Articles | Volume 24, issue 1
https://doi.org/10.5194/hess-24-93-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-93-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)
Institute of Applied Geology, University of Natural Resources and
Life Sciences (BOKU), Peter-Jordan-Straße 82, 1190 Vienna, Austria
Geomorphological Systems and Risk Research, Department of Geography
and Regional Research, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria
Shiva P. Pudasaini
Geophysics Section, Institute of Geosciences, University of Bonn,
Meckenheimer Allee 176, 53115 Bonn, Germany
Adam Emmer
Department of the Human Dimensions of Global Change, Global Change
Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
Jan-Thomas Fischer
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), Rennweg 1, 6020 Innsbruck, Austria
Alejo Cochachin
Unidad de Glaciología y Recursos Hídricos, Autoridad Nacional del Agua, Confraternidad Internacional 167, Huaráz, Peru
Holger Frey
Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Related authors
Johannes Jakob Fürst, David Farías-Barahona, Thomas Bruckner, Lucia Scaff, Martin Mergili, Santiago Montserrat, and Humberto Peña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3103, https://doi.org/10.5194/egusphere-2024-3103, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The 1987 Parraguirre ice-rock avalanche developed into a devastating debris-flow causing loss of many lives and inflicting severe damage near Santiago, Chile. Here, we revise this event combining various observational records with modelling techniques. In this year, important snow cover coincided with warm days in spring. We further quantify the total solid volume, and forward important upward corrections for the trigger and flood volumes. Finally, river damming was key for high flow mobility.
Sonam Rinzin, Stuart Dunning, Rachel Carr, Ashim Sattar, and Martin Mergili
EGUsphere, https://doi.org/10.5194/egusphere-2024-1819, https://doi.org/10.5194/egusphere-2024-1819, 2024
Short summary
Short summary
We evaluated the sensitivity of model outputs to input parameter uncertainties by performing multiple GLOF simulations using the r.avaflow model. We found out that GLOF modelling outputs are highly sensitive to six parameters: volume of mass movements entering lakes, DEM datasets, origin of mass movements, mesh size, basal frictional angle, and entrainment coefficient. Future modelling should carefully consider the output uncertainty from these sensitive parameters.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 21, 2461–2483, https://doi.org/10.5194/nhess-21-2461-2021, https://doi.org/10.5194/nhess-21-2461-2021, 2021
Short summary
Short summary
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely rapid rockslide in metamorphic rock masses in the Alps and was formed in the early Holocene. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data and numerical modelling results to better understand the cause and triggering factors of this gigantic natural event.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Johnnatan Palacio Cordoba, Martin Mergili, and Edier Aristizábal
Nat. Hazards Earth Syst. Sci., 20, 815–829, https://doi.org/10.5194/nhess-20-815-2020, https://doi.org/10.5194/nhess-20-815-2020, 2020
Short summary
Short summary
Landslides triggered by rainfall are very common phenomena in complex tropical environments such as the Colombian Andes. In this work, we perform probabilistic analyses with r.slope.stability for landslide susceptibility analysis. We test the model in the La Arenosa catchment, northern Colombian Andes. The results are compared to those yielded with the corresponding deterministic analyses and with other physically based models applied in the same catchment.
Martin Mergili, Michel Jaboyedoff, José Pullarello, and Shiva P. Pudasaini
Nat. Hazards Earth Syst. Sci., 20, 505–520, https://doi.org/10.5194/nhess-20-505-2020, https://doi.org/10.5194/nhess-20-505-2020, 2020
Short summary
Short summary
Computer simulations of complex landslide processes in mountain areas are important for informing risk management but are at the same time challenging in terms of parameterization and physical and numerical model implementation. Using the tool r.avaflow, we highlight the progress and the challenges with regard to such simulations on the example of the Piz Cengalo–Bondo landslide cascade in Switzerland, which started as an initial rockslide–rockfall and finally evolved into a debris flow.
Ekrem Canli, Martin Mergili, Benni Thiebes, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 18, 2183–2202, https://doi.org/10.5194/nhess-18-2183-2018, https://doi.org/10.5194/nhess-18-2183-2018, 2018
Short summary
Short summary
Regional-scale landslide forecasting traditionally strongly relies on empirical approaches and landslide-triggering rainfall thresholds. Today, probabilistic methods utilizing ensemble predictions are frequently used for flood forecasting. In our study, we specify how such an approach could also be applied for landslide forecasts and for operational landslide forecasting and early warning systems. To this end, we implemented a physically based landslide model in a probabilistic framework.
Martin Mergili, Jan-Thomas Fischer, Julia Krenn, and Shiva P. Pudasaini
Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, https://doi.org/10.5194/gmd-10-553-2017, 2017
Short summary
Short summary
r.avaflow represents a GIS-based, multi-functional open-source tool for the simulation of debris flows, rock avalanches, snow avalanches, or two-phase (solid and fluid) process chains. It further facilitates parameter studies and validation of the simulation results against observed patterns. r.avaflow shall inform strategies to reduce the risks related to the interaction of mass flow processes with society.
M. Mergili, J. Krenn, and H.-J. Chu
Geosci. Model Dev., 8, 4027–4043, https://doi.org/10.5194/gmd-8-4027-2015, https://doi.org/10.5194/gmd-8-4027-2015, 2015
Short summary
Short summary
r.randomwalk is a flexible and multi-functional open-source GIS tool for simulating the propagation of mass movements. Mass points are routed from given release pixels through a digital elevation model until a defined break criterion is reached. In contrast to existing tools, r.randomwalk includes functionalities to account for parameter uncertainties, and it offers built-in functions for validation and visualization. We show the key functionalities of r.randomwalk for three test areas.
M. Mergili and H.-J. Chu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-5677-2015, https://doi.org/10.5194/nhessd-3-5677-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We propose a procedure to compute an integrated spatial landslide probability, combining release and propagation. The zonal release probability is introduced to correct the pixel-based release probability for the size of the release zone relevant for a pixel. For a test area in Taiwan we observe that the model performs moderately well in predicting the observed landslides and that the size of the release zone influences the result to a much higher degree than the pixel-based release probability.
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
F. E. Gruber and M. Mergili
Nat. Hazards Earth Syst. Sci., 13, 2779–2796, https://doi.org/10.5194/nhess-13-2779-2013, https://doi.org/10.5194/nhess-13-2779-2013, 2013
Johannes Jakob Fürst, David Farías-Barahona, Thomas Bruckner, Lucia Scaff, Martin Mergili, Santiago Montserrat, and Humberto Peña
EGUsphere, https://doi.org/10.5194/egusphere-2024-3103, https://doi.org/10.5194/egusphere-2024-3103, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The 1987 Parraguirre ice-rock avalanche developed into a devastating debris-flow causing loss of many lives and inflicting severe damage near Santiago, Chile. Here, we revise this event combining various observational records with modelling techniques. In this year, important snow cover coincided with warm days in spring. We further quantify the total solid volume, and forward important upward corrections for the trigger and flood volumes. Finally, river damming was key for high flow mobility.
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-164, https://doi.org/10.5194/nhess-2024-164, 2024
Preprint under review for NHESS
Short summary
Short summary
This study examines how particles move in snow avalanches. The researchers used AvaNodes, a sensor system that tracks particle movement, in combination with radar data and simulations from the open avalanche framework AvaFrame. By comparing measurements and simulations, particle velocity and avalanche front position were matched with high accuracy. The study illustrates how multiple parameter sets can yield appropriate results and highlights the complexity of avalanche simulation.
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2316, https://doi.org/10.5194/egusphere-2024-2316, 2024
Short summary
Short summary
We report in detail the most recent large landslide-triggered glacial lake outburst flood (GLOF) in the Peruvian Andes (the 2023 Rasac GLOF), analyze its preconditions, consequences, and the role of changing climate. Our study contibutes to understanding GLOF occurrence patterns in space and time and corroborates increasing frequency of such events in changing mountains.
Sonam Rinzin, Stuart Dunning, Rachel Carr, Ashim Sattar, and Martin Mergili
EGUsphere, https://doi.org/10.5194/egusphere-2024-1819, https://doi.org/10.5194/egusphere-2024-1819, 2024
Short summary
Short summary
We evaluated the sensitivity of model outputs to input parameter uncertainties by performing multiple GLOF simulations using the r.avaflow model. We found out that GLOF modelling outputs are highly sensitive to six parameters: volume of mass movements entering lakes, DEM datasets, origin of mass movements, mesh size, basal frictional angle, and entrainment coefficient. Future modelling should carefully consider the output uncertainty from these sensitive parameters.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Shiva P. Pudasaini
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-31, https://doi.org/10.5194/esurf-2022-31, 2022
Preprint withdrawn
Short summary
Short summary
New analytical landslide velocity solutions are unified with existing solutions, provide a complete picture of landslide with accelerating & decelerating movements through entire track. Initially ascending & descending fronts result in strikingly contrasting deposition lengths. Time & space evolution with initial peaks of variable strengths lead to a spectacular propagation pattern. Numerical solutions can be replaced by cost-effective, analytical solutions, offering great practical advantages.
