Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-717-2020
https://doi.org/10.5194/hess-24-717-2020
Research article
 | Highlight paper
 | 
17 Feb 2020
Research article | Highlight paper |  | 17 Feb 2020

Surface water as a cause of land degradation from dryland salinity

J. Nikolaus Callow, Matthew R. Hipsey, and Ryan I. J. Vogwill

Related authors

Quantifying the impact of synoptic weather types and patterns on energy fluxes of a marginal snowpack
Andrew J. Schwartz, Hamish A. McGowan, Alison Theobald, and Nik Callow
The Cryosphere, 14, 2755–2774, https://doi.org/10.5194/tc-14-2755-2020,https://doi.org/10.5194/tc-14-2755-2020, 2020
Short summary
Quantifying the impact of synoptic weather types, patterns, and trends on energy fluxes of a marginal snowpack
Andrew Schwartz, Hamish McGowan, Alison Theobald, and Nik Callow
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-48,https://doi.org/10.5194/tc-2019-48, 2019
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Exploring the provenance of information across Canadian hydrometric stations: implications for discharge estimation and uncertainty quantification
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024,https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Using high-frequency solute synchronies to determine simple two-end-member mixing in catchments during storm events
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
Hydrol. Earth Syst. Sci., 28, 4309–4329, https://doi.org/10.5194/hess-28-4309-2024,https://doi.org/10.5194/hess-28-4309-2024, 2024
Short summary
Thermal regime of High Arctic tundra ponds, Nanuit Itillinga (Polar Bear Pass), Nunavut, Canada
Kathy L. Young and Laura C. Brown
Hydrol. Earth Syst. Sci., 28, 3931–3945, https://doi.org/10.5194/hess-28-3931-2024,https://doi.org/10.5194/hess-28-3931-2024, 2024
Short summary
Constructing a geography of heavy-tailed flood distributions: insights from common streamflow dynamics
Hsing-Jui Wang, Ralf Merz, and Stefano Basso
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-159,https://doi.org/10.5194/hess-2024-159, 2024
Revised manuscript accepted for HESS
Short summary
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024,https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary

Cited articles

Abrisqueta, J. M., Plana, V., Mounzer, O. H., Mendez, J., and Ruiz-Sanchez, M. C.: Effects of soil tillage on runoff generation in a Mediterranean apricot orchard, Agr. Water Manage., 93, 11-18, https://doi.org/10.1016/j.agwat.2007.06.002, 2007. 
Ali, R., Hatton, T., George, R., Byrne, J., and Hodgson, G.: Evaluation of the impacts of deep open drains on groundwater levels in the wheatbelt of Western Australia, Aust. J. Agricult. Res., 55, 1159–1171, https://doi.org/10.1071/ar04068, 2004. 
Bann, G. R. and Field, J. B.: Dryland salinity in south east Australia: A localised surface water and soil degradation process?, Regolith 2006 – Consolidation and Dispersion of Ideas, CRC LEME, Hahndorf, South Australia, 9–13, 2006a. 
Bann, G. R. and Field, J. B.: Dryland salinity in south east Australia: Which scenario makes more sense?, AESC2006, Melbourne, Australia, 2006b. 
Barrett-Lennard, A.: Surface water ponding on low lying valley floors in south-western Australia: interactions with groundwater and its role in secondary dryland salinity, BEng Hons, School of Environmental Systems Engineering, The University of Western Australia, Perth, Western Australia, 2009. 
Download
Short summary
Secondary dryland salinity is a global land degradation issue. Our understanding of causal processes is adapted from wet and hydrologically connected landscapes and concludes that low end-of-catchment runoff indicates land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface causing salinity. This study shows surface flows play an important role in causing valley floor recharge and dryland salinity in low-gradient landscapes.