https://doi.org/10.1002/2015WR018457, 2016.
Beamer, J. P., Hill, D. F., McGrath, D., Arendt, A., and Kienholz, C.:
Hydrologic impacts of changes in climate and glacier extent in the Gulf of
Alaska watershed, Water Resour. Res., 53, 7502–7520,
https://doi.org/10.1002/2016WR020033, 2017.
Blöschl, G.: Scaling issues in snow hydrology, Hydrol. Process., 13, 2149–2175,
https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8, 1999.
Blöschl, G. and Kirnbauer, R.: An analysis of snow cover patterns in a
small alpine catchment, Hydrol. Process., 6, 99–109,
https://doi.org/10.1002/hyp.3360060109, 1992.
Bohr, G. S. and Aguado, E.: Use of April 1 SWE measurements as estimates of
peak seasonal snowpack and total cold-season precipitation, Water Resour.
Res., 37, 51–60, https://doi.org/10.1029/2000WR900256, 2001.
Bonney, R., Cooper, C. B., Dickinson, J., Kelling, S., Phillips, T.,
Rosenberg, K. V., and Shirk, J.: Citizen science: a developing tool for
expanding science knowledge and scientific literacy, BioScience, 59, 977–984,
https://doi.org/10.1525/bio.2009.59.11.9, 2009.
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016.
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C.,
Bastiaensen, J., De Bièvre, B., Bhusal, J., Clark, J., Dewulf, A., and
Foggin, M.: Citizen science in hydrology and water resources: opportunities
for knowledge generation, ecosystem service management, and sustainable
development, Front. Earth Sci., 2, 26,
https://doi.org/10.3389/feart.2014.00026, 2014.
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in
the geosciences: An overview of methods, issues, and perspectives, WIRES Clim. Change, 9, e535,
https://doi.org/10.1002/wcc.535, 2018.
Carroll, T., Cline, D., Fall, G., Nilsson, A., Li, L., and Rost, A.: NOHRSC
operations and the simulation of snow cover properties for the coterminous
US, in: Proc. 69th Annual Meeting of the Western Snow Conf., Sun Valley Idaho, 1–14, 2001.
Carter, S., Carter, P., and Levison, J.: Skier triggered surface hoar: A
discussion of avalanche involvements during the 2006 Valdez Chugach
helicopter ski season, in: Proceedings of International Snow Science Workshop,
860–867, 2006.
Clark, M. P., Slater, A. G., Barrett, A. P., Hay, L. E., McCabe, G. J.,
Rajagopalan, B., and Leavesley, G. H.: Assimilation of snow covered area
information into hydrologic and land-surface models, Adv. Water
Resour., 29, 1209–1221,
https://doi.org/10.1016/j.advwatres.2005.10.001, 2006.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B., Cullen, N. J., Kerr, T., Örn Hreinsson, E., and Woods, R. A.: Representing spatial
variability of snow water equivalent in hydrologic and land-surface models:
A review, Water Resour. Res., 47, W07539,
https://doi.org/10.1029/2011WR010745, 2011.
Community Snow Observations Data Portal: http://app.communitysnowobs.org/, last access: 20 August 2021.
Contosta, A. R., Adolph, A., Burchsted, D., Burakowski, E., Green, M.,
Guerra, D., Albert, M., Dibb, J., Martin, M., McDowell, W. H., and Routhier,
M.: A longer vernal window: the role of winter coldness and snowpack in
driving spring transitions and lags, Glob. Change Biol., 23,
1610–1625, https://doi.org/10.1111/gcb.13517, 2017.
Cooper, C. B., Dickinson J., Phillips, T., and Bonney, R.: Citizen science
as a tool for conservation in residential ecosystems, Ecol. Soc.,
12, 11, http://www.ecologyandsociety.org/vol12/iss2/art11/ (last access:
5 May 2020), 2007.
Cosgrove, C. L., Wells, J., Nolin, A. W., Putera, J., and Prugh, L. R.: Seasonal
influence of snow conditions on Dall's sheep productivity in Wrangell-St
Elias National Park and Preserve, PloS One, 16, e0244787, https://doi.org/10.1371/journal.pone.0244787, 2021.