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Christian Zangerl, Annemarie Schneeberger, Georg Steiner, and Martin Mergili
Nat. Hazards Earth Syst. Sci., 21, 2461–2483, https://doi.org/10.5194/nhess-21-2461-2021, https://doi.org/10.5194/nhess-21-2461-2021, 2021
Short summary
Short summary
The Köfels rockslide in the Ötztal Valley (Austria) represents the largest known extremely rapid rockslide in metamorphic rock masses in the Alps and was formed in the early Holocene. Although many hypotheses for the conditioning and triggering factors were discussed in the past, until now no scientifically accepted explanatory model has been found. This study provides new data and numerical modelling results to better understand the cause and triggering factors of this gigantic natural event.
Guoxiong Zheng, Martin Mergili, Adam Emmer, Simon Allen, Anming Bao, Hao Guo, and Markus Stoffel
The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, https://doi.org/10.5194/tc-15-3159-2021, 2021
Short summary
Short summary
This paper reports on a recent glacial lake outburst flood (GLOF) event that occurred on 26 June 2020 in Tibet, China. We find that this event was triggered by a debris landslide from a steep lateral moraine. As the relationship between the long-term evolution of the lake and its likely landslide trigger revealed by a time series of satellite images, this case provides strong evidence that it can be plausibly linked to anthropogenic climate change.
Christian Huggel, Mark Carey, Adam Emmer, Holger Frey, Noah Walker-Crawford, and Ivo Wallimann-Helmer
Nat. Hazards Earth Syst. Sci., 20, 2175–2193, https://doi.org/10.5194/nhess-20-2175-2020, https://doi.org/10.5194/nhess-20-2175-2020, 2020
Short summary
Short summary
There is increasing interest and need to analyze the contribution of anthropogenic climate change to negative impacts of climate change. We study the case of glacial lake Palcacocha in Peru, which poses a significant flood risk to the city of Huaraz. We found that greenhouse gas emissions; strong urbanization processes without appropriate land use planning; and social, cultural, political, and institutional factors all contribute to the existing flood risk.
Johnnatan Palacio Cordoba, Martin Mergili, and Edier Aristizábal
Nat. Hazards Earth Syst. Sci., 20, 815–829, https://doi.org/10.5194/nhess-20-815-2020, https://doi.org/10.5194/nhess-20-815-2020, 2020
Short summary
Short summary
Landslides triggered by rainfall are very common phenomena in complex tropical environments such as the Colombian Andes. In this work, we perform probabilistic analyses with r.slope.stability for landslide susceptibility analysis. We test the model in the La Arenosa catchment, northern Colombian Andes. The results are compared to those yielded with the corresponding deterministic analyses and with other physically based models applied in the same catchment.
Martin Mergili, Michel Jaboyedoff, José Pullarello, and Shiva P. Pudasaini
Nat. Hazards Earth Syst. Sci., 20, 505–520, https://doi.org/10.5194/nhess-20-505-2020, https://doi.org/10.5194/nhess-20-505-2020, 2020
Short summary
Short summary
Computer simulations of complex landslide processes in mountain areas are important for informing risk management but are at the same time challenging in terms of parameterization and physical and numerical model implementation. Using the tool r.avaflow, we highlight the progress and the challenges with regard to such simulations on the example of the Piz Cengalo–Bondo landslide cascade in Switzerland, which started as an initial rockslide–rockfall and finally evolved into a debris flow.
Anselm Köhler, Jan-Thomas Fischer, Riccardo Scandroglio, Mathias Bavay, Jim McElwaine, and Betty Sovilla
The Cryosphere, 12, 3759–3774, https://doi.org/10.5194/tc-12-3759-2018, https://doi.org/10.5194/tc-12-3759-2018, 2018
Short summary
Short summary
Snow avalanches show complicated flow behaviour, characterized by several flow regimes which coexist in one avalanche. In this work, we analyse flow regime transitions where a powder snow avalanche transforms into a plug flow avalanche by incorporating warm snow due to entrainment. Prediction of such a transition is very important for hazard mitigation, as the efficiency of protection dams are strongly dependent on the flow regime, and our results should be incorporated into avalanche models.
Ekrem Canli, Martin Mergili, Benni Thiebes, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 18, 2183–2202, https://doi.org/10.5194/nhess-18-2183-2018, https://doi.org/10.5194/nhess-18-2183-2018, 2018
Short summary
Short summary
Regional-scale landslide forecasting traditionally strongly relies on empirical approaches and landslide-triggering rainfall thresholds. Today, probabilistic methods utilizing ensemble predictions are frequently used for flood forecasting. In our study, we specify how such an approach could also be applied for landslide forecasts and for operational landslide forecasting and early warning systems. To this end, we implemented a physically based landslide model in a probabilistic framework.
Stephan Harrison, Jeffrey S. Kargel, Christian Huggel, John Reynolds, Dan H. Shugar, Richard A. Betts, Adam Emmer, Neil Glasser, Umesh K. Haritashya, Jan Klimeš, Liam Reinhardt, Yvonne Schaub, Andy Wiltshire, Dhananjay Regmi, and Vít Vilímek
The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, https://doi.org/10.5194/tc-12-1195-2018, 2018
Short summary
Short summary
Most mountain glaciers have receded throughout the last century in response to global climate change. This recession produces a range of natural hazards including glacial lake outburst floods (GLOFs). We have produced the first global inventory of GLOFs associated with the failure of moraine dams and show, counterintuitively, that these have reduced in frequency over recent decades. In this paper we explore the reasons for this pattern.
Adam Emmer
Nat. Hazards Earth Syst. Sci., 18, 813–827, https://doi.org/10.5194/nhess-18-813-2018, https://doi.org/10.5194/nhess-18-813-2018, 2018
Short summary
Short summary
This study focuses on bibliometrics, geographies and global trends of research on glacial lake outburst floods (GLOFs). It shows how research on GLOFs has become topical over the past few decades (analysed period: 1979–2016). Issues such as (i) where GLOFs are studied, (ii) who studies GLOFs, (iii) the export of research on GLOFs and (iv) international collaboration are addressed.
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Martin Mergili, Jan-Thomas Fischer, Julia Krenn, and Shiva P. Pudasaini
Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, https://doi.org/10.5194/gmd-10-553-2017, 2017
Short summary
Short summary
r.avaflow represents a GIS-based, multi-functional open-source tool for the simulation of debris flows, rock avalanches, snow avalanches, or two-phase (solid and fluid) process chains. It further facilitates parameter studies and validation of the simulation results against observed patterns. r.avaflow shall inform strategies to reduce the risks related to the interaction of mass flow processes with society.
Matthias Rauter, Jan-Thomas Fischer, Wolfgang Fellin, and Andreas Kofler
Nat. Hazards Earth Syst. Sci., 16, 2325–2345, https://doi.org/10.5194/nhess-16-2325-2016, https://doi.org/10.5194/nhess-16-2325-2016, 2016
Short summary
Short summary
Kinetic theory describes granular material under rapid motion. Macroscopic phenomena are determined by statistically describing collisions between particles. Recently, the theory has been extended to slow motion and quasi-static cases. Simplifications allow to apply this theory to snow avalanche simulations, where friction models with similar structure have been developed. Different test cases, comparing simulation and measurement data prove the applicability and highlight the improvements.
L. Mourre, T. Condom, C. Junquas, T. Lebel, J. E. Sicart, R. Figueroa, and A. Cochachin
Hydrol. Earth Syst. Sci., 20, 125–141, https://doi.org/10.5194/hess-20-125-2016, https://doi.org/10.5194/hess-20-125-2016, 2016
Short summary
Short summary
Three different types of gridded precipitation products are compared in a high glaciated tropical mountain environment (Cordillera Blanca, Peru): ground-based interpolation, a satellite-derived product (TRMM3B42), and outputs from the WRF regional climate model. While none of the products meets the challenge of representing both accumulated quantities and frequency of occurrence at the short timescale, we concluded that new methods should be used to merge those various precipitation products.
M. Mergili, J. Krenn, and H.-J. Chu
Geosci. Model Dev., 8, 4027–4043, https://doi.org/10.5194/gmd-8-4027-2015, https://doi.org/10.5194/gmd-8-4027-2015, 2015
Short summary
Short summary
r.randomwalk is a flexible and multi-functional open-source GIS tool for simulating the propagation of mass movements. Mass points are routed from given release pixels through a digital elevation model until a defined break criterion is reached. In contrast to existing tools, r.randomwalk includes functionalities to account for parameter uncertainties, and it offers built-in functions for validation and visualization. We show the key functionalities of r.randomwalk for three test areas.
M. Mergili and H.-J. Chu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-5677-2015, https://doi.org/10.5194/nhessd-3-5677-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We propose a procedure to compute an integrated spatial landslide probability, combining release and propagation. The zonal release probability is introduced to correct the pixel-based release probability for the size of the release zone relevant for a pixel. For a test area in Taiwan we observe that the model performs moderately well in predicting the observed landslides and that the size of the release zone influences the result to a much higher degree than the pixel-based release probability.
