Articles | Volume 24, issue 2
https://doi.org/10.5194/hess-24-717-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-717-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface water as a cause of land degradation from dryland salinity
UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia
Department of Geography, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia
Matthew R. Hipsey
UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, 6009, Australia
Ryan I. J. Vogwill
Hydro Geo Enviro Pty Ltd, Carine, Western Australia, 6020, Australia
Related authors
Andrew J. Schwartz, Hamish A. McGowan, Alison Theobald, and Nik Callow
The Cryosphere, 14, 2755–2774, https://doi.org/10.5194/tc-14-2755-2020, https://doi.org/10.5194/tc-14-2755-2020, 2020
Short summary
Short summary
This study measured energy available for snowmelt during the 2016 and 2017 snow seasons in Kosciuszko National Park, NSW, Australia, and identified common traits for days with similar weather characteristics. The analysis showed that energy available for snowmelt was highest in the days before cold fronts passed through the region due to higher air temperatures. Regardless of differences in daily weather characteristics, solar radiation contributed the highest amount of energy to snowpack melt.
Andrew Schwartz, Hamish McGowan, Alison Theobald, and Nik Callow
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-48, https://doi.org/10.5194/tc-2019-48, 2019
Manuscript not accepted for further review
Short summary
Short summary
Understanding the relationship between weather and snowmelt is increasingly important as snowpacks undergo reductions due to climate change. Impacts of weather patterns on snowmelt in Australia's Snowy Mountains were identified through the use of weather pattern data and in-situ energy measurements. We found that maximum snowmelt occurs prior to the passage of cold fronts, teleconnections have an impact on snowmelt, and energy available for snowmelt has decreased slightly in the last 39 years.
Peisheng Huang, Karl Hennig, Jatin Kala, Julia Andrys, and Matthew R. Hipsey
Hydrol. Earth Syst. Sci., 24, 5673–5697, https://doi.org/10.5194/hess-24-5673-2020, https://doi.org/10.5194/hess-24-5673-2020, 2020
Short summary
Short summary
Our results conclude that the climate change in the past decades has a remarkable effect on the hydrology of a large shallow lagoon with the same magnitude as that caused by the opening of an artificial channel, and it also highlighted the complexity of their interactions. We suggested that the consideration of the projected drying trend is essential in designing management plans associated with planning for environmental water provision and setting water quality loading targets.
Benya Wang, Matthew R. Hipsey, and Carolyn Oldham
Geosci. Model Dev., 13, 4253–4270, https://doi.org/10.5194/gmd-13-4253-2020, https://doi.org/10.5194/gmd-13-4253-2020, 2020
Short summary
Short summary
Surface water nutrients are essential to manage water quality, but it is hard to analyse trends. We developed a hybrid model and compared with other models for the prediction of six different nutrients. Our results showed that the hybrid model had significantly higher accuracy and lower prediction uncertainty for almost all nutrient species. The hybrid model provides a flexible method to combine data of varied resolution and quality and is accurate for the prediction of nutrient concentrations.
Andrew J. Schwartz, Hamish A. McGowan, Alison Theobald, and Nik Callow
The Cryosphere, 14, 2755–2774, https://doi.org/10.5194/tc-14-2755-2020, https://doi.org/10.5194/tc-14-2755-2020, 2020
Short summary
Short summary
This study measured energy available for snowmelt during the 2016 and 2017 snow seasons in Kosciuszko National Park, NSW, Australia, and identified common traits for days with similar weather characteristics. The analysis showed that energy available for snowmelt was highest in the days before cold fronts passed through the region due to higher air temperatures. Regardless of differences in daily weather characteristics, solar radiation contributed the highest amount of energy to snowpack melt.
Andrew Schwartz, Hamish McGowan, Alison Theobald, and Nik Callow
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-48, https://doi.org/10.5194/tc-2019-48, 2019
Manuscript not accepted for further review
Short summary
Short summary
Understanding the relationship between weather and snowmelt is increasingly important as snowpacks undergo reductions due to climate change. Impacts of weather patterns on snowmelt in Australia's Snowy Mountains were identified through the use of weather pattern data and in-situ energy measurements. We found that maximum snowmelt occurs prior to the passage of cold fronts, teleconnections have an impact on snowmelt, and energy available for snowmelt has decreased slightly in the last 39 years.
Matthew R. Hipsey, Louise C. Bruce, Casper Boon, Brendan Busch, Cayelan C. Carey, David P. Hamilton, Paul C. Hanson, Jordan S. Read, Eduardo de Sousa, Michael Weber, and Luke A. Winslow
Geosci. Model Dev., 12, 473–523, https://doi.org/10.5194/gmd-12-473-2019, https://doi.org/10.5194/gmd-12-473-2019, 2019
Short summary
Short summary
The General Lake Model (GLM) has been developed to undertake simulation of a diverse range of wetlands, lakes, and reservoirs. The model supports the science needs of the Global Lake Ecological Observatory Network (GLEON), a network of lake sensors and researchers attempting to understand lake functioning and address questions about how lakes around the world vary in response to climate and land use change. The paper describes the science basis and application of the model.
Amar V. V. Nanda, Leah Beesley, Luca Locatelli, Berry Gersonius, Matthew R. Hipsey, and Anas Ghadouani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-307, https://doi.org/10.5194/hess-2017-307, 2017
Revised manuscript not accepted
Short summary
Short summary
When anthropological effects result in changes to wetland hydrology; this often leads to a decline in their ecological integrity. We present a policy oriented approach that assesses the suitability of management when rigorous ecological data are lacking. We link ecological objectives from management authorities to threshold values for water depth defined in policy. Results show insufficient water levels for key ecological objectives and we conclude that current policy is ineffective.
Y. Elshafei, M. Sivapalan, M. Tonts, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 2141–2166, https://doi.org/10.5194/hess-18-2141-2014, https://doi.org/10.5194/hess-18-2141-2014, 2014
Y. Li, G. Gal, V. Makler-Pick, A. M. Waite, L. C. Bruce, and M. R. Hipsey
Biogeosciences, 11, 2939–2960, https://doi.org/10.5194/bg-11-2939-2014, https://doi.org/10.5194/bg-11-2939-2014, 2014
L. C. Bruce, P. L. M. Cook, I. Teakle, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 1397–1411, https://doi.org/10.5194/hess-18-1397-2014, https://doi.org/10.5194/hess-18-1397-2014, 2014
S. E. Thompson, M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed, A. Montanari, and G. Blöschl
Hydrol. Earth Syst. Sci., 17, 5013–5039, https://doi.org/10.5194/hess-17-5013-2013, https://doi.org/10.5194/hess-17-5013-2013, 2013
A. L. Ruibal-Conti, R. Summers, D. Weaver, and M. R. Hipsey
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-11035-2013, https://doi.org/10.5194/hessd-10-11035-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Exploring the provenance of information across Canadian hydrometric stations: implications for discharge estimation and uncertainty quantification
Using high-frequency solute synchronies to determine simple two-end-member mixing in catchments during storm events
Thermal regime of High Arctic tundra ponds, Nanuit Itillinga (Polar Bear Pass), Nunavut, Canada
Constructing a geography of heavy-tailed flood distributions: insights from common streamflow dynamics
Impacts of hydrofacies geometry designed from seismic refraction tomography on estimated hydrogeophysical variables
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change
Seasonal variation and influence factors of river water isotopes in the East Asian monsoon region: a case study in the Xiangjiang River basin spanning 13 hydrological years
El Niño–Southern Oscillation (ENSO)-driven hypersedimentation in the Poechos Reservoir, northern Peru
Isotope-derived young water fractions in streamflow across the tropical Andes mountains and Amazon floodplain
Adaptively monitoring streamflow using a stereo computer vision system
Technical Note: Combining undisturbed soil monoliths for hydrological indoor experiments
Hydrodynamics of a high Alpine catchment characterized by four natural tracers
Seasonal variation and release of soluble reactive phosphorus in an agricultural upland headwater in central Germany
Improving the understanding of N transport in a rural catchment under Atlantic climate conditions from the analysis of the concentration–discharge relationship derived from a high-frequency data set
Sources and mean transit times of stream water in an intermittent river system: the upper Wimmera River, southeast Australia
Bedrock depth influences spatial patterns of summer baseflow, temperature and flow disconnection for mountainous headwater streams
Agricultural intensification vs. climate change: what drives long-term changes in sediment load?
