Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-1009-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1009-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years
Center for Limnology, University of Wisconsin-Madison, Madison, WI,
USA
Paul C. Hanson
Center for Limnology, University of Wisconsin-Madison, Madison, WI,
USA
Hilary A. Dugan
Center for Limnology, University of Wisconsin-Madison, Madison, WI,
USA
Cayelan C. Carey
Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
Yu Zhang
Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM, USA
Department of Land, Air and Water Resources, University of California Davis, Davis, CA, USA
Christopher J. Duffy
Department of Civil & Environmental Engineering, The Pennsylvania State University, State College, PA, USA
Kelly M. Cobourn
Department of Forest Resources and Environmental Conservation,
Virginia Tech, Blacksburg, VA, USA
Related authors
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
Hydrol. Earth Syst. Sci., 29, 1183–1199, https://doi.org/10.5194/hess-29-1183-2025, https://doi.org/10.5194/hess-29-1183-2025, 2025
Short summary
Short summary
Models help to understand natural systems and are used to predict changes based on scenarios (e.g., climate change). To simulate water temperature and deduce impacts on water quality in lakes, 1D lake models are often used. There are several such models that differ regarding their assumptions and mathematical process description. This study examines the performance of four such models on a global dataset of 73 lakes and relates their performance to the model structure and lake characteristics.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Austin Delany, Robert Ladwig, Cal Buelo, Ellen Albright, and Paul C. Hanson
Biogeosciences, 20, 5211–5228, https://doi.org/10.5194/bg-20-5211-2023, https://doi.org/10.5194/bg-20-5211-2023, 2023
Short summary
Short summary
Internal and external sources of organic carbon (OC) in lakes can contribute to oxygen depletion, but their relative contributions remain in question. To study this, we built a two-layer model to recreate processes relevant to carbon for six Wisconsin lakes. We found that internal OC was more important than external OC in depleting oxygen. This shows that it is important to consider both the fast-paced cycling of internally produced OC and the slower cycling of external OC when studying lakes.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Bennett J. McAfee, Aanish Pradhan, Abhilash Neog, Sepideh Fatemi, Robert T. Hensley, Mary E. Lofton, Anuj Karpatne, Cayelan C. Carey, and Paul C. Hanson
Earth Syst. Sci. Data, 17, 3141–3165, https://doi.org/10.5194/essd-17-3141-2025, https://doi.org/10.5194/essd-17-3141-2025, 2025
Short summary
Short summary
LakeBeD-US is a dataset of lake water quality data collected by multiple long-term monitoring programs around the United States. This dataset is designed to foster collaboration between lake scientists and computer scientists to improve predictions of water quality. By offering a way for computer models to be tested against real-world lake data, LakeBeD-US offers opportunities for both sciences to grow and to give new insights into the causes of water quality changes.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Ashley Brereton, Zelalem Mekonnen, Bhavna Arora, William Riley, Kunxiaojia Yuan, Yi Xu, Yu Zhang, Qing Zhu, Tyler Anthony, and Adina Paytan
EGUsphere, https://doi.org/10.5194/egusphere-2025-361, https://doi.org/10.5194/egusphere-2025-361, 2025
Short summary
Short summary
Wetlands absorb carbon dioxide (CO2), helping slow climate change, but they also release methane, a potent warming gas. We developed a collection of AI-based models to estimate magnitudes of CO2 and methane exchanged between the land and the atmosphere, for wetlands on a regional scale. This approach helps to inform land-use planning, restoration, and greenhouse gas accounting, while also creating a foundation for future advancements in prediction accuracy.
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
Hydrol. Earth Syst. Sci., 29, 1183–1199, https://doi.org/10.5194/hess-29-1183-2025, https://doi.org/10.5194/hess-29-1183-2025, 2025
Short summary
Short summary
Models help to understand natural systems and are used to predict changes based on scenarios (e.g., climate change). To simulate water temperature and deduce impacts on water quality in lakes, 1D lake models are often used. There are several such models that differ regarding their assumptions and mathematical process description. This study examines the performance of four such models on a global dataset of 73 lakes and relates their performance to the model structure and lake characteristics.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Austin Delany, Robert Ladwig, Cal Buelo, Ellen Albright, and Paul C. Hanson
Biogeosciences, 20, 5211–5228, https://doi.org/10.5194/bg-20-5211-2023, https://doi.org/10.5194/bg-20-5211-2023, 2023
Short summary
Short summary
Internal and external sources of organic carbon (OC) in lakes can contribute to oxygen depletion, but their relative contributions remain in question. To study this, we built a two-layer model to recreate processes relevant to carbon for six Wisconsin lakes. We found that internal OC was more important than external OC in depleting oxygen. This shows that it is important to consider both the fast-paced cycling of internally produced OC and the slower cycling of external OC when studying lakes.