Crumley, R. and Hill D.; Preprocessing model inputs from Google Earth Engine tool, Zenodo [code], https://doi.org/10.5281/zenodo.5188622, 2021.
Crumley, R. L., Hill, D. F., Beamer, J. P., and Holzenthal, E. R.: Seasonal components of freshwater runoff in Glacier Bay, Alaska: diverse spatial patterns and temporal change, The Cryosphere, 13, 1597–1619, https://doi.org/10.5194/tc-13-1597-2019, 2019.
Deems, J. S. and Painter, T. H.: Lidar measurement of snow depth: accuracy and
error sources, in: Proceedings of the 2006 International Snow Science
Workshop: Telluride, Colorado, USA, International Snow Science Workshop,
330–338, 2006.
Dickinson, J. L., Zuckerberg, B., and Bonter, D. N.: Citizen science as an
ecological research tool: challenges and benefits, Annu. Rev. Ecol.
Evol. S., 41, 149–172,
https://doi.org/10.1146/annurev-ecolsys-102209-144636, 2010.
Dixon, D. and Boon, S.: Comparison of the SnowHydro snow sampler with
existing snow tube designs, Hydrol. Process., 26, 2555–2562,
https://doi.org/10.1002/hyp.9317, 2012.
Dressler, K. A., Fassnacht, S. R., and Bales, R. C.: A comparison of snow
telemetry and snow course measurements in the Colorado River basin, J. Hydrometeorol.,
7, 705–712, https://doi.org/10.1175/JHM506.1, 2006.
Elder, K., Rosenthal, W., and Davis, R. E.: Estimating the spatial
distribution of snow water equivalence in a montane watershed, Hydrol. Process., 12, 1793–1808,
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K, 1998.
Fayad, A., Gascoin, S., Faour, G., López-Moreno, J. I., Drapeau, L., Le
Page, M., and Escadafal, R.: Snow hydrology in Mediterranean mountain
regions: A review, J. Hydrol., 551, 374–396,
https://doi.org/10.1016/j.jhydrol.2017.05.063, 2017.
Fienen, M. N. and Lowry, C. S.: Social. Water – A crowdsourcing tool for
environmental data acquisition, Comput. Geosci., 49, 164–169,
https://doi.org/10.1016/j.cageo.2012.06.015, 2012.
Fletcher, S. J., Liston, G. E., Hiemstra, C. A., and Miller, S. D.: Assimilating
MODIS and AMSR-E snow observations in a snow evolution model, J. Hydrometeorol., 13,
1475–1492, https://doi.org/10.1175/JHM-D-11-082.1, 2012.
Garnett, R. and Stewart, R.: Comparison of GPS units and mobile Apple GPS
capabilities in an urban landscape, Cartogr. Geogr. Inform., 42, 1–8, https://doi.org/10.1080/15230406.2014.974074, 2015.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., and Wargan,
K.: The modern-era retrospective analysis for research and applications,
version 2 (MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D.: The national elevation dataset, Photogramm. Eng. Rem. S., 68, 5–32, 2002.
Haberkorn, A.: European Snow Booklet – an Inventory of Snow Measurements in
Europe, EnviDat, https://doi.org/10.16904/envidat.59, 2019.
Hall, D. K. and Riggs, G. A., and Salomonson V. V.: MODIS/Terra Snow Cover Daily L3
Global 500 m Grid, Version 6. Boulder, CO, NASA National Snow and Ice Data
Center Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MOD10A1.006, 2016.
Han, E., Merwade, V., and Heathman, G. C.: Implementation of surface soil
moisture data assimilation with watershed scale distributed hydrological
model, J. Hydrol., 416, 98–117,
https://doi.org/10.1016/j.jhydrol.2011.11.039, 2012.
Hedrick, A. R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky,
M., Marshall, H. P., Kormos, P. R., Bormann, K. J., and Painter, T. H.: Direct
insertion of NASA Airborne Snow Observatory-derived snow depth time series
into the iSnobal energy balance snow model, Water Resour. Res.,
54, 8045–8063, https://doi.org/10.1029/2018WR023190, 2018.