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
A. Emmer and V. Vilímek
Hydrol. Earth Syst. Sci., 18, 3461–3479, https://doi.org/10.5194/hess-18-3461-2014, https://doi.org/10.5194/hess-18-3461-2014, 2014
M. Teich, J.-T. Fischer, T. Feistl, P. Bebi, M. Christen, and A. Grêt-Regamey
Nat. Hazards Earth Syst. Sci., 14, 2233–2248, https://doi.org/10.5194/nhess-14-2233-2014, https://doi.org/10.5194/nhess-14-2233-2014, 2014
F. E. Gruber and M. Mergili
Nat. Hazards Earth Syst. Sci., 13, 2779–2796, https://doi.org/10.5194/nhess-13-2779-2013, https://doi.org/10.5194/nhess-13-2779-2013, 2013
J.-T. Fischer
Nat. Hazards Earth Syst. Sci., 13, 1655–1667, https://doi.org/10.5194/nhess-13-1655-2013, https://doi.org/10.5194/nhess-13-1655-2013, 2013
A. Emmer and V. Vilímek
Nat. Hazards Earth Syst. Sci., 13, 1551–1565, https://doi.org/10.5194/nhess-13-1551-2013, https://doi.org/10.5194/nhess-13-1551-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
The role of neotectonics and climate variability in the Pleistocene-to-Holocene hydrological evolution of the Fuente de Piedra playa lake (southern Iberian Peninsula)
On the cause of large daily river flow fluctuations in the Mekong River
A hybrid data-driven approach to analyze the drivers of lake level dynamics
Estimating velocity distribution and flood discharge at river bridges using entropy theory – insights from computational fluid dynamics flow fields
Learning from a large-scale calibration effort of multiple lake models
Assessing the different components of the water balance of Lake Titicaca
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
The influence of permafrost and other environmental controls on stream thermal sensitivity across Yukon, Canada
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Apparent Friction Coefficient Used for Flow Calculation in Straight Compound Channels With Trees On Floodplains
Assessing national exposure and impact to glacial lake outburst floods considering uncertainty under data sparsity
Understanding the compound flood risk along the coast of the contiguous United States
Benchmarking high-resolution hydrologic model performance of long-term retrospective streamflow simulations in the contiguous United States
Sources of skill in lake temperature, discharge and ice-off seasonal forecasting tools
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
How do inorganic nitrogen processing pathways change quantitatively at daily, seasonal, and multiannual scales in a large agricultural stream?
Seasonal forecasting of lake water quality and algal bloom risk using a continuous Gaussian Bayesian network
Spatially referenced Bayesian state-space model of total phosphorus in western Lake Erie
Future water temperature of rivers in Switzerland under climate change investigated with physics-based models
Physical controls and a priori estimation of raising land surface elevation across the southwestern Bangladesh delta using tidal river management
Evaluation and interpretation of convolutional long short-term memory networks for regional hydrological modelling
Synthesizing the impacts of baseflow contribution on concentration–discharge (C–Q) relationships across Australia using a Bayesian hierarchical model
Calibrating 1D hydrodynamic river models in the absence of cross-section geometry using satellite observations of water surface elevation and river width
A global algorithm for identifying changing streamflow regimes: application to Canadian natural streams (1966–2010)
Streamflow drought: implication of drought definitions and its application for drought forecasting
Quantifying floodwater impacts on a lake water budget via volume-dependent transient stable isotope mass balance
River runoff in Switzerland in a changing climate – changes in moderate extremes and their seasonality
River runoff in Switzerland in a changing climate – runoff regime changes and their time of emergence
Machine-learning methods for stream water temperature prediction
Bathymetry and latitude modify lake warming under ice
Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years
Reservoir evaporation in a Mediterranean climate: comparing direct methods in Alqueva Reservoir, Portugal
Diverging hydrological drought traits over Europe with global warming
Anthropogenic influence on the Rhine water temperatures
A new form of the Saint-Venant equations for variable topography
Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model
Worldwide lake level trends and responses to background climate variation
Modeling inorganic carbon dynamics in the Seine River continuum in France
A data-based predictive model for spatiotemporal variability in stream water quality
Flooding in the Mekong Delta: the impact of dyke systems on downstream hydrodynamics
Historical modelling of changes in Lake Erken thermal conditions
Improving lake mixing process simulations in the Community Land Model by using K profile parameterization
Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF
Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary
Replication of ecologically relevant hydrological indicators following a modified covariance approach to hydrological model parameterization
Lidar-based approaches for estimating solar insolation in heavily forested streams
Numerical study on the response of the largest lake in China to climate change
Alejandro Jiménez-Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci., 28, 5311–5329, https://doi.org/10.5194/hess-28-5311-2024, https://doi.org/10.5194/hess-28-5311-2024, 2024
Short summary
Short summary
We conducted an interdisciplinary study of the Fuente de Piedra playa lake's evolution in southern Spain. We made water balances for the Fuente de Piedra playa lake's lifespan. Our results indicate that the Fuente de Piedra playa lake's level moved and tilted south-west, which was caused by active faults.
Khosro Morovati, Keer Zhang, Lidi Shi, Yadu Pokhrel, Maozhou Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 5133–5147, https://doi.org/10.5194/hess-28-5133-2024, https://doi.org/10.5194/hess-28-5133-2024, 2024
Short summary
Short summary
This study examines large daily river flow fluctuations in the dammed Mekong River, developing integrated 3D hydrodynamic and response time models alongside a hydrological model with an embedded reservoir module. This approach allows estimation of travel times between hydrological stations and contributions of subbasins and upstream regions. Findings show a power correlation between upstream discharge and travel time, and significant fluctuations occurred even before dam construction.
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024, https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Short summary
We study the drivers behind the changes in lake levels, creating a series of models from least to most complex. In this study, we have shown that the decreasing levels of Groß Glienicker Lake in Germany are not simply the result of changes in climate but are affected by other processes. In our example, reduced inflow from a growing forest, regionally sinking groundwater levels and the modifications in the local rainwater infrastructure together resulted in an increasing lake level loss.
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele P. Viero
Hydrol. Earth Syst. Sci., 28, 3717–3737, https://doi.org/10.5194/hess-28-3717-2024, https://doi.org/10.5194/hess-28-3717-2024, 2024
Short summary
Short summary
The entropy model is a reliable tool to estimate flood discharge in rivers using observed level and surface velocity. Often, level and velocity sensors are placed on bridges, which may disturb the flow. Using accurate numerical models, we explored the entropy model reliability nearby a multi-arch bridge. We found that it is better to place sensors and to estimate the discharge upstream of bridges; downstream, the entropy model needs the river-wide distribution of surface velocity as input data.
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
EGUsphere, https://doi.org/10.5194/egusphere-2024-2447, https://doi.org/10.5194/egusphere-2024-2447, 2024
Short summary
Short summary
Models help to understand natural systems and are used to predict changes based on scenarios e.g. climate change. To simulate water temperature and deduce impact on water quality in lakes, 1D hydrodynamic models are often used. There are several such models which differ in their assumptions and mathematical process description. This study examines the performance of four such models on a global dataset of 73 lakes and relates the performance to the models structure and the lake characteristics.
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
EGUsphere, https://doi.org/10.5194/egusphere-2024-2370, https://doi.org/10.5194/egusphere-2024-2370, 2024
Short summary
Short summary
This study estimated the water balance of Lake Titicaca using an integrated modeling framework that considers natural hydrological processes and net irrigation consumption. The proposed approach was implemented at a daily scale for a period of 35 years. This framework is able to simulate lake water levels with good accuracy over a wide range of hydroclimatic conditions. The findings demonstrate that a simple representation of hydrological processes is suitable for use in poorly-gauged regions.
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024, https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Short summary
Accuracy of streamflow estimates where water management and use are prevalent, such as the western US, reflect hydrologic modeling decisions. To evaluate process inclusion decisions, we equipped a hydrologic model with tracers and compared estimates to observations. The tracer-equipped model performed well, and differences between the model and observations suggest that the inclusion of water from irrigation may improve model performance in this region.
Andras Janos Szeitz and Sean K. Carey
EGUsphere, https://doi.org/10.5194/egusphere-2024-1741, https://doi.org/10.5194/egusphere-2024-1741, 2024
Short summary
Short summary
Stream temperature sensitivity in northern regions responds to many of the same environmental controls as in temperate regions, but the presence of annually frozen ground (permafrost) influences catchment hydrology and stream temperature regimes. Permafrost can have positive and negative influences on thermal regimes. The net effect of northern environmental change on stream temperature is complex and uncertain, but permafrost will likely play a role through its control on cold region hydrology.
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024, https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Short summary
Spring events in lakes are key processes for ecosystem functioning. We used a coupled catchment–lake model to investigate future changes in the timing of spring discharge, ice-off, spring phytoplankton peak, and onset of stratification in a mesotrophic lake. We found a clear trend towards earlier occurrence under climate warming but also that relative shifts in the timing occurred, such as onset of stratification advancing more slowly than the other events.
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024, https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
Short summary
Floods are significant natural disasters that affect people and property. This study uses a simplified terrain index and the latest lidar-derived digital elevation maps (DEMs) to investigate flood inundation extent quality. We examined inundation quality influenced by different spatial resolutions and other variables. Results showed that lidar DEMs enhance inundation quality, but their resolution is less impactful in our context. Further studies on reservoirs and urban flooding are recommended.
