Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1283-2021
https://doi.org/10.5194/hess-25-1283-2021
Research article
 | 
15 Mar 2021
Research article |  | 15 Mar 2021

Multi-level storylines for participatory modeling – involving marginalized communities in Tz'olöj Ya', Mayan Guatemala

Jessica A. Bou Nassar, Julien J. Malard, Jan F. Adamowski, Marco Ramírez Ramírez, Wietske Medema, and Héctor Tuy

Related authors

Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023,https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Multi-scenario multi-objective analysis of downscaled shared socio-economic pathways (SSPs) for robust policy development in coupled human-water systems
Mohammad Reza Alizadeh, Jan Adamowski, and Manzoor Qadir
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-297,https://doi.org/10.5194/hess-2022-297, 2022
Preprint withdrawn
Short summary
A novel model for simulation of nitrate in aquifers
Roohollah Noori, Mehrnaz Dodangeh, Ronny Berndtsson, Farhad Hooshyaripor, Jan Franklin Adamowski, Saman Javadi, and Akbar Baghvand
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-222,https://doi.org/10.5194/hess-2018-222, 2018
Preprint withdrawn
READY: a web-based geographical information system for enhanced flood resilience through raising awareness in citizens
R. Albano, A. Sole, and J. Adamowski
Nat. Hazards Earth Syst. Sci., 15, 1645–1658, https://doi.org/10.5194/nhess-15-1645-2015,https://doi.org/10.5194/nhess-15-1645-2015, 2015
Short summary
A GIS-based model to estimate flood consequences and the degree of accessibility and operability of strategic emergency response structures in urban areas
R. Albano, A. Sole, J. Adamowski, and L. Mancusi
Nat. Hazards Earth Syst. Sci., 14, 2847–2865, https://doi.org/10.5194/nhess-14-2847-2014,https://doi.org/10.5194/nhess-14-2847-2014, 2014
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023,https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Quantifying the trade-offs in re-operating dams for the environment in the Lower Volta River
Afua Owusu, Jazmin Zatarain Salazar, Marloes Mul, Pieter van der Zaag, and Jill Slinger
Hydrol. Earth Syst. Sci., 27, 2001–2017, https://doi.org/10.5194/hess-27-2001-2023,https://doi.org/10.5194/hess-27-2001-2023, 2023
Short summary
Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models
Joel Z. Harms, Julien J. Malard-Adam, Jan F. Adamowski, Ashutosh Sharma, and Albert Nkwasa
Hydrol. Earth Syst. Sci., 27, 1683–1693, https://doi.org/10.5194/hess-27-1683-2023,https://doi.org/10.5194/hess-27-1683-2023, 2023
Short summary
Development of an integrated socio-hydrological modeling framework for assessing the impacts of shelter location arrangement and human behaviors on flood evacuation processes
Erhu Du, Feng Wu, Hao Jiang, Naliang Guo, Yong Tian, and Chunmiao Zheng
Hydrol. Earth Syst. Sci., 27, 1607–1626, https://doi.org/10.5194/hess-27-1607-2023,https://doi.org/10.5194/hess-27-1607-2023, 2023
Short summary
Cooperation in a transboundary river basin: a large-scale socio-hydrological model of the Eastern Nile
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023,https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary

Cited articles

Alcamo, J.: Chapter Six The SAS Approach: Combining Qualitative and Quantitative Knowledge in Environmental Scenarios, Dev. Integr. Environ. Assess., 2, 123–150, https://doi.org/10.1016/S1574-101X(08)00406-7, 2008. 
Alcott, B.: Jevons' paradox, Ecol. Econ., 54, 9–21, https://doi.org/10.1016/j.ecolecon.2005.03.020, 2005. 
Arico, S., Bridgewater, P., El-beltagy, A., Harms, E., Program, S., Hepworth, R., Leitner, K., Oteng-yeboah, A., Ramos, M. A., and Watson, R. T.: Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Synthesis, Island Press, Washington, D.C., 2005. 
Arnell, N. W., Livermore, M. J. L., Kovats, S., Levy, P. E., Nicholls, R., Parry, M. L., and Gaffin, S. R.: Climate and socio-economic scenarios for global-scale climate change impacts assessments: Characterising the SRES storylines, Global Environ. Change, 14, 3–20, https://doi.org/10.1016/j.gloenvcha.2003.10.004, 2004. 
Ayrton, R.: The micro-dynamics of power and performance in focus groups: an example from discussions on national identity with the South Sudanese diaspora in the UK, Quant. Res., 19, 323–339, https://doi.org/10.1177/1468794118757102, 2018. 
Download
Short summary
Our research suggests a method that facilitates the inclusion of marginalized stakeholders in model-building activities to address problems in water resources. Our case study showed that knowledge produced by typically excluded stakeholders had significant and unique contributions to the outcome of the process. Moreover, our method facilitated the identification of relationships between societal, economic, and hydrological factors, and it fostered collaborations across different communities.