Helmert, J., Lange, M., Dong, J., De Rosnay, P., Gustafsson, D., Churulin,
E., Kurzeneva, E., Müller, R., Trentmann, J., Souverijns, N., and Koch,
R.: 1st Snow Data Assimilation Workshop in the framework of COST HarmoSnow
ESSEM 1404, Meteorol. Z., 27, 325–333,
https://doi.org/10.1127/metz/2018/0906, 2018.
Hendrikx, J., Johnson, J., and Shelly, C.: Using GPS tracking to explore
terrain preferences of heli-ski guides, Journal of outdoor recreation and
tourism, 13, 34–43, https://doi.org/10.1016/j.jort.2015.11.004, 2016.
Hill, D. and Aragon, C.: Snow density calculator, Zenodo [code], https://doi.org/10.5281/zenodo.5225097, 2021.
Hill, D., Wolken, G., Wikstrom Jones K., Crumley, R., and Arendt, A.:
Crowdsourcing snow depth data with citizen scientists, Eos, 99,
https://doi.org/10.1029/2018EO108991, 2018.
Hill, D., Aragon, C., and Crumley, R.: Preprocessing Micromet inputs from Google Earth Engine, Zenodo [code], https://doi.org/10.5281/zenodo.5224852, 2021.
Hill, D. F., Burakowski, E. A., Crumley, R. L., Keon, J., Hu, J. M., Arendt, A. A., Wikstrom Jones, K., and Wolken, G. J.: Converting snow depth to snow water equivalent using climatological variables, The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, 2019.
Holko, L., Gorbachova, L., and Kostka, Z.: Snow hydrology in central Europe,
Geography Compass, 5, 200–218,
https://doi.org/10.1111/j.1749-8198.2011.00412.x, 2011.
Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston,
J., Herold, N., Wickham, J., and Megown, K.: Completion of the 2011 National
Land Cover Database for the conterminous United States–representing a
decade of land cover change information. Photogrammetric Engineering &
Remote Sensing, 81, 345–354, 2015.
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent
from snow depth measurements in the Swiss Alps, J. Hydrology,
378, 161–167, https://doi.org/10.1016/j.jhydrol.2009.09.021, 2009.
Johnson, J. B.: A theory of pressure sensor performance in snow, Hydrol.
Process., 18, 53–64, https://doi.org/10.1002/hyp.1310, 2003.
Johnson, J. B. and Schaefer, G. L.: The influence of thermal, hydrologic, and
snow deformation mechanisms on snow water equivalent pressure sensor
accuracy, Hydrol. Process., 16, 3529–3542,
https://doi.org/10.1002/hyp.1236, 2002.
Kalnay, E.: Atmospheric modeling, data assimilation and predictability,
Cambridge University Press, Cambridge, United Kingdom, 2003.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., and Zhu, Y.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc.,
77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kapnick, S. and Hall, A.: Causes of recent changes in western North American
snowpack, Clim. Dynam., 38, 1885–1899, https://doi.org/10.1007/s00382-011-1089-y,
2012.
King, J. M., Cabrera, A. R., and Kelly, R. E.: The Snowtweets Project:
Communicating snow depth measurements from specialists and non-specialists
via mobile communication technologies and social networks, AGU Fall Meeting
Abstracts, Bibcode: 2009AGUFMED11A0562K, 2009.
Lader, R., Bhatt, U. S., Walsh, J. E., Rupp, T. S., and Bieniek, P. A.: Two-meter
temperature and precipitation from atmospheric reanalysis evaluated for
Alaska, J. Appl. Meteorol. Clim., 55, 901–922,
https://doi.org/10.1175/JAMC-D-15-0162.1, 2016.
Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., and
Zimmerli, M.: SNOWPACK model calculations for avalanche warning based upon a
new network of weather and snow stations, Cold Reg. Sci. Technol., 30, 145–157,
https://doi.org/10.1016/S0165-232X(99)00022-1, 1999.
Lehning, M., Völksch, I., Gustafsson, D., Nguyen, T. A., Stähli, M.,
and Zappa, M.: ALPINE3D: a detailed model of mountain surface processes and its
application to snow hydrology, Hydrol. Process., 20, 2111–2128, https://doi.org/10.1002/hyp.6204, 2006.