Adam Kozioł, Adam Kiczko, Marcin Krukowski, Elżbieta Kubrak, Janusz Kubrak, Grzegorz Majewski, and Andrzej Brandyk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-74, https://doi.org/10.5194/hess-2024-74, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Floodplain trees play a crucial role in increasing flow resistance. Their impact extends beyond floodplains to affect the main channel. The experiments reveal the influence of floodplain trees on the discharge capacity of channels with varying roughness. We determine resistance coefficients for different roughness levels of the main channel bottom. The research contributes to a deeper understanding of open-channel flow dynamics and has practical implications for river engineering.
Huili Chen, Qiuhua Liang, Jiaheng Zhao, and Sudan Bikash Maharjan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-260, https://doi.org/10.5194/hess-2023-260, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Glacial Lake Outburst Floods (GLOFs) can cause serious damage. To assess their risks, we developed an innovative framework using remote sensing, Bayesian models, flood modeling, and open-source data. This enables us to evaluate GLOFs on a national scale, despite limited data and challenges accessing high-altitude lakes. We evaluated dangerous lakes in Nepal, identifying those most at risk. This work is crucial for understanding GLOF risks and the framework can be transferred to other areas.
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023, https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary
Short summary
This study assesses the flood risks concurrently induced by river flooding and coastal storm surge along the coast of the contiguous United States using statistical and numerical models. We reveal a few hotspots of such risks, the critical spatial variabilities within a river basin and over the whole US coast, and the uncertainties of the risk assessment. We highlight the importance of weighing different risk measures to avoid underestimating or exaggerating the compound flood impacts.
Erin Towler, Sydney S. Foks, Aubrey L. Dugger, Jesse E. Dickinson, Hedeff I. Essaid, David Gochis, Roland J. Viger, and Yongxin Zhang
Hydrol. Earth Syst. Sci., 27, 1809–1825, https://doi.org/10.5194/hess-27-1809-2023, https://doi.org/10.5194/hess-27-1809-2023, 2023
Short summary
Short summary
Hydrologic models developed to assess water availability need to be systematically evaluated. This study evaluates the long-term performance of two high-resolution hydrologic models that simulate streamflow across the contiguous United States. Both models show similar performance overall and regionally, with better performance in minimally disturbed basins than in those impacted by human activity. At about 80 % of the sites, both models outperform the seasonal climatological benchmark.
François Clayer, Leah Jackson-Blake, Daniel Mercado-Bettín, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frias, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 27, 1361–1381, https://doi.org/10.5194/hess-27-1361-2023, https://doi.org/10.5194/hess-27-1361-2023, 2023
Short summary
Short summary
We assessed the predictive skill of forecasting tools over the next season for water discharge and lake temperature. Tools were forced with seasonal weather predictions; however, most of the prediction skill originates from legacy effects and not from seasonal weather predictions. Yet, when skills from seasonal weather predictions are present, additional skill comes from interaction effects. Skilful lake seasonal predictions require better weather predictions and realistic antecedent conditions.
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023, https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022, https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
Short summary
There is an unclear understanding of which processes regulate the transport of water, solutes, and pollutants in streams. This is crucial since these processes control water quality in river networks. Compared to other approaches, we obtained clearer insights into the processes controlling solute transport in the investigated reach. This work highlights the risks of using uncertain results for interpreting the processes controlling water movement in streams.
Jingshui Huang, Dietrich Borchardt, and Michael Rode
Hydrol. Earth Syst. Sci., 26, 5817–5833, https://doi.org/10.5194/hess-26-5817-2022, https://doi.org/10.5194/hess-26-5817-2022, 2022
Short summary
Short summary
In this study, we set up a water quality model using a 5-year paired high-frequency water quality dataset from a large agricultural stream. The simulations were compared with the 15 min interval measurements and showed very good fits. Based on these, we quantified the N uptake pathway rates and efficiencies at daily, seasonal, and yearly scales. This study offers an overarching understanding of N processing in large agricultural streams across different temporal scales.
Leah A. Jackson-Blake, François Clayer, Sigrid Haande, James E. Sample, and S. Jannicke Moe
Hydrol. Earth Syst. Sci., 26, 3103–3124, https://doi.org/10.5194/hess-26-3103-2022, https://doi.org/10.5194/hess-26-3103-2022, 2022
Short summary
Short summary
We develop a Gaussian Bayesian network (GBN) for seasonal forecasting of lake water quality and algal bloom risk in a nutrient-impacted lake in southern Norway. Bayesian networks are powerful tools for environmental modelling but are almost exclusively discrete. We demonstrate that a continuous GBN is a promising alternative approach. Predictive performance of the GBN was similar or improved compared to a discrete network, and it was substantially less time-consuming and subjective to develop.
Timothy J. Maguire, Craig A. Stow, and Casey M. Godwin
Hydrol. Earth Syst. Sci., 26, 1993–2017, https://doi.org/10.5194/hess-26-1993-2022, https://doi.org/10.5194/hess-26-1993-2022, 2022
Short summary
Short summary
Water within large water bodies is constantly moving. Consequently, water movement masks causal relationships that exist between rivers and lakes. Incorporating water movement into models of nutrient concentration allows us to predict concentrations at unobserved locations and at observed locations on days not sampled. Our modeling approach does this while accommodating nutrient concentration data from multiple sources and provides a way to experimentally define the impact of rivers on lakes.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Md Feroz Islam, Paul P. Schot, Stefan C. Dekker, Jasper Griffioen, and Hans Middelkoop
Hydrol. Earth Syst. Sci., 26, 903–921, https://doi.org/10.5194/hess-26-903-2022, https://doi.org/10.5194/hess-26-903-2022, 2022
Short summary
Short summary
The potential of sedimentation in the lowest parts of polders (beels) through controlled flooding with dike breach (tidal river management – TRM) to counterbalance relative sea level rise (RSLR) in 234 beels of SW Bangladesh is determined in this study, using 2D models and multiple regression. Lower beels located closer to the sea have the highest potential. Operating TRM only during the monsoon season is sufficient to raise the land surface of most beels by more than 3 times the yearly RSLR.
Sam Anderson and Valentina Radić
Hydrol. Earth Syst. Sci., 26, 795–825, https://doi.org/10.5194/hess-26-795-2022, https://doi.org/10.5194/hess-26-795-2022, 2022
Short summary
Short summary
We develop and interpret a spatiotemporal deep learning model for regional streamflow prediction at more than 200 stream gauge stations in western Canada. We find the novel modelling style to work very well for daily streamflow prediction. Importantly, we interpret model learning to show that it has learned to focus on physically interpretable and physically relevant information, which is a highly desirable quality of machine-learning-based hydrological models.
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022, https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
Short summary
We investigate the impact of baseflow contribution on concentration–flow (C–Q) relationships across the Australian continent. We developed a novel Bayesian hierarchical model for six water quality variables across 157 catchments that span five climate zones. For sediments and nutrients, the C–Q slope is generally steeper for catchments with a higher median and a greater variability of baseflow contribution, highlighting the key role of variable flow pathways in particulate and solute export.
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021, https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
Short summary
River roughness and geometry are essential to hydraulic river models. However, measurements of these quantities are not available in most rivers globally. Nevertheless, simultaneous calibration of channel geometric parameters and roughness is difficult as they compensate for each other. This study introduces an alternative approach of parameterization and calibration that reduces parameter correlations by combining cross-section geometry and roughness into a conveyance parameter.
Masoud Zaerpour, Shadi Hatami, Javad Sadri, and Ali Nazemi
Hydrol. Earth Syst. Sci., 25, 5193–5217, https://doi.org/10.5194/hess-25-5193-2021, https://doi.org/10.5194/hess-25-5193-2021, 2021
Short summary
Short summary
Streamflow regimes are changing globally particularly in cold regions. We develop a novel algorithm for detecting shifting streamflow regimes using changes in first and second moments of ensemble streamflow features. This algorithm is generic and can be used globally. To showcase its application, we assess alterations in Canadian natural streams from 1966 to 2010 to provide the first temporally consistent, pan-Canadian assessment of change in natural streamflow regimes, coast to coast to coast.
Samuel J. Sutanto and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 25, 3991–4023, https://doi.org/10.5194/hess-25-3991-2021, https://doi.org/10.5194/hess-25-3991-2021, 2021
Short summary
Short summary
This paper provides a comprehensive overview of the differences within streamflow droughts derived using different identification approaches, namely the variable threshold, fixed threshold, and the Standardized Streamflow Index, including an analysis of both historical drought and implications for forecasting. Our results clearly show that streamflow droughts derived from different approaches deviate from each other in terms of drought occurrence, timing, duration, and deficit volume.