Hilary A. Dugan, Peter T. Doran, Denys Grombacher, Esben Auken, Thue Bording, Nikolaj Foged, Neil Foley, Jill Mikucki, Ross A. Virginia, and Slawek Tulaczyk
The Cryosphere, 16, 4977–4983, https://doi.org/10.5194/tc-16-4977-2022, https://doi.org/10.5194/tc-16-4977-2022, 2022
Short summary
Short summary
In the McMurdo Dry Valleys of Antarctica, a deep groundwater system has been hypothesized to connect Don Juan Pond and Lake Vanda, both surface waterbodies that contain very high concentrations of salt. This is unusual, since permafrost in polar landscapes is thought to prevent subsurface hydrologic connectivity. We show results from an airborne geophysical survey that reveals widespread unfrozen brine in Wright Valley and points to the potential for deep valley-wide brine conduits.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Krista F. Myers, Peter T. Doran, Slawek M. Tulaczyk, Neil T. Foley, Thue S. Bording, Esben Auken, Hilary A. Dugan, Jill A. Mikucki, Nikolaj Foged, Denys Grombacher, and Ross A. Virginia
The Cryosphere, 15, 3577–3593, https://doi.org/10.5194/tc-15-3577-2021, https://doi.org/10.5194/tc-15-3577-2021, 2021
Short summary
Short summary
Lake Fryxell, Antarctica, has undergone hundreds of meters of change in recent geologic history. However, there is disagreement on when lake levels were higher and by how much. This study uses resistivity data to map the subsurface conditions (frozen versus unfrozen ground) to map ancient shorelines. Our models indicate that Lake Fryxell was up to 60 m higher just 1500 to 4000 years ago. This amount of lake level change shows how sensitive these systems are to small changes in temperature.
Cited articles
Appling, A. P., Leon, M. C., and McDowell, W. H.: Reducing bias and
quantifying uncertainty in watershed flux estimates: the R package loadflex,
Ecosphere, 6, 269, https://doi.org/10.1890/ES14-00517.1, 2015.
Bennett, E. M., Reed-Andersen, T., Houser, J. N., Gabriel, J. R., and Carpenter, S. R.: A Phosphorus Budget for the Lake Mendota Watershed,
Ecosystems, 2, 69–75, https://doi.org/10.1007/s100219900059, 1999.
Biddanda, B. A., Weinke, A. D., Kendall, S. T., Gereaux, L. C., Holcomb, T.
M., Snider, M. J., Dila, D. K., Long, S. A., VandenBerg, C., Knapp, K.,
Koopmans, D. J., Thompson, K., Vail, J. H., Ogdahl, M. E., Liu, Q., Johengen, T. H., Anderson, E. J., and Ruberg, S. A.: Chronicles of hypoxia: Time-series buoy observations reveal annually recurring seasonal basin-wide hypoxia in Muskegon Lake – A Great Lakes estuary, J. Gt. Lakes Res., 44, 219–229, https://doi.org/10.1016/j.jglr.2017.12.008, 2018.
Birge, E. A.: The work of wind in warming a lake, Transl. Wis. Acad. Sciens.
Arts. Lett., 18, 341–391, 1916.
Bocaniov, S. A. and Scavia, D.: Temporal and spatial dynamics of large lake
hypoxia: Integrating statistical and three-dimensional dynamic models to
enhance lake management criteria: Lake Hypoxia: Integrating Modles To Enhance Lake Management, Water Resour. Res., 52, 4247–4263, https://doi.org/10.1002/2015WR018170, 2016.
Bossard, P. and Gächter, R.: Methan- und Sauerstoffhaushalt im mesotrophen Lungernsee, Schweiz, Z. Hydrol., 43, 219–252, https://doi.org/10.1007/BF02502135, 1981.
Brock, T. D.: A Eutrophic Lake: Lake Mendota, Wisconsin, Springer-Verlag, New York, Berlin, Heidelberg, Toky., 1985.
Bruce, L. C., Frassl, M. A., Arhonditsis, G. B., Gal, G., Hamilton, D. P.,
Hanson, P. C., Hetherington, A. L., Melack, J. M., Read, J. S., Rinke, K., Rigosi, A., Trolle, D., Winslow, L., Adrian, R., Ayala, A. I., Bocaniov, S.