Evaporation from a large lowland reservoir – observed dynamics and drivers during a warm summer
Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021)
Use of water isotopes and chemistry to infer the type and degree of exchange between groundwater and lakes in an esker complex of northeastern Ontario, Canada
Technical note: Introduction of a superconducting gravimeter as novel hydrological sensor for the Alpine research catchment Zugspitze
CABra: a novel large-sample dataset for Brazilian catchments
Benefits from high-density rain gauge observations for hydrological response analysis in a small alpine catchment
Hydrologic regimes drive nitrate export behavior in human-impacted watersheds
Intensive landscape-scale remediation improves water quality of an alluvial gully located in a Great Barrier Reef catchment
Environmental DNA simultaneously informs hydrological and biodiversity characterization of an Alpine catchment
Technical note: Evaluation of a low-cost evaporation protection method for portable water samplers
New flood frequency estimates for the largest river in Norway based on the combination of short and long time series
The pulse of a montane ecosystem: coupling between daily cycles in solar flux, snowmelt, transpiration, groundwater, and streamflow at Sagehen Creek and Independence Creek, Sierra Nevada, USA
Technical note: A time-integrated sediment trap to sample diatoms for hydrological tracing
Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?
Soil moisture sensor network design for hydrological applications
Catchment-scale drought: capturing the whole drought cycle using multiple indicators
Field-based estimation and modelling of distributed groundwater recharge in a Mediterranean karst catchment, Wadi Natuf, West Bank
Technical note: A microcontroller-based automatic rain sampler for stable isotope studies
Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment
Open-source Arduino-compatible data loggers designed for field research
Water-use dynamics of an alien-invaded riparian forest within the summer rainfall zone of South Africa
Technical note: Mapping surface-saturation dynamics with thermal infrared imagery
Value of uncertain streamflow observations for hydrological modelling
Why has catchment evaporation increased in the past 40 years? A data-based study in Austria
Technical note: GUARD – an automated fluid sampler preventing sample alteration by contamination, evaporation and gas exchange, suitable for remote areas and harsh conditions
Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China
Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a modelling study based on the 2013 flood event in the Bacchiglione catchment (Italy)
Comment on “Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?” by Mazzoleni et al. (2017)
Multiconfiguration electromagnetic induction survey for paleochannel internal structure imaging: a case study in the alluvial plain of the River Seine, France
Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration
The potamochemical symphony: new progress in the high-frequency acquisition of stream chemical data
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024, https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada (WSC). The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover and sedimentation limit accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and the associated uncertainty.
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
Hydrol. Earth Syst. Sci., 28, 4309–4329, https://doi.org/10.5194/hess-28-4309-2024, https://doi.org/10.5194/hess-28-4309-2024, 2024
Short summary
Short summary
The proposed methodology consists of simultaneously analysing the concentration variation of solute pairs during a storm event by plotting the concentration variation of one solute against the variation of another solute. This can reveal whether two or more end-members contribute to streamflow during a storm event. Furthermore, the variation of the solute ratios during the events can indicate which catchment processes are dominant and which are negligible.
Kathy L. Young and Laura C. Brown
Hydrol. Earth Syst. Sci., 28, 3931–3945, https://doi.org/10.5194/hess-28-3931-2024, https://doi.org/10.5194/hess-28-3931-2024, 2024
Short summary
Short summary
This work details the temperature and related variables of several High Arctic ponds in the Nanuit Itillinga (Polar Bear Pass) National Wildlife Area through nine seasons. The ponds show much variability in their temperature patterns over time and space. Ponds normally reached 10–15 °C for parts of the summer except in 2013, a cold summer season in which pond temperatures never exceeded 5 °C. This study contributes to the ongoing discussion of climate warming and its impact on Arctic landscapes.
Hsing-Jui Wang, Ralf Merz, and Stefano Basso
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-159, https://doi.org/10.5194/hess-2024-159, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Extreme floods are more common than expected. Knowing where these floods are likely to occur is key for risk management. Traditional methods struggle with limited data, causing uncertainty. We use common streamflow dynamics to indicate extreme flood propensity. Analyzing data from Atlantic Europe, Northern Europe, and the U.S., we validate this novel approach and unravel intrinsic linkages between regional geographic patterns and extreme flood drivers.
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024, https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Short summary
Vertical maps of seismic velocity reflect variations of subsurface porosity. We use such images to design the geometry of subsurface compartments delimited by velocity thresholds. The obtained patterns are inserted into a hydrogeological model to test the influence of random geometries, velocity thresholds, and hydraulic parameters on data estimated from the model: the depth of the groundwater and magnetic resonance sounding is a geophysical method sensitive to subsurface water content.
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024, https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Short summary
We study the seasonal and spatial patterns of soil moisture in 0–500 cm soil using 89 monitoring sites in a loess catchment with monsoonal climate. Soil moisture is highest during the months of least precipitation and vice versa. Soil moisture patterns at the hillslope scale are dominated by the aspect-controlled evapotranspiration variations (a local control), not by the hillslope convergence-controlled downslope flow (a nonlocal control), under both dry and wet conditions.
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023, https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Short summary
In semi-arid regions, the problem of water shortages is becoming more and more serious with the acceleration of urbanization. Based on isotope data and hydrometeorological data, we analysed the impact of urbanization on the water cycle of the basin. The results showed that urbanization sped up the process of rainfall runoff. The MRT got shorter from upstream to downstream, and the landscape dams that were built during urbanization made the river evaporate even more.
Yu Zhang, Hongbing Tan, Peixin Cong, Dongping Shi, Wenbo Rao, and Xiying Zhang
Hydrol. Earth Syst. Sci., 27, 4019–4038, https://doi.org/10.5194/hess-27-4019-2023, https://doi.org/10.5194/hess-27-4019-2023, 2023
Short summary
Short summary
Rapid climate warming creates barriers for us to investigate water resource states. Using stable and radioactive isotopes, we identified the seasonality and spatiality of the water cycle in the northeastern Tibetan Plateau. Climate warming/humidification accelerates the water cycle in alpine arid basins. Precipitation and meltwater infiltrate along preferential flow paths to facilitate rapid groundwater recharge. Total water resources may show an initially increasing and then decreasing trend.
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhiguo Rao, Xinguang He, and Cicheng Zhang
Hydrol. Earth Syst. Sci., 27, 3783–3802, https://doi.org/10.5194/hess-27-3783-2023, https://doi.org/10.5194/hess-27-3783-2023, 2023
Short summary
Short summary
With the aim of improving the understanding of seasonal variations in water stable isotopes and catchment hydrological processes, we compared the temporal variations of precipitation and river water isotopes with the hydrometeorological factors in the Xiangjiang River over 13 years. Results showed that the changes in river water isotopes can be variables that reflect the seasonal variations in local environments and extreme events and may show implications for paleoclimate reconstruction.
Anthony Foucher, Sergio Morera, Michael Sanchez, Jhon Orrillo, and Olivier Evrard
Hydrol. Earth Syst. Sci., 27, 3191–3204, https://doi.org/10.5194/hess-27-3191-2023, https://doi.org/10.5194/hess-27-3191-2023, 2023
Short summary
Short summary
The current research investigated, as a representative study case, the sediment accumulated in the Poechos Reservoir (located on the west coast of northern Peru) for retrospectively reconstructing the impact on sediment dynamics (1978–2019) of extreme phases of the El Niño–Southern Oscillation, land cover changes after humid periods and agricultural expansion along the riverine system.