Janie Masse-Dufresne, Florent Barbecot, Paul Baudron, and John Gibson
Hydrol. Earth Syst. Sci., 25, 3731–3757, https://doi.org/10.5194/hess-25-3731-2021, https://doi.org/10.5194/hess-25-3731-2021, 2021
Short summary
Short summary
A volume-dependent transient isotopic mass balance model was developed for an artificial lake in Canada, in a context where direct measurements of surface water fluxes are difficult. It revealed that floodwater inputs affected the dynamics of the lake in spring but also significantly influenced the long-term water balance due to temporary subsurface storage of floodwater. Such models are paramount for understanding the vulnerability of lakes to changes in groundwater quantity and quality.
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3577–3594, https://doi.org/10.5194/hess-25-3577-2021, https://doi.org/10.5194/hess-25-3577-2021, 2021
Short summary
Short summary
This study analyses changes in magnitude, frequency, and seasonality of moderate low and high flows for 93 catchments in Switzerland. In lower-lying catchments (below 1500 m a.s.l.), moderate low-flow magnitude (frequency) will decrease (increase). In Alpine catchments (above 1500 m a.s.l.), moderate low-flow magnitude (frequency) will increase (decrease). Moderate high flows tend to occur more frequent, and their magnitude increases in most catchments except some Alpine catchments.
Regula Muelchi, Ole Rössler, Jan Schwanbeck, Rolf Weingartner, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 3071–3086, https://doi.org/10.5194/hess-25-3071-2021, https://doi.org/10.5194/hess-25-3071-2021, 2021
Short summary
Short summary
Runoff regimes in Switzerland will change significantly under climate change. Projected changes are strongly elevation dependent with earlier time of emergence and stronger changes in high-elevation catchments where snowmelt and glacier melt play an important role. The magnitude of change and the climate model agreement on the sign increase with increasing global mean temperatures and stronger emission scenarios. This amplification highlights the importance of climate change mitigation.
Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2951–2977, https://doi.org/10.5194/hess-25-2951-2021, https://doi.org/10.5194/hess-25-2951-2021, 2021
Short summary
Short summary
In this study we developed machine learning approaches for daily river water temperature prediction, using different data preprocessing methods, six model types, a range of different data inputs and 10 study catchments. By comparing to current state-of-the-art models, we could show a significant improvement of prediction performance of the tested approaches. Furthermore, we could gain insight into the relationships between model types, input data and predicted stream water temperature.
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021, https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary
Short summary
When solar radiation penetrates the frozen surface of lakes, shallower zones underneath warm faster than deep interior waters. This numerical study shows that the transport of excess heat to the lake interior depends on the lake circulation, affected by Earth's rotation, and controls the lake warming rates and the spatial distribution of the heat flux across the ice–water interface. This work contributes to the understanding of the circulation and thermal structure patterns of ice-covered lakes.
Robert Ladwig, Paul C. Hanson, Hilary A. Dugan, Cayelan C. Carey, Yu Zhang, Lele Shu, Christopher J. Duffy, and Kelly M. Cobourn
Hydrol. Earth Syst. Sci., 25, 1009–1032, https://doi.org/10.5194/hess-25-1009-2021, https://doi.org/10.5194/hess-25-1009-2021, 2021
Short summary
Short summary
Using a modeling framework applied to 37 years of dissolved oxygen time series data from Lake Mendota, we identified the timing and intensity of thermal energy stored in the lake water column, the lake's resilience to mixing, and surface primary production as the most important drivers of interannual dynamics of low oxygen concentrations at the lake bottom. Due to climate change, we expect an increase in the spatial and temporal extent of low oxygen concentrations in Lake Mendota.
Carlos Miranda Rodrigues, Madalena Moreira, Rita Cabral Guimarães, and Miguel Potes
Hydrol. Earth Syst. Sci., 24, 5973–5984, https://doi.org/10.5194/hess-24-5973-2020, https://doi.org/10.5194/hess-24-5973-2020, 2020
Short summary
Short summary
In Mediterranean environments, evaporation is a key component of reservoir water budgets. Prediction of surface evaporation becomes crucial for adequate reservoir water management. This study provides an applicable method for calculating evaporation based on pan measurements applied at Alqueva Reservoir (southern Portugal), one of the largest artificial lakes in Europe. Moreover, the methodology presented here could be applied to other Mediterranean reservoirs.
Carmelo Cammalleri, Gustavo Naumann, Lorenzo Mentaschi, Bernard Bisselink, Emiliano Gelati, Ad De Roo, and Luc Feyen
Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, https://doi.org/10.5194/hess-24-5919-2020, 2020
Short summary
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Alex Zavarsky and Lars Duester
Hydrol. Earth Syst. Sci., 24, 5027–5041, https://doi.org/10.5194/hess-24-5027-2020, https://doi.org/10.5194/hess-24-5027-2020, 2020
Short summary
Short summary
River water temperature is an important parameter for water quality and an important variable for physical, chemical and biological processes. River water is also used as a cooling agent by power plants and production facilities. We study long-term trends in river water temperature and correlate them to meteorological influences and power production or economic indices.
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci., 24, 4001–4024, https://doi.org/10.5194/hess-24-4001-2020, https://doi.org/10.5194/hess-24-4001-2020, 2020
Short summary
Short summary
This study investigates the effects of bottom slope discontinuity on the stability of numerical solutions for the Saint-Venant equations. A new reference slope concept is proposed to ensure smooth source terms and eliminate potential numerical oscillations. It is shown that a simple algebraic transformation of channel geometry provides a smooth reference slope while preserving the correct cross-sectional flow area and the piezometric pressure gradient that drives the flow.
Ana I. Ayala, Simone Moras, and Donald C. Pierson
Hydrol. Earth Syst. Sci., 24, 3311–3330, https://doi.org/10.5194/hess-24-3311-2020, https://doi.org/10.5194/hess-24-3311-2020, 2020
Short summary
Short summary
The impacts of different levels of global warming on the thermal structure of Lake Erken are assessed. We used the General Ocean Turbulence Model (GOTM) to simulate water temperature driven by meteorological scenarios supplied by the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) and tested its ability at different frequencies. Then, daily ISIMIP meteorological scenarios were disaggregated and assessed for the effects of climate change on lake thermal structure.
Luca Ziliani, Nicola Surian, Gianluca Botter, and Luca Mao
Hydrol. Earth Syst. Sci., 24, 3229–3250, https://doi.org/10.5194/hess-24-3229-2020, https://doi.org/10.5194/hess-24-3229-2020, 2020
Short summary
Short summary
Although geomorphic recovery is a key issue in many rivers worldwide, controlled floods have been rarely designed using geomorphological criteria. An integrated approach is used to assess the effects of different controlled-flood scenarios in a strongly regulated river. None of the controlled-flood strategies provide significant morphological benefits. Nevertheless, this study represents a significant contribution for the management and restoration of highly disturbed rivers.
Benjamin M. Kraemer, Anton Seimon, Rita Adrian, and Peter B. McIntyre
Hydrol. Earth Syst. Sci., 24, 2593–2608, https://doi.org/10.5194/hess-24-2593-2020, https://doi.org/10.5194/hess-24-2593-2020, 2020
Short summary
Short summary
Lake levels go up and down due to natural variability in the climate. But the effects of natural variability on lake levels can sometimes be confused for the influence of humans. Here we used long-term data from 200 globally distributed lakes and an advanced statistical approach to show that the effects of natural variability on lake levels can be disentangled from other effects leading to better estimates of long-term changes that may be partially caused by humans.
Audrey Marescaux, Vincent Thieu, Nathalie Gypens, Marie Silvestre, and Josette Garnier
Hydrol. Earth Syst. Sci., 24, 2379–2398, https://doi.org/10.5194/hess-24-2379-2020, https://doi.org/10.5194/hess-24-2379-2020, 2020
Short summary
Short summary
Rivers have been recognized as an active part of the carbon cycle where transformations are associated with CO2 outgassing. To understand it, we propose a modeling approach with the biogeochemical model, pyNuts-Riverstrahler. We implemented it on the human-impacted Seine River. Sources of carbon to the river were characterized by field measurements in groundwater and in wastewater. Outgassing was the most important in streams, and peaks were simulated downstream of wastewater treatment effluent.
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020, https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary
Short summary
This study developed predictive models to represent the spatial and temporal variation of stream water quality across Victoria, Australia. The model structures were informed by a data-driven approach, which identified the key controls of water quality variations from long-term records. These models are helpful to identify likely future changes in water quality and, in turn, provide critical information for developing management strategies to improve stream water quality.
Vo Quoc Thanh, Dano Roelvink, Mick van der Wegen, Johan Reyns, Herman Kernkamp, Giap Van Vinh, and Vo Thi Phuong Linh
Hydrol. Earth Syst. Sci., 24, 189–212, https://doi.org/10.5194/hess-24-189-2020, https://doi.org/10.5194/hess-24-189-2020, 2020
Short summary
Short summary
The Vietnamese Mekong Delta (VMD) is a rice bowl of not only Vietnam, but also the world; agriculture is the main source of livelihood in the delta. The VMD is facing threats related to water management and hydraulic structures. Dykes are built to protect agricultural crops in the floodplains and may influence water regimes downstream in the VMD. If the VMD floodplains are completely protected by dykes, yearly mean water levels could increase by 3 cm (at Can Tho) and 1.5 cm (at My Thuan).