A., Boehrer, B., Boon, C., Brookes, J. D., Bueche, T., Busch, B. D., Copetti, D., Cortés, A., de Eyto, E., Elliott, J. A., Gallina, N., Gilboa, Y., Guyennon, N., Huang, L., Kerimoglu, O., Lenters, J. D., MacIntyre, S., Makler-Pick, V., McBride, C. G., Moreira, S., Özkundakci, D., Pilotti, M., Rueda, F. J., Rusak, J. A., Samal, N. R., Schmid, M., Shatwell, T., Snorthheim, C., Soulignac, F., Valerio, G., van der Linden, L., Vetter, M., Vinçon-Leite, B., Wang, J., Weber, M., Wickramaratne, C., Woolway, R. I., Yao, H., and Hipsey, M. R.: A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network, Environ. Model. Softw., 102, 274–291, https://doi.org/10.1016/j.envsoft.2017.11.016, 2018.
Burns, N. M.: Using hypolimnetic dissolved oxygen depletion rates for
monitoring lakes, N. Z. J. Mar. Freshw. Res., 29, 1–11,
https://doi.org/10.1080/00288330.1995.9516634, 1995.
Carpenter, S. R., Booth, E. G., and Kucharik, C. J.: Extreme precipitation and phosphorus loads from two agricultural watersheds: Extreme precipitation
and phosphorus load, Limnol. Oceanogr., 63, 1221–1233, https://doi.org/10.1002/lno.10767, 2018.
Cole, G. and Weihe, P.: Textbook of Limnology, Waveland Press, Inc., Long Grove, Illinois, USA, 440 pp., 2016.
Conway, C. J.: Oxygen depletion in the hypolimnion, MS thesis, UW-Madison, Madison, 1972.
Cornett, R. J.: Predicting changes in hypolimnetic oxygen concentrations with phosphorus retention, temperature, and morphometry, Limnol. Oceanogr., 34, 1359–1366, https://doi.org/10.4319/lo.1989.34.7.1359, 1989.
Cornett, R. J. and Rigler, F. H.: Hypolinimetic Oxygen Deficits: Their
Prediction and Interpretation, Science, 205, 580–581, https://doi.org/10.1126/science.205.4406.580, 1979.
Cross, T. K. and Summerfelt, R. C.: Oxygen Demand Of Lakes: Sediment And Water Column BOD, Lake Reserv. Manage., 3, 109–116,
https://doi.org/10.1080/07438148709354766, 1987.
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for Marine Ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401, 2008.
Duffy, C. J., Dugan, H. A., and Hanson, P. C.: The age of water and carbon in
lake-catchments: A simple dynamical model: Age of water and carbon in lake-catchments, Limnol. Oceanogr. Lett., 3, 236–245,
https://doi.org/10.1002/lol2.10070, 2018.
Farrell, K. J., Ward, N. K., Krinos, A. I., Hanson, P. C., Daneshmand, V.,
Figueiredo, R. J., and Carey, C. C.: Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state, Ecol.
Model., 430, 109134, https://doi.org/10.1016/j.ecolmodel.2020.109134, 2020.
Fenocchi, A., Rogora, M., Morabito, G., Marchetto, A., Sibilla, S., and
Dresti, C.: Applicability of a one-dimensional coupled ecological-hydrodynamic numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland), Ecol.
Model., 392, 38–51, https://doi.org/10.1016/j.ecolmodel.2018.11.005, 2019.
Flaim, G., Andreis, D., Piccolroaz, S., and Obertegger, U.: Ice Cover and Extreme Events Determine Dissolved Oxygen in a Placid Mountain Lake, Water
Resour. Res., 56, 1–18, https://doi.org/10.1029/2020WR027321, 2020.
Foley, B., Jones, I. D., Maberly, S. C., and Rippey, B.: Long-term changes in
oxygen depletion in a small temperate lake: effects of climate change and
eutrophication, Freshw. Biol., 57, 278–289, https://doi.org/10.1111/j.1365-2427.2011.02662.x, 2012.
Gelda, R. K. and Auer, M. T.: Development and Testing of a Dissolved Oxygen
Model for a Hypereutrophic Lake, Lake Reserv. Manage., 12, 165–179,
https://doi.org/10.1080/07438149609354006, 1996.
Grömping, U.: Relative Importance for Linear Regression in R: The
Package relaimpo, J. Stat. Softw., 17, 1–27, https://doi.org/10.18637/jss.v017.i01, 2006.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hansen, N.: The CMA Evolution Strategy: A Tutorial, ArXiv160400772 Cs Stat, available at: http://arxiv.org/abs/1604.00772 (last access: 25 November 2019), 2016.