Emily I. Burt, Daxs Herson Coayla Rimachi, Adan Julian Ccahuana Quispe, Abra Atwood, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 2883–2898, https://doi.org/10.5194/hess-27-2883-2023, https://doi.org/10.5194/hess-27-2883-2023, 2023
Short summary
Short summary
Mountains store and release water, serving as water towers for downstream regions and affecting global sediment and carbon fluxes. We use stream and rain chemistry to calculate how much streamflow comes from recent rainfall across seven sites in the Andes mountains and the nearby Amazon lowlands. We find that the type of rock and the intensity of rainfall control water retention and release, challenging assumptions that mountain topography exerts the primary effect on watershed hydrology.
Nicholas Reece Hutley, Ryan Beecroft, Daniel Wagenaar, Josh Soutar, Blake Edwards, Nathaniel Deering, Alistair Grinham, and Simon Albert
Hydrol. Earth Syst. Sci., 27, 2051–2073, https://doi.org/10.5194/hess-27-2051-2023, https://doi.org/10.5194/hess-27-2051-2023, 2023
Short summary
Short summary
Measuring flows in streams allows us to manage crucial water resources. This work shows the automated application of a dual camera computer vision stream gauging (CVSG) system for measuring streams. Comparing between state-of-the-art technologies demonstrated that camera-based methods were capable of performing within the best available error margins. CVSG offers significant benefits towards improving stream data and providing a safe way for measuring floods while adapting to changes over time.
David Ramler and Peter Strauss
Hydrol. Earth Syst. Sci., 27, 1745–1754, https://doi.org/10.5194/hess-27-1745-2023, https://doi.org/10.5194/hess-27-1745-2023, 2023
Short summary
Short summary
Undisturbed soil monoliths combine advantages of outdoor and indoor experiments; however, there are often size limitations. A promising approach is the combination of smaller blocks to form a single large monolith. We compared the runoff properties of monoliths cut in half and recombined with uncut blocks. The effect of the combination procedure was negligible compared to the inherent soil heterogeneity, and we conclude that advantages outweigh possible adverse effects.
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Short summary
Streamflow generation processes in high-elevation catchments are largely influenced by snow accumulation and melt. For this work, we collected and analyzed more than 2800 water samples (temperature, electric conductivity, and stable isotopes of water) to characterize the hydrological processes in such a high Alpine environment. Our results underline the critical role of subsurface flow during all melt periods and the presence of snowmelt even during the winter periods.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
María Luz Rodríguez-Blanco, María Teresa Taboada-Castro, and María Mercedes Taboada-Castro
Hydrol. Earth Syst. Sci., 27, 1243–1259, https://doi.org/10.5194/hess-27-1243-2023, https://doi.org/10.5194/hess-27-1243-2023, 2023
Short summary
Short summary
We examine the N dynamics in an Atlantic headwater catchment in the NW Iberian Peninsula, using high-frequency measurements of NO3 and TKN (total Kjeldahl N) during runoff events. The divergence dynamics observed between N components exemplifies the complexity of and variability in NO3 and TKN processes, highlighting the need to understand dominant hydrological pathways for the development of N-specific management plans to ensure that control measures are most effective at the catchment scale.
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022, https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Short summary
Streams may receive water from different sources in their catchment. There is limited understanding of which water stores intermittent streams are connected to. Using geochemistry we show that the intermittent streams in southeast Australia are connected to younger smaller near-river water stores rather than regional groundwater. This makes these streams more vulnerable to the impacts of climate change and requires management of the riparian zone for their protection.
Martin A. Briggs, Phillip Goodling, Zachary C. Johnson, Karli M. Rogers, Nathaniel P. Hitt, Jennifer B. Fair, and Craig D. Snyder
Hydrol. Earth Syst. Sci., 26, 3989–4011, https://doi.org/10.5194/hess-26-3989-2022, https://doi.org/10.5194/hess-26-3989-2022, 2022
Short summary
Short summary
The geologic structure of mountain watersheds may control how groundwater and streamwater exchange, influencing where streams dry. We measured bedrock depth at 191 locations along eight headwater streams paired with stream temperature records, baseflow separation and observations of channel dewatering. The data indicated a prevalence of shallow bedrock generally less than 3 m depth, and local variation in that depth can drive stream dewatering but also influence stream baseflow supply.
Shengping Wang, Borbala Szeles, Carmen Krammer, Elmar Schmaltz, Kepeng Song, Yifan Li, Zhiqiang Zhang, Günter Blöschl, and Peter Strauss
Hydrol. Earth Syst. Sci., 26, 3021–3036, https://doi.org/10.5194/hess-26-3021-2022, https://doi.org/10.5194/hess-26-3021-2022, 2022
Short summary
Short summary
This study explored the quantitative contribution of agricultural intensification and climate change to the sediment load of a small agricultural watershed. Rather than a change in climatic conditions, changes in the land structure notably altered sediment concentrations under high-flow conditions, thereby contributing most to the increase in annual sediment loads. More consideration of land structure improvement is required when combating the transfer of soil from land to water.
Femke A. Jansen, Remko Uijlenhoet, Cor M. J. Jacobs, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 26, 2875–2898, https://doi.org/10.5194/hess-26-2875-2022, https://doi.org/10.5194/hess-26-2875-2022, 2022
Short summary
Short summary
We studied the controls on open water evaporation with a focus on Lake IJssel, the Netherlands, by analysing eddy covariance observations over two summer periods at two locations at the borders of the lake. Wind speed and the vertical vapour pressure gradient can explain most of the variation in observed evaporation, which is in agreement with Dalton's model. We argue that the distinct characteristics of inland waterbodies need to be taken into account when parameterizing their evaporation.
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021, https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Short summary
The combined use of deuterium and tritium to determine travel time distributions in streams is an important development in catchment hydrology (Rodriguez et al., 2021). This comment, however, argues that their results do not generally invalidate the truncation hypothesis of Stewart et al. (2010) (i.e. that stable isotopes underestimate travel times through catchments), as they imply, but asserts instead that the hypothesis still applies to many other catchments.
Maxime P. Boreux, Scott F. Lamoureux, and Brian F. Cumming
Hydrol. Earth Syst. Sci., 25, 6309–6332, https://doi.org/10.5194/hess-25-6309-2021, https://doi.org/10.5194/hess-25-6309-2021, 2021
Short summary
Short summary
The investigation of groundwater–lake-water interactions in highly permeable boreal terrain using several indicators showed that lowland lakes are embedded into the groundwater system and are thus relatively resilient to short-term hydroclimatic change, while upland lakes rely more on precipitation as their main water input, making them more sensitive to evaporative drawdown. This suggests that landscape position controls the vulnerability of lake-water levels to hydroclimatic change.
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021, https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
Short summary
A continuously operating superconducting gravimeter at the Zugspitze summit is introduced to support hydrological studies of the Partnach spring catchment known as the Zugspitze research catchment. The observed gravity residuals reflect total water storage variations at the observation site. Hydro-gravimetric analysis show a high correlation between gravity and the snow water equivalent, with a gravimetric footprint of up to 4 km radius enabling integral insights into this high alpine catchment.
André Almagro, Paulo Tarso S. Oliveira, Antônio Alves Meira Neto, Tirthankar Roy, and Peter Troch
Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021, https://doi.org/10.5194/hess-25-3105-2021, 2021
Short summary
Short summary
We have collected and synthesized catchment attributes from multiple sources into an extensive dataset, the Catchment Attributes for Brazil (CABra). CABra contains streamflow and climate daily series for 735 catchments in the 1980–2010 period, aside from dozens of attributes of topography, climate, streamflow, groundwater, soil, geology, land cover, and hydrologic disturbance. The CABra intends to pave the way for a better understanding of catchments' behavior in Brazil and the world.