Simone Moras, Ana I. Ayala, and Don C. Pierson
Hydrol. Earth Syst. Sci., 23, 5001–5016, https://doi.org/10.5194/hess-23-5001-2019, https://doi.org/10.5194/hess-23-5001-2019, 2019
Short summary
Short summary
We used a hydrodynamic model to reconstruct daily historical water temperature of Lake Erken (Sweden) between 1961 and 2017 to demonstrate the ongoing effect of climate change on lake thermal conditions. The results show that the lake has warmed most rapidly in the last 30 years and that it is now subject to a longer and more stable stratification. The methods used here to reconstruct historical water temperature records can be easily extended to other lakes.
Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019, https://doi.org/10.5194/hess-23-4969-2019, 2019
Short summary
Short summary
We improved lake mixing process simulations by applying a vertical mixing scheme, K profile parameterization (KPP), in the Community Land Model (CLM) version 4.5, developed by the National Center for Atmospheric Research. The current vertical mixing scheme in CLM requires an arbitrarily enlarged eddy diffusivity to enhance water mixing. The coupled CLM-KPP considers a boundary layer for eddy development. The improved lake model provides an important tool for lake hydrology and ecosystem studies.
Margarita Choulga, Ekaterina Kourzeneva, Gianpaolo Balsamo, Souhail Boussetta, and Nils Wedi
Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019, https://doi.org/10.5194/hess-23-4051-2019, 2019
Short summary
Short summary
Lakes influence weather and climate of regions, especially if several of them are located close by. Just by using upgraded lake depths, based on new or more recent measurements and geological methods of depth estimation, errors of lake surface water forecasts produced by the European Centre for Medium-Range Weather Forecasts became 12–20 % lower compared with observations for 27 lakes collected by the Finnish Environment Institute. For ice-off date forecasts errors changed insignificantly.
Jérémy Lepesqueur, Renaud Hostache, Núria Martínez-Carreras, Emmanuelle Montargès-Pelletier, and Christophe Hissler
Hydrol. Earth Syst. Sci., 23, 3901–3915, https://doi.org/10.5194/hess-23-3901-2019, https://doi.org/10.5194/hess-23-3901-2019, 2019
Short summary
Short summary
This article evaluates the influence of sediment representation in a sediment transport model. A short-term simulation is used to assess how far changing the sediment characteristics in the modelling experiment changes riverbed evolution and sediment redistribution during a small flood event. The study shows in particular that representing sediment with extended grain-size and grain-density distributions allows for improving model accuracy and performances.
Annie Visser-Quinn, Lindsay Beevers, and Sandhya Patidar
Hydrol. Earth Syst. Sci., 23, 3279–3303, https://doi.org/10.5194/hess-23-3279-2019, https://doi.org/10.5194/hess-23-3279-2019, 2019
Short summary
Short summary
The ecological impact of changes in river flow may be explored through the simulation of ecologically relevant flow indicators. Traditional approaches to model parameterization are not well-suited for this. To this end, this paper considers the ability of a
modified covariance approach, applied to five hydrologically diverse catchments. An overall improvement in consistency is observed, whilst timing and rate of change represent the best and worst replicated indicators respectively.
Jeffrey J. Richardson, Christian E. Torgersen, and L. Monika Moskal
Hydrol. Earth Syst. Sci., 23, 2813–2822, https://doi.org/10.5194/hess-23-2813-2019, https://doi.org/10.5194/hess-23-2813-2019, 2019
Short summary
Short summary
High stream temperatures can be detrimental to the survival of aquatic species such as endangered salmon. Stream temperatures can be reduced by shade provided by trees in riparian areas. Two lidar-based methods were effective at assessing stream shading. These methods can be used in place of expensive field measurements.
Dongsheng Su, Xiuqing Hu, Lijuan Wen, Shihua Lyu, Xiaoqing Gao, Lin Zhao, Zhaoguo Li, Juan Du, and Georgiy Kirillin
Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019, https://doi.org/10.5194/hess-23-2093-2019, 2019
Short summary
Short summary
In this study, freshwater lake model simulation results, verified by satellite and buoy observation data, were used to quantify recent climate change effects on the thermal regime of the largest lake in China. Results indicate that the FLake model can reproduce the lake thermal pattern nicely. The lake surface is warming, while the lake bottom has no significant trend. Climate change also caused an earlier ice-off and later ice-on, leading to an obvious change in the energy balance of the lake.
Cited articles
ANA: Inventario Nacional de Glaciares y Lagunas – Lagunas, Ministerio de
Agricultura y Riesgo, Autoridad Nacional del Agua, Unidad de Glaciología y Recursos Hídricos, Huaráz, Peru, 2014.
ANA: Plano batimétrico de la Laguna Palcacocha. Perfil longitudinal y
transversal, Ministerio de Agricultura y Riesgo, Autoridad Nacional del Agua, Unidad de Glaciología y Recursos Hídricos, Huaráz, Peru, 2016.
Andres, C. N., Eyles, C. H., Jara, H., and Narro-Pérez, R.: Sedimentological analysis of Paleolake Jircacocha, Cojup Valley, Cordillera
Blanca, Peru, Revista de Glaciares y Ecosystemas de Montaña, 5, 9–26,
2018.
Beven, K.: Equifinality and Uncertainty in Geomorphological Modelling, in:
The Scientific Nature of Geomorphology: Proceedings of the 27th Binghamton
Symposium in Geomorphology, 27–29 September 1996, John Wiley & Sons,
Chichester, 289–313, 1996.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty
estimation in mechanistic modelling of complex environmental systems using
the GLUE methodology, J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001.
Bolch, T., Peters, J., Yegorov, A., Prafhan, B., Buchroithner, M., and
Blagoveshchensky, V.: Identification of potentially dangerous glacial lakes
in the northern Tien Shan, Nat. Hazards, 59, 1691–1714,
https://doi.org/10.1007/s11069-011-9860-2, 2011.
Breien, H., De Blasio, F. V., Elverhoi, A., and Hoeg, K.: Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western
Norway, Landslides, 5, 271–280, https://doi.org/10.1007/s10346-008-0118-3, 2008.
Broggi, J. A.: Informe preliminar sobre la exploracion y estudio de las
condiciones de estabilidad de las lagunas de la Cordillera Blanca,
ELECTROPERU S.A., Lima, Peru, 1942.
Carey, M.: Living and dying with glaciers: people's historical vulnerability
to avalanches and outburst floods in Peru, Global Planet. Change, 47, 122–134, https://doi.org/10.1016/j.gloplacha.2004.10.007, 2005.
Carey, M., Huggel, C., Bury, J., Portocarrero, C., and Haeberli, W.: An
integrated socio-environmental framework for glacier hazard management and
climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru,
Climatic Change, 112, 733–767, https://doi.org/10.1007/s10584-011-0249-8, 2012.
Carey, M., McDowell, G., Huggel, C., Jackson, M., Portocarrero, C., Reynolds, J. M., and Vicuña, L.: Integrated approaches to adaptation and disaster risk reduction in dynamic socio-cryospheric systems, in: Snow and Ice-related Hazards, Risks and Disasters, edited by: Haeberli, W. and Whiteman, C., Elsevier, Amsterdam, 219–261, https://doi.org/10.1016/B978-0-12-394849-6.00008-1, 2014.
Chisolm, R. E. and McKinney, D. C.: Dynamics of avalanche-generated impulse
waves: three-dimensional hydrodynamic simulations and sensitivity analysis,
Nat. Hazards Earth Syst. Sci., 18, 1373–1393, https://doi.org/10.5194/nhess-18-1373-2018, 2018.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of
dense snow ava-lanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010.
Clague, J. J. and O'Connor, J. E.: Glacier-related outburst floods, in: Snow and Ice-related Hazards, Risks and Disasters, edited by: Haeberli, W. and Whiteman, C., Elsevier, Amsterdam, 487–519, https://doi.org/10.1016/B978-0-12-394849-6.00014-7, 2014.
Concha, J. F.: Sintesis de los trabajos efectuados por la comision de las
lagunas de la Cordillera Blanca, Ministerio de Fomento, Comision de Control de las Lagunas de la Cordillera Blanca (CCLCB), Lima, Peru, 1952.
Domnik, B., Pudasaini, S. P., Katzenbach, R., and Miller, S. A.: Coupling of
full two-dimensional and depth-averaged models for granular flows, J.
Non-Newton. Fluid Mech., 201, 56–68, https://doi.org/10.1016/j.jnnfm.2013.07.005, 2013.
Emmer, A.: Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru, Quaternary Sci. Rev., 177, 220–234,
https://doi.org/10.1016/j.quascirev.2017.10.028, 2017.
Emmer, A., and Vilímek, V.: Review Article: Lake and breach hazard
assessment for moraine-dammed lakes: an example from the Cordillera Blanca
(Peru), Nat. Hazards Earth Syst. Sci., 13, 1551–1565,
https://doi.org/10.5194/nhess-13-1551-2013, 2013.
Emmer, A., and Vilímek, V.: New method for assessing the susceptibility
of glacial lakes to outburst floods in the Cordillera Blanca, Peru, Hydrol.
Earth Syst. Sci., 18, 3461–3479, https://doi.org/10.5194/hess-18-3461-2014, 2014.