Li, D., Wigmore, O., Durand, M. T., Vander-Jagt, B., Margulis, S. A., Molotch,
N. P., and Bales, R. C.: Potential of Balloon Photogrammetry for Spatially
Continuous Snow Depth Measurements, IEEE Geosci. Remote S., 17, 1667–1671, https://doi.org/10.1109/LGRS.2019.2953481, 2019.
Liston, G. E. and Elder, K.: A distributed snow-evolution modeling system
(SnowModel), J. Hydrometeorol., 7, 1259–1276,
https://doi.org/10.1175/JHM548.1, 2006a.
Liston, G. E. and Elder, K.: A meteorological distribution system for
high-resolution terrestrial modeling (MicroMet), J.
Hydrometeorol., 7, 217–234, https://doi.org/10.1175/JHM486.1, 2006b.
Liston, G. E. and Hiemstra, C. A.: A simple data assimilation system for
complex snow distributions (SnowAssim), J. Hydrometeorol., 9,
989–1004, https://doi.org/10.1175/2008JHM871.1, 2008.
Liston, G. E. and Hiemstra, C. A.: The changing cryosphere: Pan-Arctic snow
trends (1979–2009), J. Climate, 24, 5691–5712,
https://doi.org/10.1175/JCLI-D-11-00081.1, 2011.
Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S., and Tabler, R. D.: Simulating complex snow distributions in windy environments
using SnowTran-3D, J. Glaciol., 53, 241–256,
https://doi.org/10.3189/172756507782202865, 2007.
López-Moreno, J. I., Fassnacht, S. R., Heath, J. T., Musselman, K. N.,
Revuelto, J., Latron, J., Morán-Tejeda, E., and Jonas, T.: Small scale
spatial variability of snow density and depth over complex alpine terrain:
Implications for estimating snow water equivalent, Adv. Water Resour., 55, 40–52,
https://doi.org/10.1016/j.advwatres.2012.08.010, 2013.
Lowry, C. S. and Fienen, M. N.: CrowdHydrology: crowdsourcing hydrologic data
and engaging citizen scientists, GroundWater, 51, 151–156,
https://doi.org/10.1111/j.1745-6584.2012.00956.x, 2013.
Luce, C. H., Tarboton, D. G., and Cooley, K. R.: The influence of the spatial
distribution of snow on basin-averaged snowmelt, Hydrol. Process., 12, 1671–1683,
https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AID-HYP688>3.0.CO;2-N, 1998.
Luojus, K., Pulliainen, J., Takala, M., Derksen, C., Rott, H., Nagler, T.,
Solberg, R., Wiesmann, A., Metsamaki, S., Malnes, E., and Bojkov, B.:
Investigating the feasibility of the GlobSnow snow water equivalent data for
climate research purposes, in: 2010 IEEE International Geoscience and Remote
Sensing Symposium, 4851–4853,
https://doi.org/10.1109/IGARSS.2010.5741987, 2010.
Magnusson, J., Gustafsson, D., Hüsler, F., and Jonas, T.: Assimilation of
point SWE data into a distributed snow cover model comparing two contrasting
methods, Water Resour. Res., 50, 7816–7835,
https://doi.org/10.1002/2014WR015302, 2014.
Magnusson, J., Winstral, A., Stordal, A. S., Essery, R., and Jonas, T.:
Improving physically based snow simulations by assimilating snow depths
using the particle filter, Water Resour. Res., 53, 1125–1143,
https://doi.org/10.1002/2016WR019092, 2017.
Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., and Diffenbaugh, N. S.:
The potential for snow to supply human water demand in the present and
future, Environ. Res. Lett., 10, 114016, https://doi.org/10.1088/1748-9326/10/11/114016, 2015.
Margulis, S. A., Girotto, M., Cortés, G., and Durand, M.: A particle batch
smoother approach to snow water equivalent estimation, J.
Hydrometeorol., 16, 1752–1772, https://doi.org/10.1175/JHM-D-14-0177.1, 2015.
Marks, D., Domingo, J., Susong, D., Link, T., and Garen, D.: A spatially
distributed energy balance snowmelt model for application in mountain
basins, Hydrol. Process., 13, 1935–1959,
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1935::AID-HYP868>3.0.CO;2-C, 1999.