Hanson, P. C., Bade, D. L., Carpenter, S. R., and Kratz, T. K.: Lake metabolism: Relationships with dissolved organic carbon and phosphorus, Limnol. Oceanogr., 48, 1112–1119, https://doi.org/10.4319/lo.2003.48.3.1112, 2003.
Hanson, P. C., Stillman, A. B., Jia, X., Karpatne, A., Dugan, H. A., Carey,
C. C., Stachelek, J., Ward, N. K., Zhang, Y., Read, J. S., and Kumar, V.:
Predicting lake surface water phosphorus dynamics using process-guided machine learning, Ecol. Model., 430, 109136, https://doi.org/10.1016/j.ecolmodel.2020.109136, 2020.
Hart, J.: Greenhouse Gas Formation and Organic Carbon Dynamics in a Eutrophic Lake, MS Thesis, University of Wisconsin-Madison, Madison, 2017.
Hart, J., Dugan, H., Carey, C., Stanley, E.. and Hanson, P.: Lake Mendota Carbon and Greenhouse Gas Measurements at North Temperate Lakes LTER 2016
ver 19, Environmental Data Initiative, https://doi.org/10.6073/pasta/170e5ba0ed09fe3d5837ef04c47e432e, 2020.
Hellweger, F.: 75 years since Monod: It is time to increase the complexity of our predictive ecosystem models (opinion), Ecol. Model., 346, 77–87,
https://doi.org/10.1016/j.ecolmodel.2016.12.001, 2017.
Hense, I.: Approaches to model the life cycle of harmful algae, J. Mar. Syst., 83, 108–114, https://doi.org/10.1016/j.jmarsys.2010.02.014, 2010.
Hipsey, M. R. and Hamilton, D. P.: The Computational Aquatic Ecosystem Dynamics Model (CAEDYM): v3 Science Manual, Centre for Water Research Technical Report, Centre for Water Research, Perth, Australia, 2008.
Hipsey, M. R., Huang, P., Paraska, D., Busch, B., and Boon, C.: Aquatic
Ecodynamics (AED/AED2) model library, Aquat. Ecodynamics Model. Libr. AED2,
available at: https://aed.see.uwa.edu.au/research/models/aed/ (last access: 7 October 2020), 2017.
Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D.
P., Hanson, P. C., Read, J. S., Sousa, E. de, Weber, M., and Winslow, L. A.:
A General Lake Model (GLM 3.0) for linking with high-frequency sensor data
from the Global Lake Ecological Observatory Network (GLEON), Geosci. Model
Dev., 12, 473–523, https://doi.org/10.5194/gmd-12-473-2019, 2019.
Hutchinson, G. E.: On the Relation between the Oxygen Deficit and the
productivity and Typology of Lakes, Int. Rev. Gesamten Hydrobiol. Hydrogr.,
36, 336–355, https://doi.org/10.1002/iroh.19380360205, 1938.
Idso, S. B.: On the concept of lake stability, Limnol. Oceanogr., 18, 681–683, https://doi.org/10.4319/lo.1973.18.4.0681, 1973.
Jenny, J.-P., Arnaud, F., Alric, B., Dorioz, J.-M., Sabatier, P., Meybeck,
M., and Perga, M.-E.: Inherited hypoxia: A new challenge for reoligotrophicated lakes under global warming: Holocene hypoxia dynamics in
large lakes, Global Biogeochem. Cy., 28, 1413–1423, https://doi.org/10.1002/2014GB004932, 2014.
Jenny, J.-P., Francus, P., Normandeau, A., Lapointe, F., Perga, M.-E., Ojala, A., Schimmelmann, A., and Zolitschka, B.: Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising
local human pressure, Global Change Biol., 22, 1481–1489, https://doi.org/10.1111/gcb.13193, 2016a.
Jenny, J.-P., Normandeau, A., Francus, P., Taranu, Z. E., Gregory-Eaves, I.,
Lapointe, F., Jautzy, J., Ojala, A. E. K., Dorioz, J.-M., Schimmelmann, A.,
and Zolitschka, B.: Urban point sources of nutrients were the leading cause
for the historical spread of hypoxia across European lakes, P. Natl. Acad. Sci. USA, 113, 12655–12660, https://doi.org/10.1073/pnas.1605480113, 2016b.
Kara, E. L., Heimerl, C., Killpack, T., Van de Bogert, M. C., Yoshida, H., and Carpenter, S. R.: Assessing a decade of phosphorus management in the
Lake Mendota, Wisconsin watershed and scenarios for enhanced phosphorus
management, Aquat. Sci., 74, 241–253, https://doi.org/10.1007/s00027-011-0215-6, 2012.
Kjensmo, J.: Internal energy, the work of the wind, and the thermal stability in Lake Tyrifjord, southeastern Norway, Hydrobiologia, 286, 53–59, https://doi.org/10.1007/BF00007280, 1994.
Kursa, M. B. and Rudnicki, W. R.: Feature Selection with the Boruta Package,
J. Stat. Softw., 36, 1–13, https://doi.org/10.18637/jss.v036.i11, 2010.
Ladwig, R., Hanson, P. C., Dugan, H. A., Carey, C. C., Zhang, Y., Shu, L.,
Duffy, C., and Cobourn, K. M.: Lake thermal structure drives inter-annual
variability in summer anoxia dynamics in a eutrophic lake over 37 years ver 1, Environmental Data Initiative, https://doi.org/10.6073/pasta/418bf748dc2351f026c25111f7cbfd7e, 2021.
Lathrop, R. and Carpenter, S.: Water quality implications from three decades of phosphorus loads and trophic dynamics in the Yahara chain of lakes, Inland Waters, 4, 1–14, https://doi.org/10.5268/IW-4.1.680, 2014.
Lathrop, R. C.: Lake Mendota and the Yahara River chain, in Food web
management: A case study of Lake Mendota, Wisconsin, Springer-Verlag, New York, NY, 17–29,, 1992.
Lathrop, R. C.: Perspectives on the eutrophication of the Yahara lakes, Lake
Reserv. Manag., 23, 345–365, https://doi.org/10.1080/07438140709354023, 2007.
Livingstone, D. M. and Imboden, D. M.: The prediction of hypolimnetic oxygen
profiles: a plea for a deductive approach, Can. J. Fish. Aquat. Sci., 53,
924–932, https://doi.org/10.1139/f95-230, 1996.
Magnuson, J., Carpenter, S., and Stanley, E.: North Temperate Lakes LTER: Physical Limnology of Primary Study Lakes 1981–current ver 27, Environmental Data Initiative, https://doi.org/10.6073/pasta/c120b223f80c63982457a2e1e76f6038,
2019a.
Magnuson, J., Carpenter, S., and Stanley, E.: North Temperate Lakes LTER: Secchi Disk Depth; Other Auxiliary Base Crew Sample Data 1981–current ver 29, Environmental Data Initiative, https://doi.org/10.6073/pasta/c0b0b52c4c41446b76e14662f9a9a0ce, 2019b.
Magnuson, J., Carpenter, S. and Stanley, E.: North Temperate Lakes LTER: Chemical Limnology of Primary Study Lakes: Nutrients, pH and Carbon 1981–current ver 52, Environmental Data Initiative, https://doi.org/10.6073/pasta/8359d27bbd91028f222d923a7936077d, 2020a.
Magnuson, J., Carpenter, S., and Stanley, E.: North Temperate Lakes LTER: Phytoplankton – Madison Lakes Area 1995–current ver 28, Environmental Data Initiative, https://doi.org/10.6073/pasta/13ea8f578654493155a660ab886f695e, 2020b.
Magnuson, J. J., Kratz, T. K., and Benson, B. J.: Long-term dynamics of lakes in the landscape: long-term ecological research on North Temperate lakes, Oxford University Press, Oxford, New York, 464 pp., 2006.
Matzinger, A., Müller, B., Niederhauser, P., Schmid, M., and Wüest,
A.: Hypolimnetic oxygen consumption by sediment-based reduced substances in
former eutrophic lakes, Limnol. Oceanogr., 55, 2073–2084,
https://doi.org/10.4319/lo.2010.55.5.2073, 2010.
McDonald, C. P. and Lathrop, R. C.: Seasonal shifts in the relative importance of local versus upstream sources of phosphorus to individual lakes in a chain, Aquat. Sci., 79, 385–394, https://doi.org/10.1007/s00027-016-0504-1, 2017.
Meding, M. E. and Jackson, L. J.: Biotic, chemical, and morphometric factors
contributing to winter anoxia in prairie lakes, Limnol. Oceanogr., 48, 1633–1642, https://doi.org/10.4319/lo.2003.48.4.1633, 2003.
Mi, C., Shatwell, T., Ma, J., Wentzky, V. C., Boehrer, B., Xu, Y., and Rinke,
K.: The formation of a metalimnetic oxygen minimum exemplifies how ecosystem
dynamics shape biogeochemical processes: A modelling study, Water Res., 175,
115701, https://doi.org/10.1016/j.watres.2020.115701, 2020.
Mitchell, K. E.: The multi-institution North American Land Data Assimilation
System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system, J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823, 2004.