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021, https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Short summary
Rainfall observation remains a challenge, particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall–runoff response of a 13.4 km2 alpine catchment is purely data based and relies on measurements from a network of 12 low-cost rain gauges over 3 months. It assesses the importance of high-density rainfall observations in informing hydrological processes and helps in designing a permanent rain gauge network.
Galen Gorski and Margaret A. Zimmer
Hydrol. Earth Syst. Sci., 25, 1333–1345, https://doi.org/10.5194/hess-25-1333-2021, https://doi.org/10.5194/hess-25-1333-2021, 2021
Short summary
Short summary
Understanding when, where, and how nitrate is exported from watersheds is the key to addressing the challenges that excess nutrients pose. We analyzed daily nitrate and streamflow data for five nested, agricultural watersheds that export high levels of nitrate over a 4-year time period. Nutrient export patterns varied seasonally during baseflow but were stationary during stormflow. Additionally, anthropogenic and geologic factors drove nutrient export during both baseflow and stormflow.
Nicholas J. C. Doriean, William W. Bennett, John R. Spencer, Alexandra Garzon-Garcia, Joanne M. Burton, Peter R. Teasdale, David T. Welsh, and Andrew P. Brooks
Hydrol. Earth Syst. Sci., 25, 867–883, https://doi.org/10.5194/hess-25-867-2021, https://doi.org/10.5194/hess-25-867-2021, 2021
Short summary
Short summary
Gully erosion is a major contributor to suspended sediment and associated nutrient pollution (e.g. gullies generate approximately 40 % of the sediment pollution impacting the Great Barrier Reef). This study used a new method of monitoring to demonstrate how large-scale earthworks used to remediated large gullies (i.e. eroding landforms > 1 ha) can drastically improve the water quality of connected waterways and, thus, protect vulnerable ecosystems in downstream-receiving waters.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021, https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Short summary
In this study, we collected water from an Alpine catchment in Switzerland and compared the genetic information of eukaryotic organisms conveyed by eDNA with the hydrologic information conveyed by naturally occurring hydrologic tracers. At the intersection of two disciplines, our study provides complementary knowledge gains and identifies the next steps to be addressed for using eDNA to achieve complementary insights into Alpine water sources.
Jana von Freyberg, Julia L. A. Knapp, Andrea Rücker, Bjørn Studer, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, https://doi.org/10.5194/hess-24-5821-2020, 2020
Short summary
Short summary
Automated water samplers are often used to collect precipitation and streamwater samples for subsequent isotope analysis, but the isotopic signal of these samples may be altered due to evaporative fractionation occurring during the storage inside the autosamplers in the field. In this article we present and evaluate a cost-efficient modification to the Teledyne ISCO automated water sampler that prevents isotopic enrichment through evaporative fractionation of the water samples.
Kolbjørn Engeland, Anna Aano, Ida Steffensen, Eivind Støren, and Øyvind Paasche
Hydrol. Earth Syst. Sci., 24, 5595–5619, https://doi.org/10.5194/hess-24-5595-2020, https://doi.org/10.5194/hess-24-5595-2020, 2020
Short summary
Short summary
We combine systematic, historical, and paleo information to obtain flood information from the last 10 300 years for the Glomma River in Norway. We identify periods with increased flood activity (4000–2000 years ago and the recent 1000 years) that correspond broadly to periods with low summer temperatures and glacier growth. The design floods in Glomma were more than 20 % higher during the 18th century than today. We suggest that trends in flood variability are linked to snow in late spring.
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020, https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
Lu Zhuo, Qiang Dai, Binru Zhao, and Dawei Han
Hydrol. Earth Syst. Sci., 24, 2577–2591, https://doi.org/10.5194/hess-24-2577-2020, https://doi.org/10.5194/hess-24-2577-2020, 2020
Short summary
Short summary
Soil moisture plays an important role in hydrological modelling. However, most existing in situ observation networks rarely provide sufficient coverage to capture soil moisture variations. Clearly, there is a need to develop a systematic approach, so that with the minimal number of sensors the soil moisture information could be captured accurately. In this study, a simple and low-data requirement method is proposed (WRF, PCA, CA), which can provide very efficient soil moisture estimations.
Abraham J. Gibson, Danielle C. Verdon-Kidd, Greg R. Hancock, and Garry Willgoose
Hydrol. Earth Syst. Sci., 24, 1985–2002, https://doi.org/10.5194/hess-24-1985-2020, https://doi.org/10.5194/hess-24-1985-2020, 2020
Short summary
Short summary
To be better prepared for drought, we need to be able to characterize how they begin, translate to on-ground impacts and how they end. We created a 100-year drought record for an area on the east coast of Australia and compared this with soil moisture and vegetation data. Drought reduces vegetation and soil moisture, but recovery rates are different across different catchments. Our methods can be universally applied and show the need to develop area-specific data to inform drought management.
Clemens Messerschmid, Martin Sauter, and Jens Lange
Hydrol. Earth Syst. Sci., 24, 887–917, https://doi.org/10.5194/hess-24-887-2020, https://doi.org/10.5194/hess-24-887-2020, 2020
Short summary
Short summary
Recharge assessment in the shared transboundary Western Aquifer Basin is highly relevant, scientifically as well as hydropolitically (in Israeli–Palestinian water negotiations). Our unique combination of field-measured soil characteristics and soil moisture time series with soil moisture saturation excess modelling provides a new basis for the spatial differentiation of formation-specific groundwater recharge (at any scale), applicable also in other previously ungauged basins around the world.
Nils Michelsen, Gerrit Laube, Jan Friesen, Stephan M. Weise, Ali Bakhit Ali Bait Said, and Thomas Müller
Hydrol. Earth Syst. Sci., 23, 2637–2645, https://doi.org/10.5194/hess-23-2637-2019, https://doi.org/10.5194/hess-23-2637-2019, 2019
Short summary
Short summary
Most commercial automatic rain samplers are costly and do not prevent evaporation from the collection bottles. Hence, we have developed a microcontroller-based collector enabling timer-actuated integral rain sampling. The simple, low-cost device is robust and effectively minimizes post-sampling evaporation. The excellent performance of the collector during an evaporation experiment in a lab oven suggests that even multi-week field deployments in warm climates are feasible.
Michael Engel, Daniele Penna, Giacomo Bertoldi, Gianluca Vignoli, Werner Tirler, and Francesco Comiti
Hydrol. Earth Syst. Sci., 23, 2041–2063, https://doi.org/10.5194/hess-23-2041-2019, https://doi.org/10.5194/hess-23-2041-2019, 2019
Short summary
Short summary
Hydrometric and geochemical dynamics are controlled by interplay of meteorological conditions, topography and geological heterogeneity. Nivo-meteorological indicators (such as global solar radiation, temperature and decreasing snow depth) explain monthly conductivity and isotopic dynamics best. These insights are important for better understanding hydrochemical responses of glacierized catchments under a changing cryosphere.
Andrew D. Wickert, Chad T. Sandell, Bobby Schulz, and Gene-Hua Crystal Ng
Hydrol. Earth Syst. Sci., 23, 2065–2076, https://doi.org/10.5194/hess-23-2065-2019, https://doi.org/10.5194/hess-23-2065-2019, 2019
Short summary
Short summary
Measuring Earth's changing environment is a critical part of natural science, but to date most of the equipment to do so is expensive, proprietary, and difficult to customize. We addressed this challenge by developing and deploying the ALog, a low-power, lightweight, Arduino-compatible data logger. We present our hardware schematics and layouts, as well as our customizable code library that operates the ALog and helps users to link it to off-the-shelf sensors.