Massey, Jr., F. J.: The Kolmogorov-Smirnov test for goodness of fit, J. Am. Stat. Assoc.,
46, 68–78, 1951.
McCreight, J. L., Small, E. E., and Larson, K. M.: Snow depth, density, and SWE
estimates derived from GPS reflection data: Validation in the western US,
Water Resour. Res., 50, 6892–6909,
https://doi.org/10.1002/2014WR015561, 2014.
McGuire, M., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P.: Use of
satellite data for streamflow and reservoir storage forecasts in the Snake
River Basin, J. Water Resour. Plan. Man., 132, 97–110,
https://doi.org/10.1061/(ASCE)0733-9496(2006)132:2(97), 2006.
McKinley, D. C., Miller-Rushing, A. J., Ballard, H. L., Bonney, R., Brown, H.,
Cook-Patton, S. C., Evans, D. M., French, R. A., Parrish, J. K., Phillips, T. B., and Ryan, S. F.: Citizen science can improve conservation science, natural
resource management, and environmental protection, Biol. Conserv., 208, 15–28,
https://doi.org/10.1016/j.biocon.2016.05.015, 2017.
McLaughlin, D.: An integrated approach to hydrologic data assimilation:
interpolation, smoothing, and filtering, Adv. Water Resour., 25,
1275–1286, https://doi.org/10.1016/S0309-1708(02)00055-6, 2002.
McMillan, H. K., Hreinsson, E. Ö., Clark, M. P., Singh, S. K., Zammit, C., and Uddstrom, M. J.: Operational hydrological data assimilation with the recursive ensemble Kalman filter, Hydrol. Earth Syst. Sci., 17, 21–38, https://doi.org/10.5194/hess-17-21-2013, 2013.
Mernild, S. H., Liston, G. E., Hasholt, B., and Knudsen, N.T.: Snow
distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island,
southeast Greenland, J. Hydrometeorol., 7, 808–824, https://doi.org/10.1175/JHM522.1,
2006.
Mernild, S. H., Liston, G. E., Hiemstra, C. A., Malmros, J. K., Yde, J. C., and
McPhee, J.: The Andes Cordillera. Part I: snow distribution, properties, and
trends (1979–2014), Int. J. Climatol., 37,
1680–1698, https://doi.org/10.1002/joc.4804, 2017a.
Mernild, S. H., Liston, G. E., Hiemstra, C. A., Yde, J. C., McPhee, J., and
Malmros, J.K.: The Andes Cordillera. Part II: Rio Olivares Basin snow
conditions (1979–2014), central Chile, Int. J.
Climatol., 37, 1699–1715, https://doi.org/10.1002/joc.4828, 2017b.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C.,
Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., and Ek,
M. B.: North American regional reanalysis, B. Am.
Meteorol. Soc., 87, 343–360,
https://doi.org/10.1175/BAMS-87-3-343, 2006.
Molotch, N. P. and Bales, R. C.: Scaling snow observations from the point to
the grid element: Implications for observation network design, Water Resour. Res., 41, W11421,
https://doi.org/10.1029/2005WR004229, 2005.
Molotch, N. P., Colee, M. T., Bales, R. C., and Dozier, J.: Estimating the
spatial distribution of snow water equivalent in an alpine basin using
binary regression tree models: the impact of digital elevation data and
independent variable selection, Hydrol. Process., 19, 1459–1479,
https://doi.org/10.1002/hyp.5586, 2005.
Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., and Engel, R.: Dramatic
declines in snowpack in the western US, Npj Climate and Atmospheric Science, 1, 1–6,
https://doi.org/10.1038/s41612-018-0012-1, 2018.
NOHRSC: Snow Data Assimilation System (SNODAS) Data Products at NSIDC,
Version 1, Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center,
https://doi.org/10.7265/N5TB14TC, 2004.
Pagano, T., Garen, D., Perkins, T., and Pasteris, P.: Daily updating of
operational statistical seasonal water supply forecasts for the western
U.S., J. Am. Water Resour. As., 45, 767–778,
https://doi.org/10.1111/j.1752-1688.2009.00321.x, 2009.
Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S.,
Gehrke, F., Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., and Mattmann, C.:
The Airborne Snow Observatory: Fusion of scanning lidar, imaging
spectrometer, and physically-based modeling for mapping snow water
equivalent and snow albedo, Remote Sens. Environ., 184, 139–152,
https://doi.org/10.1016/j.rse.2016.06.018, 2016.
Park, S. K. and Xu, L. (Eds.): Data assimilation for atmospheric, oceanic and
hydrologic applications, Vol. 2, Springer Science & Business Media, Heidelberg, Germany,
2013.
Pistocchi, A.: Simple estimation of snow density in an Alpine region,
J. Hydrol.: Regional Studies, 6, 82–89,
https://doi.org/10.1016/j.ejrh.2016.03.004, 2016.
Pomeroy, J. W., Gray, D. M., and Landine, P. G. The prairie blowing snow model:
characteristics, validation, operation, J. Hydrol., 144,
165–192, https://doi.org/10.1016/0022-1694(93)90171-5, 1993.
Rabier, F.: Overview of global data assimilation developments in numerical
weather-prediction centres, Q. J. Roy. Meteor.
Soc., 131, 3215–3233,
https://doi.org/10.1256/qj.05.129, 2005.
Reges, H. W., Doesken, N., Turner, J., Newman, N., Bergantino, A., and
Schwalbe, Z.: COCORAHS: The evolution and accomplishments of a volunteer
rain gauge network, B. Am. Meteorol. Soc., 97,
1831–1846, https://doi.org/10.1175/BAMS-D-14-00213.1, 2016.
Reichle, R. H.: Data assimilation methods in the Earth sciences, Adv.
Water Resour., 31, 1411–1418,
https://doi.org/10.1016/j.advwatres.2008.01.001, 2008.
Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Hydrologic data
assimilation with the ensemble Kalman filter, Mon. Weather Rev.,
130, 103–114, https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2, 2002.
Rice, R. and Bales, R. C.: Embedded-sensor network design for snow cover
measurements around snow pillow and snow course sites in the Sierra Nevada
of California, Water Resour. Res., 46, W03537, https://doi.org/10.1029/2008WR007318, 2010.
Riemann, R., Wilson, B. T., Lister, A., and Parks, S.: An effective assessment
protocol for continuous geospatial datasets of forest characteristics using
USFS Forest Inventory and Analysis (FIA) data, Remote Sens.
Environ., 114, 2337–2352,
https://doi.org/10.1016/j.rse.2010.05.010, 2010.
Rivington, M., Matthews, K. B., Bellocchi, G., and Buchan, K.: Evaluating
uncertainty introduced to process-based simulation model estimates by
alternative sources of meteorological data, Agr. Syst., 88,
451–471, https://doi.org/10.1016/j.agsy.2005.07.004, 2006.
Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., and Liu, H.: The NCEP climate
forecast system reanalysis, B. Am. Meteorol. Soc.,
91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Research Data Archive [data set], https://doi.org/10.5065/D61C1TXF, 2011.
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer,
D., Hou, Y. T., Chuang, H. Y., Iredell, M., and Ek, M.: The NCEP climate
forecast system version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
Schmucki, E., Marty, C., Fierz, C., and Lehning, M.: Evaluation of modelled
snow depth and snow water equivalent at three contrasting sites in
Switzerland using SNOWPACK simulations driven by different meteorological
data input, Cold Reg. Sci. Technol., 99, 27–37,
https://doi.org/10.1016/j.coldregions.2013.12.004, 2014.
Schaefer, M. and Woodyer, T.: Assessing absolute and relative accuracy of
recreation-grade and mobile phone GNSS devices: a method for informing
device choice, Area, 47, 185–196, https://doi.org/10.1111/area.12172,
2015.
Schlögl, S., Marty, C., Bavay, M., and Lehning, M.: Sensitivity of
Alpine3D modeled snow cover to modifications in DEM resolution, station
coverage and meteorological input quantities, Environ. Modell.
Softw., 83, 387–396, https://doi.org/10.1016/j.envsoft.2016.02.017,
2016.
Schneider, C., Laizé, C. L. R., Acreman, M. C., and Flörke, M.: How will climate change modify river flow regimes in Europe?, Hydrol. Earth Syst. Sci., 17, 325–339, https://doi.org/10.5194/hess-17-325-2013, 2013.