Emmer, A., Merkl, S., and Mergili, M.: Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria, Geomorphology,
246, 602–616, https://doi.org/10.1016/j.geomorph.2015.06.032, 2015.
Emmer, A., Klimeš, J., Mergili, M., Vilímek, V., and Cochachin, A.:
882 lakes of the Cordillera Blanca: an inventory, classification and
assessment of susceptibility to outburst flood, Catena, 147, 269–279,
https://doi.org/10.1016/j.catena.2016.07.032, 2016.
Emmer, A., Vilímek, V., and Zapata, M. L.: Hazard mitigation of glacial
lake outburst floods in the Cordillera Blanca (Peru): the effectiveness of
remedial works, J. Flood Risk Manage., 11, 489–501, https://doi.org/10.1111/jfr3.12241, 2018.
Evans, S. G., Bishop, N. F., Fidel Smoll, L., Valderrama Murillo, P., Delaney, K. B., and Oliver-Smith, A.: A re-examination of the mechanism and
human impact of catastrophic mass flows originating on Nevado Huascarán,
Cordillera Blanca, Peru in 1962 and 1970, Eng. Geol., 108, 96–118,
https://doi.org/10.1016/j.enggeo.2009.06.020, 2009.
Frey, H., Huggel, C., Chisolm, R. E., Baer, P., McArdell, B., Cochachin, A.,
and Portocarrero, C.: Multi-Source Glacial Lake Outburst Flood Hazard Assessment and Mapping for Huaráz, Cordillera Blanca, Peru, Front. Earth
Sci., 6, 210, https://doi.org/10.3389/feart.2018.00210, 2018.
Gabl, R., Seibl, J., Gems, B., and Aufleger, M.: 3-D numerical approach to
simulate the overtopping volume caused by an impulse wave comparable to
avalanche impact in a reservoir, Nat. Hazards Earth Syst. Sci., 15,
2617–2630, https://doi.org/10.5194/nhess-15-2617-2015, 2015.
GAPHAZ: Assessment of glacier and permafrost hazards in Mountain Regions,
in: Joint Standing Group on Glacier and Permafrost Hazards in High Mountains (GAPHAZ) of the International Association of Cryospheric Sciences (IACS) and the International Permafrost Association (IPA), edited by: Allen, S. K., Frey, H., and Huggel, C., Zurich, Lima, available at: http://gaphaz.org/files/Assessment_Glacier_Permafrost_Hazards_Mountain_Regions.pdf (last access: 3 January 2020), 2017.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS)
Software, Open Source Geospatial Foundation Project, available at:
https://grass.osgeo.org, last access: 4 February 2019.
Haeberli, W.: Frequency and characteristics of glacier floods in the Swiss
Alps, Ann. Glaciol., 4, 85–90, https://doi.org/10.3189/S0260305500005280, 1983.
Harrison, S., Kargel, J. S., Huggel, C., Reynolds, J., Shugar, D. H., Betts,
R. A., Emmer, A., Glasser, N., Haritashya, U. K., Klimeš, J., Reinhardt,
L., Schaub, Y., Wilyshire, A., Regmi, D., and Vilímek, V.: Climate change and the global pattern of moraine-dammed glacial lake outburst floods, The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, 2018.
Hewitt, K.: Natural dams and outburst floods in the Karakorum Himalaya, in:
Hydrological aspects of alpine and high-mountain areas, edited by: Glen, J.
W., IAHS Publ., 138, 259–269, 1982.
Hewitt, K. and Liu, J.: Ice-dammed lakes and outburst floods, Karakoram
Himalaya: historical perspectives on emerging threats, Phys. Geogr., 31,
528–551, https://doi.org/10.2747/0272-3646.31.6.528, 2010.
Hofflinger, A., Somos-Valenzuela, M. A., and Vallejos-Romero, A.: Response
time to flood events using a social vulnerability index (ReTSVI), Nat.
Hazards Earth Syst. Sci., 19, 251–267, https://doi.org/10.5194/nhess-19-251-2019, 2019.
Horizons: Horizons South America S. A. C.: Informe Técnico del Proyecto,
Consultoría Para El Levantamiento Fotogramétrico Detallado De La
Sub Cuenca Del Río Quillcay Y La Ciudad De Huaráz Para El Proyecto,
Implementación de Medidas de Adaptación al Cambio Climático y
Gestión de Riesgos en la Subcuenca Quillcay (IMACC-QUILLCAY) –
BID-MINAM (PE-T1168), Ministerio Del Ambiente A Travel Del Fonam –
Administrador De Los Recursos Del BID, Lima, Peru, 2013.
Hubbard, B., Heald, A., Reynolds, J. M., Quincey, D., Richardson, S. D., Luyo, M. Z., Portilla, N. S., and Hambrey, M. J.: Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca,
Peru, Earth Surf. Proc. Land., 30, 1251–1264, https://doi.org/10.1002/esp.1198, 2005.
Huggel, C., Kääb, A., Haeberli, W., and Krummenacher, B.: Regional-scale GIS-models for assessment of hazards from glacier lake
outbursts: evaluation and application in the Swiss Alps, Nat. Hazards Earth
Syst. Sci., 3, 647–662, https://doi.org/10.5194/nhess-3-647-2003, 2003.
Iturrizaga, L.: Glacial and glacially conditioned lake types in the Cordillera Blanca, Peru: A spatiotemporal conceptual approach, Prog. Phys. Geogr., 38, 602–636, https://doi.org/10.1177/0309133314546344, 2014.
Iverson, R. M.: The physics of debris flows, Rev. Geophys., 35, 245–296,
https://doi.org/10.1029/97RG00426, 1997.
Kafle, J., Pokhrel, P. R., Khattri, K. B., Kattel, P., Tuladhar, B. M., and
Pudasaini, S. P.: Landslide-generated tsunami and particle transport in
mountain lakes and reservoirs, Ann. Glaciol., 57, 232–244,
https://doi.org/10.3189/2016AoG71A034, 2016.
Kafle, J., Kattel, P., Mergili, M., Fischer, J.-T., and Pudasaini, S. P.:
Dynamic response of submarine obstacles to two-phase landslide and tsunami
impact on reservoirs, Acta Mech., 230, 3143–3169, https://doi.org/10.1007/s00707-019-02457-0, 2019.
Kaser, G. and Georges, C.: A potential disaster in the Icy Andes: a regrettable blunder, technical report, University of Innsbruck, Austria, 2003.
Kattel. P, Khattri, K. B., Pokhrel, P. R., Kafle, J., Tuladhar, B. M., and
Pudasaini, S. P.: Simu-lating glacial lake outburst floods with a two-phase
mass flow model, Ann. Glaciol., 57, 349–358, https://doi.org/10.3189/2016AoG71A039, 2016.
Kinzl, H. and Schneider, E.: Cordillera Blanca (Perú), Universitäts-Verlag Wagner, Innsbruck, Austria, 1950.
Klimeš, J., Novotný, J., Novotná, I., de Urries, B. J., Vilímek, V., Emmer, A., Strozzi, T., Kusák, M., Cochachin, A., Hartvich, F., and Frey, H.: Landslides in moraines as triggers of glacial lake outburst floods: example from Palcacocha Lake (Cordillera Blanca, Peru), Landslides, 13, 1461–1477, https://doi.org/10.1007/s10346-016-0724-4, 2016.
McDougall, S. and Hungr, O.: A Model for the Analysis of Rapid Landslide Motion across Three-Dimensional Terrain, Can. Geotech. J., 41, 1084–1097,
https://doi.org/10.1139/t04-052, 2004.
Mergili, M. and Pudasaini, S. P.: r.avaflow – The open source mass flow
simulation model, available at: https://www.avaflow.org/, last access: 9 July 2019.
Mergili, M. and Schneider, J. F.: Regional-scale analysis of lake outburst
hazards in the southwestern Pamir, Tajikistan, based on remote sensing and
GIS, Nat. Hazards Earth Syst. Sci., 11, 1447–1462, https://doi.org/10.5194/nhess-11-1447-2011, 2011.
Mergili, M., Schneider, D., Worni, R., and Schneider, J. F.: Glacial Lake
Outburst Floods (GLOFs): challenges in prediction and modelling, in:
Italian Journal of Engineering Geology and Environment – Book, edited by: Genevois, R., Hamilton, D. L., and Prestininzi, A., Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, 14–17 June 2011, Padova, 973–982, 2011.
Mergili, M., Müller, J. P., and Schneider, J. F.: Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya river
(Central Asia), Global Planet. Change, 107, 13–24,
https://doi.org/10.1016/j.gloplacha.2013.04.001, 2013.
Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow v1,
an advanced open source computational framework for the propagation and
interaction of two-phase mass flows, Geosci. Model Dev., 10, 553–569,
https://doi.org/10.5194/gmd-10-553-2017, 2017.
Mergili, M., Emmer, A., Juřicová, A., Cochachin, A., Fischer, J.-T.,
Huggel, C., and Pudasaini, S. P.: How well can we simulate complex hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the
Santa Cruz Valley (Cordillera Blanca, Perú), Earth Surf. Proc. Land., 43, 1373–1389, https://doi.org/10.1002/esp.4318, 2018a.