Bruce C. Scott-Shaw and Colin S. Everson
Hydrol. Earth Syst. Sci., 23, 1553–1565, https://doi.org/10.5194/hess-23-1553-2019, https://doi.org/10.5194/hess-23-1553-2019, 2019
Short summary
Short summary
The research undertaken for this study has allowed for an accurate direct comparison of indigenous and introduced tree water use. The measurements of trees growing in the understorey indicate significant water use in the subcanopy layer. The results showed that individual tree water use is largely inter-species specific. The introduced species remain active during the dry winter periods, resulting in their cumulative water use being significantly greater than that of the indigenous species.
Barbara Glaser, Marta Antonelli, Marco Chini, Laurent Pfister, and Julian Klaus
Hydrol. Earth Syst. Sci., 22, 5987–6003, https://doi.org/10.5194/hess-22-5987-2018, https://doi.org/10.5194/hess-22-5987-2018, 2018
Short summary
Short summary
We demonstrate how thermal infrared images can be used for mapping the appearance and disappearance of water at the surface. The use of thermal infrared images allows for mapping this appearance and disappearance for various temporal and spatial resolutions, and the images can be understood intuitively. We explain the necessary steps in detail, from image acquisition to final processing, by relying on image examples and experience from an 18-month mapping campaign.
Simon Etter, Barbara Strobl, Jan Seibert, and H. J. Ilja van Meerveld
Hydrol. Earth Syst. Sci., 22, 5243–5257, https://doi.org/10.5194/hess-22-5243-2018, https://doi.org/10.5194/hess-22-5243-2018, 2018
Short summary
Short summary
To evaluate the potential value of streamflow estimates for hydrological model calibration, we created synthetic streamflow datasets in various temporal resolutions based on the errors in streamflow estimates of 136 citizens. Our results show that streamflow estimates of untrained citizens are too inaccurate to be useful for model calibration. If, however, the errors can be reduced by training or filtering, the estimates become useful if also a sufficient number of estimates are available.
Doris Duethmann and Günter Blöschl
Hydrol. Earth Syst. Sci., 22, 5143–5158, https://doi.org/10.5194/hess-22-5143-2018, https://doi.org/10.5194/hess-22-5143-2018, 2018
Short summary
Short summary
We analyze changes in catchment evaporation estimated from the water balances of 156 catchments in Austria over 1977–2014, as well as the possible causes of these changes. Our results show that catchment evaporation increased on average by 29 ± 14 mm yr−1 decade−1. We attribute this increase to changes in atmospheric demand (based on reference and pan evaporation), changes in vegetation (quantified by a satellite-based vegetation index), and changes in precipitation.
Arno Hartmann, Marc Luetscher, Ralf Wachter, Philipp Holz, Elisabeth Eiche, and Thomas Neumann
Hydrol. Earth Syst. Sci., 22, 4281–4293, https://doi.org/10.5194/hess-22-4281-2018, https://doi.org/10.5194/hess-22-4281-2018, 2018
Short summary
Short summary
We have developed a new mobile automated water sampling device for environmental research and other applications where waters need to be tested for compliance with environmental/health regulations. It has two main advantages over similar devices: firstly, it injects water samples directly into airtight vials to prevent any change in sample properties through contamination, evaporation and gas exchange. Secondly, it can hold up to 160 sample vials, while other devices only hold up to 24 vials.
Yuedong Guo, Changchun Song, Wenwen Tan, Xianwei Wang, and Yongzheng Lu
Hydrol. Earth Syst. Sci., 22, 1081–1093, https://doi.org/10.5194/hess-22-1081-2018, https://doi.org/10.5194/hess-22-1081-2018, 2018
Short summary
Short summary
The study examined dynamics of DOC export from a permafrost peatland catchment located in northeastern China. The findings indicated that the DOC export is a transport-limited process and the DOC load was significant for the net carbon balance in the studied catchment. The flowpath shift process is key to observed DOC concentration, resources and chemical characteristics in discharge. Permafrost degradation would likely elevate the proportion of microbe-originated DOC in baseflow.
Maurizio Mazzoleni, Vivian Juliette Cortes Arevalo, Uta Wehn, Leonardo Alfonso, Daniele Norbiato, Martina Monego, Michele Ferri, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 391–416, https://doi.org/10.5194/hess-22-391-2018, https://doi.org/10.5194/hess-22-391-2018, 2018
Short summary
Short summary
We investigate the usefulness of assimilating crowdsourced observations from a heterogeneous network of sensors for different scenarios of citizen involvement levels during the flood event occurred in the Bacchiglione catchment in May 2013. We achieve high model performance by integrating crowdsourced data, in particular from citizens motivated by their feeling of belonging to a community. Satisfactory model performance can still be obtained even for decreasing citizen involvement over time.
Daniele P. Viero
Hydrol. Earth Syst. Sci., 22, 171–177, https://doi.org/10.5194/hess-22-171-2018, https://doi.org/10.5194/hess-22-171-2018, 2018
Fayçal Rejiba, Cyril Schamper, Antoine Chevalier, Benoit Deleplancque, Gaghik Hovhannissian, Julien Thiesson, and Pierre Weill
Hydrol. Earth Syst. Sci., 22, 159–170, https://doi.org/10.5194/hess-22-159-2018, https://doi.org/10.5194/hess-22-159-2018, 2018
Short summary
Short summary
The internal variability of paleomeanders strongly influence water fluxes in alluvial plains. This study presents the results of a hydrogeophysical investigation that provide a very detailed characterization of the geometry of a wide paleomeander. The presented case study, situated in the Seine River basin (France), represents a common sedimentary and geomorphological structure in alluvial plains worldwide.
Sibylle Kathrin Hassler, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, https://doi.org/10.5194/hess-22-13-2018, 2018
Short summary
Short summary
We use sap velocity measurements from 61 trees on 132 days to gain knowledge about the controls of landscape-scale transpiration, distinguishing tree-, stand- and site-specific controls on sap velocity and sap flow patterns and examining their dynamics during the vegetation period. Our results show that these patterns are not exclusively determined by tree characteristics. Thus, including site characteristics such as geology and aspect could be beneficial for modelling or management purposes.
Paul Floury, Jérôme Gaillardet, Eric Gayer, Julien Bouchez, Gaëlle Tallec, Patrick Ansart, Frédéric Koch, Caroline Gorge, Arnaud Blanchouin, and Jean-Louis Roubaty
Hydrol. Earth Syst. Sci., 21, 6153–6165, https://doi.org/10.5194/hess-21-6153-2017, https://doi.org/10.5194/hess-21-6153-2017, 2017
Short summary
Short summary
We present a new prototype
lab in the fieldnamed River Lab (RL) designed for water quality monitoring to perform a complete analysis at sub-hourly frequency of major dissolved species in river water. The article is an analytical paper to present the proof of concept, its performances and improvements. Our tests reveal a significant improvement of reproducibility compared to conventional analysis in the laboratory. First results are promising for understanding the critical zone.
Cited articles
Abrisqueta, J. M., Plana, V., Mounzer, O. H., Mendez, J., and Ruiz-Sanchez,
M. C.: Effects of soil tillage on runoff generation in a Mediterranean apricot orchard, Agr. Water Manage., 93, 11-18, https://doi.org/10.1016/j.agwat.2007.06.002, 2007.
Ali, R., Hatton, T., George, R., Byrne, J., and Hodgson, G.: Evaluation of
the impacts of deep open drains on groundwater levels in the wheatbelt of
Western Australia, Aust. J. Agricult. Res., 55, 1159–1171, https://doi.org/10.1071/ar04068, 2004.