Seibert, J., Strobl, B., Etter, S., Hummer, P., and van Meerveld, H.J.:
Virtual staff gauges for crowd-based stream level observations, Front.
Earth Sci., 7, 70,
https://doi.org/10.3389/feart.2019.00070, 2019.
Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A., and Pulwarty,
R. S.: Characteristics of the western United States snowpack from snowpack
telemetry (SNOTEL) data, Water Resour. Res., 35, 2145–2160,
https://doi.org/10.1029/1999WR900090, 1999.
Shulski, M. and Wendler, G.: The climate of Alaska, University of Alaska
Press, Fairbanks, Alaska, USA, 2007.
Silvertown, J.: A new dawn for citizen science, Trends Ecol.
Evol., 24, 467–471, https://doi.org/10.1016/j.tree.2009.03.017,
2009.
Sturm, M.: White water: Fifty years of snow research in WRR and the outlook
for the future, Water Resour. Res., 51, 4948–4965,
https://doi.org/10.1002/2015WR017242, 2015.
Sturm, M. and Wagner, A. M.: Using repeated patterns in snow distribution
modeling: An Arctic example, Water Resour. Res., 46, W12549, https://doi.org/10.1029/2010WR009434,
2010.
Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal snow cover
classification system for local to global applications, J. Climate,
8, 1261–1283, https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995.
Sturm, M., Taras, B., Liston, G., Derksen, C., Jonas, T., and Lea, J.:
Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes,
J. Hydrometeorol., 11, 1380–1394,
https://doi.org/10.1175/2010JHM1202.1, 2010.
Trujillo, E., Molotch, N. P., Goulden, M. L., Kelly, A. E., and Bales, R. C.:
Elevation-dependent influence of snow accumulation on forest greening,
Nat. Geosci., 5, 705–709, https://doi.org/10.1038/ngeo1571, 2012.
Natural Resources Conservation Service, Upper Tsaina SNOTEL Station Data Porta: https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=1055, last access: 20 August 2021.
van Meerveld, H. J. I., Vis, M. J. P., and Seibert, J.: Information content of stream level class data for hydrological model calibration, Hydrol. Earth Syst. Sci., 21, 4895–4905, https://doi.org/10.5194/hess-21-4895-2017, 2017.
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner, R.:
Mountains of the world, water towers for humanity: Typology, mapping, and
global significance, Water Resour. Res., 43, W07447,
https://doi.org/10.1029/2006WR005653, 2007.
Wagner, W.: Investigating the snow climate of Turnagain Pass, Alaska, in:
Proceedings of the International Snow Science Workshop, Anchorage, AK,
913–917, 2012.
Wiggins, A. and Crowston, K.: From conservation to crowdsourcing: A typology
of citizen science, in: 2011 44th Hawaii international conference on system
sciences, 1–10, https://doi.org/10.1109/HICSS.2011.207, 2011.
Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Howat, I. M., Margulis, S. A., and Huning, L. S.: Comparison of methods to estimate snow water equivalent at
the mountain range scale: a case study of the California Sierra Nevada,
J. Hydrometeorol., 18, 1101–1119, https://doi.org/10.1175/JHM-D-16-0246.1, 2017.
Yeeles, A.: Citizen snow-scientists trek into the back country, Nat.
Clim. Change, 8, 944, https://doi.org/10.1038/s41558-018-0329-0,
2018.
Young, J. C., Pettit, E., Arendt, A., Hood, E., Liston, G. E., and Beamer, J.:
A changing hydrological regime: Trends in magnitude and timing of glacier
ice melt and glacier runoff in a high latitude coastal watershed, Water
Resour. Res., 57, e2020WR027404, https://doi.org/10.1029/2020WR027404, 2020.
Short summary
In this study, we use a new snow data set collected by participants in the Community Snow Observations project in coastal Alaska to improve snow depth and snow water equivalence simulations from a snow process model. We validate our simulations with multiple datasets, taking advantage of snow telemetry (SNOTEL), snow depth and snow water equivalence, and remote sensing measurements. Our results demonstrate that assimilating citizen science snow depth measurements can improve model performance.
In this study, we use a new snow data set collected by participants in the Community Snow...