Mergili, M., Frank, B., Fischer, J.-T., Huggel, C., and Pudasaini, S. P.:
Computational experiments on the 1962 and 1970 landslide events at Huascarán (Peru) with r.avaflow: Lessons learned for predictive mass
flow simulations, Geomorphology, 322, 15–28, https://doi.org/10.1016/j.geomorph.2018.08.032, 2018b.
Mergili, M., Jaboyedoff, M., Pullarello, J., and Pudasaini, S. P.: Back-calculation of the 2017 Piz Cengalo-Bondo landslide cascade with r.avaflow, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-204, in review, 2019.
Nessyahu, H. and Tadmor, E.: Non-oscillatory central differencing for
hyperbolic conservation laws, J. Comput. Phys., 87, 408–463,
https://doi.org/10.1016/0021-9991(90)90260-8, 1990.
Ojeda, N.: Consolidacion laguna Palcacocha, ELECTROPERU S. A., Unidad de
glaciologia y seguridad de lagunas, Huaráz, Peru, 1974.
Oppenheim, V.: Sobre las Lagunas de Huaráz, Boletin de la Sociedad
Geologica del Peru, 19, 68–80, 1946.
Pitman, E. B. and Le, L.: A two-fluid model for avalanche and debris flows,
Philos. T. Roy. Soc. A, 363, 1573–1601, https://doi.org/10.1098/rsta.2005.1596, 2005.
Portocarrero, C.: Seminaro desastres naturales – geologia, causes, efectos
y prevenciones, ELECTROPERU S. A., Unidad de glaciologia y seguridad de
lagunas, Huaráz, Peru, 1984.
Portocarrero, C.: The Glacial Lake Handbook: Reducing Risk from Dangerous
Glacial Lakes in the Cordillera Blanca, Peru, Technical Report, United
States Agency for International Development, Global Climate Change Office,
Climate Change Resilient Development Project, Washington, D.C., 2014.
Pudasaini, S. P.: A general two-phase debris flow model, J. Geophys. Res.-Earth, 117, F03010, https://doi.org/10.1029/2011JF002186, 2012.
Pudasaini, S. P.: A full description of generalized drag in mixture mass
flows, Eng. Geol., 105429, https://doi.org/10.1016/j.enggeo.2019.105429, 2019a.
Pudasaini, S. P.: A fully analytical model for virtual mass force in mixture
flows, Int. J. Multiph. Flow, 113, 142–152, https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.005, 2019b.
Pudasaini, S. P. and Hutter, K.: Avalanche Dynamics: Dynamics of rapid flows of dense granular avalanches, Springer, Berlin, Heidelberg, 2007.
Pudasaini, S. P. and Krautblatter, M.: A two-phase mechanical model for
rock-ice avalanches, J. Geophys. Res.-Earth, 119, 2272–2290, https://doi.org/10.1002/2014JF003183, 2014.
Pudasaini, S. P. and Fischer, J.-T.: A mechanical model for phase-separation in debris flow, available at: https://arxiv.org/pdf/1610.03649.pdf (last access: 3 January 2020), 2016a.
Pudasaini, S. P. and Fischer, J.-T.: A mechanical erosion model for two-phase mass flows, available at: https://arxiv.org/pdf/1610.01806.pdf (last access: 3 January 2020), 2016b.
Pudasaini, S. P. and Mergili, M.: A Multi-Phase Mass Flow Model, J. Geophys.
Res.-Earth, https://doi.org/10.1029/2019JF005204, 2019.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.r-project.org/, last access: 4 February 2019.
Reynolds, J. M.: Managing the risks of glacial flooding at hydro plants,
Hydro Rev. Worldwide, 6, 18–22, 1998.
Reynolds, J. M., Dolecki, A., and Portocarrero, C.: The construction of a
drainage tunnel as part of glacial lake hazard mitigation at Hualcán,
Cordillera Blanca, Peru, in: Geohazards in engineering geology, edited by: Maund, J. and Eddleston, M., Geological Society Engineering Group Special
Publication, 15, 41–48, 1998.
Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas, Quatern. Int., 65/66, 31–47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Rivas, D. S., Somos-Valenzuela, M. A., Hodges, B. R., and McKinney, D. C.:
Predicting outflow induced by moraine failure in glacial lakes: the Lake
Palcacocha case from an uncertainty perspective, Nat. Hazards Earth Syst.
Sci., 15, 1163–1179, https://doi.org/10.5194/nhess-15-1163-2015, 2015.
Sattar, A., Goswami, A., and Kulkarni, A. V.: Application of 1D and 2D
hydrodynamic modeling to study glacial lake outburst flood (GLOF) and its
impact on a hydropower station in Central Himalaya, Nat. Hazards, 97, 535–553, https://doi.org/10.1007/s11069-019-03657-6, 2019a.
Sattar, A., Goswami, A., and Kulkarni, A. V.: Hydrodynamic moraine-breach
modeling and outburst flood routing – A hazard assessment of the South Lhonak lake, Sikkim, Sci. Total Environ., 668, 362–378,
https://doi.org/10.1016/j.scitotenv.2019.02.388, 2019b.
Savage, S. B. and Hutter, K.: The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177–215,
https://doi.org/10.1017/S0022112089000340, 1989.
Schaub, Y., Huggel, C., and Cochachin, A.: Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513,
Peru, Landslides, 13, 1445–1459, https://doi.org/10.1007/s10346-015-0658-2, 2016.
Schneider, D., Huggel, C., Cochachin, A., Guillén, S., and García, J.: Mapping hazards from glacier lake outburst floods based on modelling of
process cascades at Lake 513, Carhuaz, Peru, Adv. Geosci., 35, 145–155,
https://doi.org/10.5194/adgeo-35-145-2014, 2014.
Somos-Valenzuela, M. A., Chisolm, R. E., Rivas, D. S., Portocarrero, C., and
McKinney, D. C.: Modeling a glacial lake outburst flood process chain: the
case of Lake Palcacocha and Huaráz, Peru, Hydrol. Earth Syst. Sci., 20,
2519–2543, https://doi.org/10.5194/hess-20-2519-2016, 2016.
Tai, Y. C., Noelle, S., Gray, J. M. N. T., and Hutter, K.: Shock-capturing
and front-tracking methods for granular avalanches, J. Comput. Phys., 175, 269–301, https://doi.org/10.1006/jcph.2001.6946, 2002.
Takahashi, T., Nakagawa, H., Harada, T., and Yamashiki, Y.: Routing debris
flows with particle segregation, J. Hydraul. Res., 118, 1490–1507,
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:11(1490), 1992.
Turzewski, M. D., Huntington, K. W., and LeVeque, R. J.: The geomorphic impact of outburst floods: Integrating observations and numerical simulations of the 2000 Yigong flood, eastern Himalaya, J. Geophys. Res.-Earth, 124, 1056–1079, https://doi.org/10.1029/2018JF004778, 2019.
Vilímek, V., Zapata, M. L., Klimeš, J., Patzelt, Z., and Santillán, N.: Influence of glacial retreat on natural hazards of the
Palcacocha Lake area, Peru, Landslides, 2, 107–115, https://doi.org/10.1007/s10346-005-0052-6, 2005.
Voellmy, A.: Über die Zerstörungskraft von Lawinen, Schweizerische
Bauzeitung, 73, 212–217, 1955.
Walder, J. S. and O'Connor, J. E.: Methods for predicting peak discharge of
floods caused by failure of natural and constructed earthen dams, Water Resour. Res., 33, 2337–2348, https://doi.org/10.1029/97WR01616, 1997.
Wang, Y., Hutter, K., and Pudasaini, S. P.: The Savage-Hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud, ZAMM – J. Appl. Math. Mech., 84, 507–527, https://doi.org/10.1002/zamm.200310123, 2004.
Wegner, S. A.: Lo Que el Agua se Llevó: Consecuencias y Lecciones del
Aluvión de Huaráz de 1941, Technical Note 7 of the series “Technical Notes on Climate Change”, Ministry of Environment, Lima, Peru, 2014.
Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D.
J., and Reynolds, J. M.: Modelling outburst floods from moraine-dammed glacial lakes, Earth-Sci. Rev., 134, 137–159, https://doi.org/10.1016/j.earscirev.2014.03.009, 2014.
Worni, R., Huggel, C., Clague, J. J., Schaub, Y., and Stoffel, M.: Coupling
glacial lake impact, dam breach, and flood processes: A modeling perspective, Geomorphology, 224, 161–176, https://doi.org/10.1016/j.geomorph.2014.06.031, 2014.
Zapata, M. L.: Lagunas con obras de seguridad en la Cordillera Blanca, INGEOMIN, glaciologia y seguridad de lagunas, Huaráz, Peru, 1978.
Zapata, M. L., Gómez, R. J. L., Santillán, N. P., Espinoza, H. V.,
and Huamaní, A. H.: Evaluacion del estado de los glaciares en la cabecera de la laguna Palcacocha, Informe tecnico, INRENA, INGEMMET, Huaráz, Peru, 2003.
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly....