Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-717-2020
https://doi.org/10.5194/hess-24-717-2020
Research article
 | Highlight paper
 | 
17 Feb 2020
Research article | Highlight paper |  | 17 Feb 2020

Surface water as a cause of land degradation from dryland salinity

J. Nikolaus Callow, Matthew R. Hipsey, and Ryan I. J. Vogwill

Related authors

Quantifying the impact of synoptic weather types and patterns on energy fluxes of a marginal snowpack
Andrew J. Schwartz, Hamish A. McGowan, Alison Theobald, and Nik Callow
The Cryosphere, 14, 2755–2774, https://doi.org/10.5194/tc-14-2755-2020,https://doi.org/10.5194/tc-14-2755-2020, 2020
Short summary
Quantifying the impact of synoptic weather types, patterns, and trends on energy fluxes of a marginal snowpack
Andrew Schwartz, Hamish McGowan, Alison Theobald, and Nik Callow
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-48,https://doi.org/10.5194/tc-2019-48, 2019
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Hydrodynamics of a high Alpine catchment characterized by four natural tracers
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023,https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Seasonal variation and release of soluble reactive phosphorus in an agricultural upland headwater in central Germany
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023,https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Improving the understanding of N transport in a rural catchment under Atlantic climate conditions from the analysis of the concentration–discharge relationship derived from a high-frequency data set
María Luz Rodríguez-Blanco, María Teresa Taboada-Castro, and María Mercedes Taboada-Castro
Hydrol. Earth Syst. Sci., 27, 1243–1259, https://doi.org/10.5194/hess-27-1243-2023,https://doi.org/10.5194/hess-27-1243-2023, 2023
Short summary
Sources and mean transit times of stream water in an intermittent river system: the upper Wimmera River, southeast Australia
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022,https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Bedrock depth influences spatial patterns of summer baseflow, temperature and flow disconnection for mountainous headwater streams
Martin A. Briggs, Phillip Goodling, Zachary C. Johnson, Karli M. Rogers, Nathaniel P. Hitt, Jennifer B. Fair, and Craig D. Snyder
Hydrol. Earth Syst. Sci., 26, 3989–4011, https://doi.org/10.5194/hess-26-3989-2022,https://doi.org/10.5194/hess-26-3989-2022, 2022
Short summary

Cited articles

Abrisqueta, J. M., Plana, V., Mounzer, O. H., Mendez, J., and Ruiz-Sanchez, M. C.: Effects of soil tillage on runoff generation in a Mediterranean apricot orchard, Agr. Water Manage., 93, 11-18, https://doi.org/10.1016/j.agwat.2007.06.002, 2007. 
Ali, R., Hatton, T., George, R., Byrne, J., and Hodgson, G.: Evaluation of the impacts of deep open drains on groundwater levels in the wheatbelt of Western Australia, Aust. J. Agricult. Res., 55, 1159–1171, https://doi.org/10.1071/ar04068, 2004. 
Bann, G. R. and Field, J. B.: Dryland salinity in south east Australia: A localised surface water and soil degradation process?, Regolith 2006 – Consolidation and Dispersion of Ideas, CRC LEME, Hahndorf, South Australia, 9–13, 2006a. 
Bann, G. R. and Field, J. B.: Dryland salinity in south east Australia: Which scenario makes more sense?, AESC2006, Melbourne, Australia, 2006b. 
Barrett-Lennard, A.: Surface water ponding on low lying valley floors in south-western Australia: interactions with groundwater and its role in secondary dryland salinity, BEng Hons, School of Environmental Systems Engineering, The University of Western Australia, Perth, Western Australia, 2009. 
Download
Short summary
Secondary dryland salinity is a global land degradation issue. Our understanding of causal processes is adapted from wet and hydrologically connected landscapes and concludes that low end-of-catchment runoff indicates land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface causing salinity. This study shows surface flows play an important role in causing valley floor recharge and dryland salinity in low-gradient landscapes.