Morris, M. D.: Factorial Sampling Plans for Preliminary Computational
Experiments, Technometrics, 33, 161–174, https://doi.org/10.1080/00401706.1991.10484804, 1991.
Motew, M., Chen, X., Carpenter, S. R., Booth, E. G., Seifert, J., Qiu, J.,
Loheide, S. P., Turner, M. G., Zipper, S. C., and Kucharik, C. J.: Comparing
the effects of climate and land use on surface water quality using future
watershed scenarios, Sci. Total Environ., 693, 133484,
https://doi.org/10.1016/j.scitotenv.2019.07.290, 2019.
Müller, B., Bryant, L. D., Matzinger, A., and Wüest, A.: Hypolimnetic
Oxygen Depletion in Eutrophic Lakes, Environ. Sci. Technol., 46, 9964–9971, https://doi.org/10.1021/es301422r, 2012.
Müller, B., Steinsberger, T., Schwefel, R., Gächter, R., Sturm, M.,
and Wüest, A.: Oxygen consumption in seasonally stratified lakes decreases only below a marginal phosphorus threshold, Sci. Rep., 9, 18054, https://doi.org/10.1038/s41598-019-54486-3, 2019.
North, R. P., North, R. L., Livingstone, D. M., Köster, O., and Kipfer,
R.: Long-term changes in hypoxia and soluble reactive phosphorus in the
hypolimnion of a large temperate lake: consequences of a climate regime
shift, Global Change Biol., 20, 811–823, https://doi.org/10.1111/gcb.12371, 2014.
Nürnberg, G.: Quantifying anoxia in lakes, Limnol. Oceanogr., 40, 1100–1111, https://doi.org/10.4319/lo.1995.40.6.1100, 1995a.
Nürnberg, G. K.: The Anoxic Factor, a Quantitative Measure of Anoxia and
Fish Species Richness in Central Ontario Lakes, Trans. Am. Fish. Soc., 124, 677–686, https://doi.org/10.1577/1548-8659(1995)124<0677:TAFAQM>2.3.CO;2, 1995b.
Nürnberg, G. K.: Quantified hypoxia and anoxia in lakes and reservoirs,
Scient. World J., 4, 42–54, https://doi.org/10.1100/tsw.2004.5, 2004.
Odum, H. T.: Primary Production in Flowing Waters, Limnol. Oceanogr., 1,
102–117, https://doi.org/10.4319/lo.1956.1.2.0102, 1956.
O'Reilly, C. M., Sharma, S., Gray, D. K., Hampton, S. E., Read, J. S., Rowley, R. J., Schneider, P., Lenters, J. D., McIntyre, P. B., Kraemer, B.
M., Weyhenmeyer, G. A., Straile, D., Dong, B., Adrian, R., Allan, M. G.,
Anneville, O., Arvola, L., Austin, J., Bailey, J. L., Baron, J. S., Brookes,
J. D., de Eyto, E., Dokulil, M. T., Hamilton, D. P., Havens, K., Hetherington, A. L., Higgins, S. N., Hook, S., Izmest'eva, L. R., Joehnk, K.
D., Kangur, K., Kasprzak, P., Kumagai, M., Kuusisto, E., Leshkevich, G., Livingstone, D. M., MacIntyre, S., May, L., Melack, J. M., Mueller-Navarra,
D. C., Naumenko, M., Noges, P., Noges, T., North, R. P., Plisnier, P.-D.,
Rigosi, A., Rimmer, A., Rogora, M., Rudstam, L. G., Rusak, J. A., Salmaso,
N., Samal, N. R., Schindler, D. E., Schladow, S. G., Schmid, M., Schmidt, S.
R., Silow, E., Soylu, M. E., Teubner, K., Verburg, P., Voutilainen, A., Watkinson, A., Williamson, C. E., and Zhang, G.: Rapid and highly variable
warming of lake surface waters around the globe, Geophys. Res. Lett., 42, 10773–10781, https://doi.org/10.1002/2015GL066235, 2015.
Qu, Y. and Duffy, C. J.: A semidiscrete finite volume formulation for multiprocess watershed simulation: Multiprocess Watershed Simulation, Water
Resour. Res., 43, W08419, https://doi.org/10.1029/2006WR005752, 2007.
Read, J. S., Hamilton, D. P., Jones, I. D., Muraoka, K., Winslow, L. A.,
Kroiss, R., Wu, C. H., and Gaiser, E.: Derivation of lake mixing and stratification indices from high-resolution lake buoy data, Environ. Model.
Softw., 26, 1325–1336, https://doi.org/10.1016/j.envsoft.2011.05.006, 2011.
Read, J. S., Winslow, L. A., Hansen, G. J. A., Van Den Hoek, J., Hanson, P.
C., Bruce, L. C., and Markfort, C. D.: Simulating 2368 temperate lakes reveals weak coherence in stratification phenology, Ecol. Model., 291,
142–150, https://doi.org/10.1016/j.ecolmodel.2014.07.029, 2014.
Rhodes, J., Hetzenauer, H., Frassl, M. A., Rothhaupt, K.-O., and Rinke, K.:
Long-term development of hypolimnetic oxygen depletion rates in the large Lake Constance, Ambio, 46, 554–565, https://doi.org/10.1007/s13280-017-0896-8, 2017.
Rippey, B. and McSorley, C.: Oxygen depletion in lake hypolimnia, Limnol.
Oceanogr., 54, 905–916, https://doi.org/10.4319/lo.2009.54.3.0905, 2009.
Romero, J. R., Antenucci, J. P., and Imberger, J.: One- and three-dimensional
biogeochemical simulations of two differing reservoirs, Ecol. Model., 174, 143–160, https://doi.org/10.1016/j.ecolmodel.2004.01.005, 2004.
Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.: Sensitivity
Analysis in Practice: A Guide to Assessing Scientific Methods, John Wiley
and Sons, Ltd., Chichester, West Sussex, England, 219 pp., 2004.
Sánchez-España, J., Mata, M. P., Vegas, J., Morellón, M.,
Rodríguez, J. A., Salazar, Á., Yusta, I., Chaos, A., Pérez-Martínez, C. and Navas, A.: Anthropogenic and climatic
factors enhancing hypolimnetic anoxia in a temperate mountain lake, J. Hydrol., 555, 832–850, https://doi.org/10.1016/j.jhydrol.2017.10.049, 2017.
Schmidt, W.: Über die Temperatur- und Stabilitätsverhältnisse von Seen, Geogr. Ann., 10, 145–177, https://doi.org/10.2307/519789, 1928.
Sharma, S., Blagrave, K., Magnuson, J. J., O'Reilly, C. M., Oliver, S., Batt, R. D., Magee, M. R., Straile, D., Weyhenmeyer, G. A., Winslow, L., and Woolway, R. I.: Widespread loss of lake ice around the Northern Hemisphere in a warming world, Nat. Clim. Change, 9, 227–231, https://doi.org/10.1038/s41558-018-0393-5, 2019.
Shimoda, Y. and Arhonditsis, G. B.: Phytoplankton functional type modelling:
Running before we can walk? A critical evaluation of the current state of
knowledge, Ecol. Model., 320, 29–43, https://doi.org/10.1016/j.ecolmodel.2015.08.029, 2016.
Shimoda, Y., Rao, Y. R., Watson, S., and Arhonditsis, G. B.: Optimizing the
complexity of phytoplankton functional group modeling: An allometric approach, Ecol. Inform., 31, 1–17, https://doi.org/10.1016/j.ecoinf.2015.11.001, 2016.
Snortheim, C. A., Hanson, P. C., McMahon, K. D., Read, J. S., Carey, C. C.,
and Dugan, H. A.: Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake, Ecol. Model., 343, 39–53,
https://doi.org/10.1016/j.ecolmodel.2016.10.014, 2017.
Soranno, P. A.: Phosphorus Cycling in the Lake Mendota Ecosystem: Internal
versus External Nutrient Supply, PhD Thesis, University of Wisconsin-Madison, Madison, 1995.
Soranno, P. A., Carpenter, S. R., and Lathrop, R. C.: Internal phosphorus
loading in Lake Mendota: response to external loads and weather, Can. J. Fish. Aquat. Sci., 54, 1883–1893, https://doi.org/10.1139/f97-095, 1997.
Spear, M. J.: Estimating the abundance of organisms for the study and management of fisheries and biological invasions, PhD Thesis, University of
Wisconsin-Madison, Madison, 2020.
Stanley, E. H., Collins, S. M., Lottig, N. R., Oliver, S. K., Webster, K. E., Cheruvelil, K. S., and Soranno, P. A.: Biases in lake water quality sampling and implications for macroscale research: Biases in studying and monitoring lakes, Limnol. Oceanogr., 64, 1572–1585, https://doi.org/10.1002/lno.11136, 2019.
Steinsberger, T., Müller, B., Gerber, C., Shafei, B. and Schmid, M.:
Modeling sediment oxygen demand in a highly productive lake under various
trophic scenarios, edited by: Duan, W., PLOS One, 14, e0222318,
https://doi.org/10.1371/journal.pone.0222318, 2019.
Veenstra, J. and Nolen, S.: In-Situ sediment oxygen demand in five
Southwestern U.S. lakes, Water Res., 25, 351–354, https://doi.org/10.1016/0043-1354(91)90016-J, 1991.
Veloz, S., Williams, J. W., Lorenz, D., Notaro, M., Vavrus, S., and Vimont, D. J.: Identifying climatic analogs for Wisconsin under 21st-century
climate-change scenarios, Climatic Change, 112, 1037–1058,
https://doi.org/10.1007/s10584-011-0261-z, 2012.
Walsh, J. R., Carpenter, S. R., and Vander Zanden, M. J.: Invasive species
triggers a massive loss of ecosystem services through a trophic cascade, P. Natl. Acad. Sci. USA, 113, 4081–4085, https://doi.org/10.1073/pnas.1600366113, 2016a.
Walsh, J. R., Munoz, S. E., and Vander Zanden, M. J.: Outbreak of an undetected invasive species triggered by a climate anomaly, Ecosphere, 7, 12, https://doi.org/10.1002/ecs2.1628, 2016b.
Walsh, J. R., Lathrop, R. C., and Vander Zanden, M. J.: Invasive invertebrate
predator, Bythotrephes longimanus, reverses trophic cascade in a north-temperate lake: Invasive invertebrate reverses cascade, Limnol.
Oceanogr., 62, 2498–2509, https://doi.org/10.1002/lno.10582, 2017.
Walsh, J. R., Lathrop, R. C., and Zanden, M. J. V.: Uncoupling indicators of
water quality due to the invasive zooplankter, Bythotrephes longimanus, Limnol. Oceanogr., 63, 1313–1327, https://doi.org/10.1002/lno.10773, 2018.
Ward, N. K., Steele, B. G., Weathers, K. C., Cottingham, K. L., Ewing, H.
A., Hanson, P. C. and Carey, C. C.: Differential Responses of Maximum Versus
Median Chlorophyll-a to Air Temperature and Nutrient Loads in an Oligotrophic Lake Over 31 Years, Water Resour. Res., 56, e2020WR027296, https://doi.org/10.1029/2020WR027296, 2020.
Weng, W., Boyle, K. J., Farrell, K. J., Carey, C. C., Cobourn, K. M., Dugan,
H. A., Hanson, P. C., Ward, N. K., and Weathers, K. C.: Coupling Natural and
Human Models in the Context of a Lake Ecosystem: Lake Mendota, Wisconsin, USA, Ecol. Econ., 169, 106556, https://doi.org/10.1016/j.ecolecon.2019.106556, 2020.
Winslow, L. A., Read, J. S., Hansen, G. J. A., Rose, K. C., and Robertson, D.
M.: Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures: Seasonal heterogeneity in
lake warming, Limnol. Oceanogr., 62, 2168–2178, https://doi.org/10.1002/lno.10557, 2017.
Winslow, L. A., Read, J. S., Woolway, R. I., Brentrup, T., Leach, H., Zwart,
J. A., Snortheim, C., Albers, S., and Collinge, D.: rLakeAnaluyzer: Lake
physics tool, Zenodo, https://doi.org/10.5281/zenodo.58411, 2019.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo,
L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V.,
Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy
flux analysis and validation for the North American Land Data Assimilation
System project phase 2 (NLDAS-2): 1. Intercomparison and application of
model products: WATER AND ENERGY FLUX ANALYSIS, J. Geophys. Res.-Atmos., 117, D03109, https://doi.org/10.1029/2011JD016048, 2012.
Yin, Y., Zhang, Y., Liu, X., Zhu, G., Qin, B., Shi, Z., and Feng, L.: Temporal and spatial variations of chemical oxygen demand in Lake Taihu, China, from 2005 to 2009, Hydrobiologia, 665, 129–141,
https://doi.org/10.1007/s10750-011-0610-y, 2011.
Yuan, L. L. and Jones, J. R.: Modeling hypolimnetic dissolved oxygen depletion using monitoring data, Can. J. Fish. Aquat. Sci., 77, 814–823, https://doi.org/10.1139/cjfas-2019-0294, 2019.
Short summary
Using a modeling framework applied to 37 years of dissolved oxygen time series data from Lake Mendota, we identified the timing and intensity of thermal energy stored in the lake water column, the lake's resilience to mixing, and surface primary production as the most important drivers of interannual dynamics of low oxygen concentrations at the lake bottom. Due to climate change, we expect an increase in the spatial and temporal extent of low oxygen concentrations in Lake Mendota.
Using a modeling framework applied to 37 years of dissolved oxygen time series data from Lake...