Articles | Volume 24, issue 2
Hydrol. Earth Syst. Sci., 24, 717–734, 2020
https://doi.org/10.5194/hess-24-717-2020
Hydrol. Earth Syst. Sci., 24, 717–734, 2020
https://doi.org/10.5194/hess-24-717-2020

Research article 17 Feb 2020

Research article | 17 Feb 2020

Surface water as a cause of land degradation from dryland salinity

J. Nikolaus Callow et al.

Related authors

Quantifying the impact of synoptic weather types and patterns on energy fluxes of a marginal snowpack
Andrew J. Schwartz, Hamish A. McGowan, Alison Theobald, and Nik Callow
The Cryosphere, 14, 2755–2774, https://doi.org/10.5194/tc-14-2755-2020,https://doi.org/10.5194/tc-14-2755-2020, 2020
Short summary
Quantifying the impact of synoptic weather types, patterns, and trends on energy fluxes of a marginal snowpack
Andrew Schwartz, Hamish McGowan, Alison Theobald, and Nik Callow
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-48,https://doi.org/10.5194/tc-2019-48, 2019
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Hydrologic regimes drive nitrate export behavior in human-impacted watersheds
Galen Gorski and Margaret A. Zimmer
Hydrol. Earth Syst. Sci., 25, 1333–1345, https://doi.org/10.5194/hess-25-1333-2021,https://doi.org/10.5194/hess-25-1333-2021, 2021
Short summary
Intensive landscape-scale remediation improves water quality of an alluvial gully located in a Great Barrier Reef catchment
Nicholas J. C. Doriean, William W. Bennett, John R. Spencer, Alexandra Garzon-Garcia, Joanne M. Burton, Peter R. Teasdale, David T. Welsh, and Andrew P. Brooks
Hydrol. Earth Syst. Sci., 25, 867–883, https://doi.org/10.5194/hess-25-867-2021,https://doi.org/10.5194/hess-25-867-2021, 2021
Short summary
Environmental DNA simultaneously informs hydrological and biodiversity characterization of an Alpine catchment
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021,https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Technical note: Evaluation of a low-cost evaporation protection method for portable water samplers
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020,https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
New flood frequency estimates for the largest river in Norway based on the combination of short and long time series
Kolbjørn Engeland, Anna Aano, Ida Steffensen, Eivind Støren, and Øyvind Paasche
Hydrol. Earth Syst. Sci., 24, 5595–5619, https://doi.org/10.5194/hess-24-5595-2020,https://doi.org/10.5194/hess-24-5595-2020, 2020
Short summary

Cited articles

Abrisqueta, J. M., Plana, V., Mounzer, O. H., Mendez, J., and Ruiz-Sanchez, M. C.: Effects of soil tillage on runoff generation in a Mediterranean apricot orchard, Agr. Water Manage., 93, 11-18, https://doi.org/10.1016/j.agwat.2007.06.002, 2007. 
Ali, R., Hatton, T., George, R., Byrne, J., and Hodgson, G.: Evaluation of the impacts of deep open drains on groundwater levels in the wheatbelt of Western Australia, Aust. J. Agricult. Res., 55, 1159–1171, https://doi.org/10.1071/ar04068, 2004. 
Bann, G. R. and Field, J. B.: Dryland salinity in south east Australia: A localised surface water and soil degradation process?, Regolith 2006 – Consolidation and Dispersion of Ideas, CRC LEME, Hahndorf, South Australia, 9–13, 2006a. 
Bann, G. R. and Field, J. B.: Dryland salinity in south east Australia: Which scenario makes more sense?, AESC2006, Melbourne, Australia, 2006b. 
Barrett-Lennard, A.: Surface water ponding on low lying valley floors in south-western Australia: interactions with groundwater and its role in secondary dryland salinity, BEng Hons, School of Environmental Systems Engineering, The University of Western Australia, Perth, Western Australia, 2009. 
Download
Short summary
Secondary dryland salinity is a global land degradation issue. Our understanding of causal processes is adapted from wet and hydrologically connected landscapes and concludes that low end-of-catchment runoff indicates land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface causing salinity. This study shows surface flows play an important role in causing valley floor recharge and dryland salinity in low-gradient landscapes.