Bann, G. R. and Field, J. B.: Dryland salinity in south east Australia: A
localised surface water and soil degradation process?, Regolith 2006 –
Consolidation and Dispersion of Ideas, CRC LEME, Hahndorf, South Australia, 9–13, 2006a.
Bann, G. R. and Field, J. B.: Dryland salinity in south east Australia: Which scenario makes more sense?, AESC2006, Melbourne, Australia, 2006b.
Barrett-Lennard, A.: Surface water ponding on low lying valley floors in
south-western Australia: interactions with groundwater and its role in secondary dryland salinity, BEng Hons, School of Environmental Systems
Engineering, The University of Western Australia, Perth, Western Australia, 2009.
Barrett-Lennard, A. and Callow, J. N.: Surface water ponding, in-situ vertical recharge and salinity in low-gradient valleys: Toolibin Lake,
southwestern Australia, in: OzWater Conference, Melbourne, Australia, 2009.
Barrett-Lennard, E. G., George, R. J., Hamilton, G., Norman, H. C., and Masters, D. G.: Multi-disciplinary approaches suggest profitable and sustainable farming systems for valley floors at risk of salinity, Aust. J. Exp. Agricult., 45, 1415–1424, https://doi.org/10.1071/ea04157, 2005.
Barron, O., Silberstein, R., Ali, R., Donohue, R., McFarlane, D. J., Davies,
P., Hodgson, G., Smart, N., and Donn, M.: Climate change effects on
water-dependent ecosystems in south-western Australia, J. Hydrol., 434–435, 95–109, https://doi.org/10.1016/j.jhydrol.2012.02.028, 2012.
Bartley, R., Roth, C. H., Ludwig, J., McJannet, D., Liedloff, A., Corfield, J., Hawdon, A., and Abbott, B.: Runoff and erosion from Australia's tropical semi-arid rangelands: influence of ground cover for differing space and time scales, Hydrol. Process., 20, 3317–3333, https://doi.org/10.1002/hyp.6334, 2006.
Bauer, P., Gumbricht, T., and Kinzelbach, W.: A regional coupled surface
water/groundwater model of the Okavango Delta, Botswana, Water Resour. Res.,
42, W04403, https://doi.org/10.1029/2005wr004234, 2006.
Beard, J. S.: Palaeodrainage and the geomorphic evolution of passive margins
in Southwestern Australia, Z. Geomorphol., 47, 273–288, 2003.
Bell, R. W., Schofield, N. J., Loh, I. C., and Bari, M. A.: Groundwater
response to reforestation in the Darling Range of Western Australia, J. Hydrol., 115, 297–317, https://doi.org/10.1016/0022-1694(90)90211-F, 1990.
Bennett, D. and George, R. J.: Long term monitoring of groundwater levels at 24 sites in Western Australia shows that integrated farm forestry systems have little impact on salinity, in: 2nd International Salinity Forum: Salinity, water and society-global issues, local action, Adelaide, Australia, 2008.
Bennett, D. and Macpherson, D. K.: A history of salinity in Western Australia important (and some unimportant) dates, Technical memorandum 83/1, Update of: CSIRO, Division of Groundwater Research, Perth, Western Australia, 2002.
Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh,
H. A., Cleverly, J., Resco de Dios, V., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P.,
Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore,
C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and
Wardlaw, T.: An introduction to the Australian and New Zealand flux tower
network – OzFlux, Biogeosciences, 13, 5895–5916,
https://doi.org/10.5194/bg-13-5895-2016, 2016.
Bonell, M. and Williams, J. D.: A review of hydrology research within the open eucalypt woodlands of tropical semiarid Australia: A possible source of
baseline information for the West African Sahel, Sécheresse, 20, 31–47,
2009.
Bowman, S. and Ruprecht, J. K.: Blackwood River flood risk study, Surface
Water Hydrology, Science and Evaluation, Report: SWH 29, Water and Rivers Commission, Perth, Western Australia, 2000.
Bracken, L. J. and Croke, J. C.: The concept of hydrological connectivity
and its contribution to understanding runoff-dominated geomorphic systems,
Hydrol. Process., 21, 1749–1763, https://doi.org/10.1002/hyp.6313, 2007.
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., and Roy, A. G.: Concepts of hydrological connectivity: Research approaches, pathways and future agendas, Earth-Sci. Rev., 119, 17–34, https://doi.org/10.1016/j.earscirev.2013.02.001, 2013.
Callow, J. N.: Understanding patterns of vegetation degradation at meaningful scales within saline landscapes, Ecohydrology, 4, 841–854, https://doi.org/10.1002/eco.190, 2011.
Callow, J. N.: Potential for vegetation-based river management in dryland,
saline catchments, River Res. Appl., 28, 1072–1092, https://doi.org/10.1002/rra.1506, 2012.
Callow, J. N. and Clifton, J.: Globalised Agriculture, Development and the
Environment, Globalisation, Agriculture and Development: Perspectives from
the Asia-Pacific, edited by: Tonts, M. J. and Siddique, M. A. B., Elgar, UK, 2011.
Callow, J. N. and Smettem, K. R. J.: Channel response to a new hydrological
regime in southwestern Australia, Geomorphology, 84, 254–276,
https://doi.org/10.1016/j.geomorph.2006.01.043, 2007.
Callow, J. N., Van Niel, K. P., and Boggs, G. S.: How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis?, J. Hydrol., 332, 30–39, https://doi.org/10.1016/j.jhydrol.2006.06.020, 2007.
Callow, J. N., Pope, T. I., and Coles, N. A.: Surface water flow redistribution processes: Toolibin Lake biodiversity recovery catchment,
CER 07/01 – SESE129, Report by the ARWA – Centre for Ecohydrology for the Department of Environment and Conservation, Perth, Western Australia, 2008.
Callow, J. N. and Smettem, K. R. J.: The effect of farm dams and constructed banks on hydrologic connectivity and runoff estimation in agricultural landscapes, Environ. Model. Softw., 24, 959–968, https://doi.org/10.1016/j.envsoft.2009.02.003, 2009.
Callow, J. N., Coles, N. A., and Hall, T. J.: A new ecohydraulic management paradigm for salt affected ecosystems and wetlands in low-gradient semi-arid environments, in: 8th International Symposium on Ecohydraulics (ISE), Seoul, Korea, 1596–1603, 2010.
Cattlin, T.: The impact of redistributed surface water and spatially distributed recharge on water quality decline in the Toolibin Lake catchment: a modelled approach to process management, MSc Thesis, National Centre for Groundwater Manegment, University of Technology, Sydney, 2006.
Cattlin, T. and Farmer, D.: Hydrological processes of the Wheatbelt region of Western Australia, in: Proceedings of the 13th International Soil Conservation Organisation Conference – Conserving Soil and Water for Society: Sharing Solutions ISCO 2004, Brisbane, Australia, 2004.
Cattlin, T., Stanton, D., Farmer, D. L., and Coles, N. A.: Surface water
management strategy – Report for the Shire of Yilgarn, Technical Report, Engineering Water Management Group, Department of Agriculture Western Australia, South Perth, Western Australia, 2002.
Cattlin, T., Farmer, D. L., Coles, N. A., and Stanton, D.: Surface Water
Assessment for the Toolibin Lake Recovery Catchment, Engineering Water Management Group, Department of Agriculture Western Australia, Perth, Australia, 2004.
Ceballos, A. and Schnabel, S.: Hydrological behaviour of a small catchmnet in the dehesa landuse system (Extremadura, SW Spain), J. Hydrol., 210, 146–160, 1998.
Clarke, J. D. A.: Evolution of the Lefroy and Cowan palaeodrainage channels,
Westerm Australia, Aust. J. Earth Sci., 41, 55–68, 1994.
Coles, N. A., George, R. J., and Bathgate, A.: An assessment of the efficacy
of deep drains construction in the wheatbelt of Western Australia, Agriculture Western Australia, Perth, Western Australia, 1999.
Coletti, J. Z., Hinz, C., Vogwill, R., and Hipsey, M. R.: Hydrological
controls on carbon metabolism in wetlands, Ecol. Model., 249, 3–18,
https://doi.org/10.1016/j.ecolmodel.2012.07.010, 2013.
Commander, P., Schoknecht, N., Verboom, B., and Caccetta, P. A.: The geology, physiography and soils of wheatbelt valleys, Dealing with salinity in Wheatbelt valleys: processes, prospects and practical options, Merredin,
Western Australia, 2001,
Conacher, A. J.: Salt scalds and subsurface water: a special case of badland development in south-western Australia, in: Badland Geomorphology and Piping, edited by: Bryan, B. and Yair, A., Geo-Books, Norwich, 195–219, 1982.
Conacher, A. J. and Conacher, J.: Rural land degradation in Australia, Oxford University Press, Melbourne, 170 pp., 1995.
Conacher, A. J. and Sala, M.: Land degradation in Mediterranean environments of the world: nature and extent, causes and solutions, John Wiley and Sons, Chichester, 491 pp., 1998.
Costa, A. C., Foerster, S., de Araújo, J. C., and Bronstert, A.: Analysis of channel transmission losses in a dryland river reach in northeastern Brazil using streamflow series, groundwater level series and multi-temporal satellite data, Hydrol. Process., 27, 1046–1060, https://doi.org/10.1002/hyp.9243, 2012.
Cramer, V. A. and Hobbs, R. J.: Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: Impacts
and possible management responses, Aust. Ecol., 27, 546–564,
https://doi.org/10.1046/j.1442-9993.2002.01215.x, 2002.
Drake, P. L., Coleman, B. F., and Vogwill, R.: The response of semi-arid
ephemeral wetland plants to flooding: linking water use to hydrological
processes, Ecohydrology, 6, 852–862, https://doi.org/10.1002/eco.1309, 2013.
Dunkerley, D.: Effects of rainfall intensity fluctuations on infiltration
and runoff: rainfall simulation on dryland soils, Fowlers Gap, Australia,
Hydrol. Process., 26, 2211–2224, https://doi.org/10.1002/hyp.8317, 2011.
Eamus, D., Hatton, T., Cook, P., and Colvin, C.: Ecohydrology: Vegetation
Function, Water and Resource Management, CSIRO Publishing, Canberra, 2006.
Farmer, D., Stanton, D., and Coles, N. A.: Surface Water Assessment and
Recommendations for the Lake Bryde Recovery Catchment, Engineering Water
Management Group, Department of Agriculture, South Perth, Western Australia,
2001.
Farmer, D., Stanton, D., and Coles, N. A.: Lake Bryde Recovery Catchment
Surface Water Assessment and Recommendations, Engineering Water Management
Group, Department of Agriculture Western Australia, Report prepared for the
Department of Conservation and Land Management, Perth, Western Australia,
2002.
Ferdowsian, R., George, R., Lewis, F., McFarlane, D. J., Short, R., and
Speed, R.: The extent of dryland salinity in Western Australia, in: 4th National Conference and Workshop on the Productive Use and Rehabilitation of Saline Lands (PURSL), Albany, Western Australia, 1996.
George, R.: Estimating and modifying the effects of agricultural development
on the groundwater balance of large wheatbelt catchments, Western Australia,
J. Appl. Hydrogeol., 1, 41–54, 1992.
George, R., and Conacher, A. J.: Mechanisms responsible for streamflow
generation on a small, salt-affected and deeply weathered hillslope., Earth
Surface Processes and Landforms, 18, 291-309, 1993.
George, R. J.: Reclaiming sandplain seeps by intercepting perched groundwater with eucalypts, Land Degrad. Dev., 2, 13–25, 1990.
George, R. J., Nulsen, R. A., Ferdowsian, R., and Raper, G. P.: Interactions
between trees and groundwaters in recharge and discharge areas - A survey of
Western Australian sites, Agr. Water Manage., 39, 91–113, 1999.
George, R. J., Speed, R. J., Simons, J. A., Smith, R. H., Ferdowsian, R.,
Raper, G. P., and Bennett, D.: Long-term groundwater trends and their impact
on the future extent of dryland salinity in Western Australia in a variable
climate, in: 2nd International Salinity Forum: Salinity, water and
society-global issues, local action, Adelaide, Australia, 2008.
Ghassemi, F., Jakeman, A. J., and Nix, H. A.: Salinisation of land and water
resources: human causes, extent, management and case studies, University of
New South Wales Press, Syndey, Australia, 526 pp., 1995.
Gifford, G. F.: Rangeland hydrology in Australia – A brief review, Aust. Rangeland J., 1, 150–166, 1978.
Grayson, R., Argent, R. M., Nathan, R. J., McMahon, T. A., and Mein, R. G.:
Hydrological recipes: Estimation techniques in Australian hydrology,
Cooperative Research Centre for Catchment Hydrology, Monash University,
Victoria, Australia, 125 pp., 1996.
Halse, S. A., Ruprecht, J. K., and Pinder, A. M.: Salinisation and prospects
for biodiversity in rivers and wetlands of south-west Western Australia,
Aust. J. Bot., 51, 673–688, https://doi.org/10.1071/BT02113, 2003.
Hatton, T. J. and Nulsen, R. A.: Towards achieving functional ecosystem mimicry with respect to water cycling in southern Australian agriculture,
Agroforest. Syst., 45, 203–214, 1999.
Hatton, T. and Salama, R. B.: Is it feasible to restore the salinity-affected rivers of the Western Australian wheatbelt?, in: Proceedings of Second Australian Stream Management Conference, Adelaide, 313–317, 1999.
Hatton, T. J., Ruprecht, J., and George, R. J.: Preclearing hydrology of the
Western Australia wheatbelt: Target for the future?, Plant Soil, 257, 341–356, 2003.
HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H. H. T., and
de Kroon, H.: Vegetation pattern formation in semi-arid grazing systems,
Ecology, 82, 50–61, https://doi.org/10.1890/0012-9658(2001)082[0050:vpfisa]2.0.co;2, 2001.
Hingston, F. J. and Gailitis, V.: The geographic variation of salt precipitated over Western Australia, Aust. J. Soil Res., 14, 319–335, 1976.
Hipsey, M. R., Vogwill, R., Farmer, D., and Busch, B. D.: A multi-scale
ecohydrological model for assessing floodplain wetland response to altered
flow regimes, in: 19th International Congress on Modelling and Simulation,
Perth, Australia, 2011.
Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J.,
Sivapalan, M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret,
U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut,
R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S.,
Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A
decade of Predictions in Ungauged Basins (PUB) – a review, Hydrolog. Sci. J., 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.
Indian Ocean Climate Initiative: Climate variability and change in south Western Australia, Indian Ocean Climate Initiative, Perth, Western Australia, 2002.
Johnsen, C., George, R., Clarke, C., Harper, R., and Bren, L.: Groundwater
Response To Partial Plantings On Discharge Zones At Five Sites In The South
West Of Western Australia, in: Second International Salinity Forum, Adelaide,
Australia, 2008.
Johnstone, M. H., Lowry, D. C., and Quilty, P. G.: The geology of southwestern Australia – a review, J. Roy. Soc. West. Aust., 56, 5–15, 1973.
Jones, C. E.: The Great Salinity Debate: Part 1 Controlling the salinisation
process, Stipa Newsletter, 14, 4–6, 2000a.
Jones, C. E.: The Great Salinity Debate: Part 2 Why the recharge-discharge
model is fundamentally flawed, Stipa Newsletter, 14, 6–11, 2000b.
Knighton, A. D. and Nanson, G. C.: An event-based approach to the hydrology
of arid zone rivers in the Channel Country of Australia, J. Hydrol., 254, 102–123, https://doi.org/10.1016/S0022-1694(01)00498-X, 2001.
Koohafkan, P. and Stewart, B. A.: Drylands, people and land use, in: Water
and Cereals in Drylands, edited by: Koohafkan, P. and Stewart, B. A., The
Food and Agriculture Organization of the United Nations and Earthscan, London, 2008.
Ludwig, J. A. and Tongway, D. J.: Viewing rangelands as landscape systems, in: Rangeland desertification, edited by: Arnalds, O. and Archer, S., Kluwer Academic Publishers, Dordrecht, the Netherlands, 39–52, 2000.
Ludwig, J. A., Tongway, D. J., Freudenberger, D. O., Noble, J. C., and
Hodgkinson, K. C.: Landscape ecology, function and management: principles
from Australia's rangelands, CSIRO Publishing, Melbourne, Australia, 1997.
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J., and Imeson, A. C.: Vegetation Patches and Runoff–Erosion as Interacting Ecohydrological
Processes in Semiarid Landscapes, Ecology, 86, 288–297, https://doi.org/10.1890/03-0569, 2005.
Mann, E. A.: Does clearing increase salt in ground, J. Agricult. West. Aust., 15, 193, 1907.
McDonnell, J. J. and Woods, R.: On the need for catchment classification, J. Hydrol., 299, 2–3, https://doi.org/10.1016/j.jhydrol.2004.09.003, 2004.
McFarlane, D., Engel, R., and Ryder, A.: The location of recharge areas
responsible for valley salinity in the Lake Toolibin Catchment, Western
Australia, Groundwater Recharge, in: Symposium on Groundwater Recharge, Perth, Western Australia, 255–267, 1989.
McFarlane, D., Stone, R., Martens, S., Thomas, J., Silberstein, R., Ali, R.,
and Hodgson, G.: Climate change impacts on water yields and demands in
south-western Australia, J. Hydrol., 475, 488–498,
https://doi.org/10.1016/j.jhydrol.2012.05.038, 2012.
McGrath, G. S., Paik, K., and Hinz, C.: Microtopography alters self-organized vegetation patterns in water-limited ecosystems, J. Geophys. Res.-Biogeo., 117, G03021, https://doi.org/10.1029/2011jg001870, 2012.
McMillan, H. K., Clark, M. P., Bowden, W. B., Duncan, M., and Woods, R. A.:
Hydrological field data from a modeller's perspective: Part 1. Diagnostic
tests for model structure, Hydrol. Process., 25, 511–522, https://doi.org/10.1002/hyp.7841, 2011.
Mouat, N. C., George, R. J., Smettem, K. R. J., and Gilkes, R. J.: Identifying dominant catchment properties for predicting dryland salinity
development in the Western Australian wheat belt, in: 2nd International Salinity Forum: Salinity, water and society-global issues, local action, Adelaide, Australia, 2008.
Muirden, P. and Coleman, S.: The Toolibin natural diversity recovery catchment review of surface water monitoring, Report for the Department of
Parks and Wildlife, WA Government, Perth Western Australia, 2014.
Muirden, P., Pen, L., and Leybourne, M.: Stream and catchment hydrology in
south west Western Australia, Report No. RR19, Department of Environment, Perth, Western Australia, 2003.
Mulcahy, M. J.: Landscapes, laterites and soils in southwestern Australia,
in: Landform studies from Australia and New Guinea, edited by: Jennings, J.
N. and Mabbutt, J. A., Australian National University Press, Canberra, 1967.
Nanson, G. C., Tooth, S., and Knighton, A. D.: A global perspective on dryland rivers: perceptions, misconceptions and distinctions, in: Dryland
rivers: hydrology and geomorphology of semi-arid channels, edited by: Bull, L. J. and Kirkby, M. J., Wiley, Chichester, 17–54, 2002.
Nathan, E.: Giving Salt Some History, and History Some Salt: Dryland
Salinity and the Dundas Tableland, Aust. Hist. Stud., 31, 222–236, https://doi.org/10.1080/10314610008596128, 2000.
Nicolau, J. M., Solé-Benet, A., Puigdefábregas, J., and Gutiérrez, L.: Effects of soil and vegetation on runoff along a catena
in semi-arid Spain, Geomorphology, 14, 297–309, https://doi.org/10.1016/0169-555x(95)00043-5, 1996.
Nielsen, D. L., Brock, M. A., Rees, G., N., and Baldwin, D. S.: Effects of
increasing salinity on freshwater ecosystems in Australia, Aust. J. Bot., 51, 655–665, https://doi.org/10.1071/BT02115, 2003.
Nulsen, R. A.: Critical depth to saline groundwater in non-irrigated
situations, Aust. J. Soil Res., 19, 83–86, https://doi.org/10.1071/SR9810083, 1981.
Nulsen, R. A. and Henschke, C. J.: Groundwater systems associated with
secondary salinity in Western Australia, Agr. Water Manage., 4, 173–186, https://doi.org/10.1016/0378-3774(81)90049-4, 1981.
Pannell, D.: Dryland salinity: economic, scientific, social and policy
dimensions, Aust. J. Agricult. Resour. Econ., 45, 517–546, 2001.
Pannell, D.: Public Benefits, Private Benefits, and Policy Mechanism Choice
for Land-Use Change for Environmental Benefits, Land Econ., 84, 225–240, 2008.
Pannell, D. and Ewing, M. A.: Managing secondary dryland salinity: Options and challenges, in: Proceedings 4th International Crop Science Congress, Brisbane, Australia, 2004.
Peck, A. J. and Hatton, T.: Salinity and the discharge of salts from catchments in Australia, J. Hydrol., 272, 191–202, 2003.
Pen, L. J.: Managing our rivers: a guide to the nature and management of the
streams of south-west Western Australia, Water and Rivers Commission, East
Perth, Western Australia, 1999.
Powell, D. M.: Dryland Rivers: Processes and Forms, in: Geomorphology of
Desert Environments, edited by: Parsons, A. J. and Abrahams, A. D., Springer, Dordrecht, 333–373, 2009.
Ruprecht, J. K. and Schofield, N. J.: Analysis of streamflow generation
following deforestation in southwestern Western Australia, J. Hydrol., 105, 1–17, 1989.
Ruprecht, J. K. and Schofield, N. J.: Effects of partial deforestation on
hydrology and salinity in high salt storage landscapes. I. Extensive block
clearing, J. Hydrol., 129, 19–38, 1991.
Ruprecht, J. K. and Stoneman, G. L.: Water yield issues in the jarrah forest of south-western Australia, J. Hydrol., 150, 369–391, 1993.
Ryan, J. G., McAlpine, C. A., Ludwig, J. A., and Callow, J. N.: Modelling
the Potential of Integrated Vegetation Bands (IVB) to Retain Stormwater Runoff on Steep Hillslopes of Southeast Queensland, Australia, Land, 4, 711–736, 2015.
Smettem, K. and Callow, N.: Impact of Forest Cover and Aridity on the Interplay between Effective Rooting Depth and Annual Runoff in South-West
Western Australia, Water, 6, 2539–2551, 2014.
Smettem, K. R. J., Waring, R. H., Callow, J. N., Wilson, M., and Mu, Q.:
Satellite-derived estimates of forest leaf area index in southwest Western
Australia are not tightly coupled to interannual variations in rainfall:
implications for groundwater decline in a drying climate, Global Change Biol., 19, 2401–2412, https://doi.org/10.1111/gcb.12223, 2013.
Smith, I. N., McIntosh, P., Ansell, T. J., Reason, C. J. C., and McInnes, K.: Southwest Western Australian winter rainfall and its association with Indian Ocean climate variability, Int. J. Climatol., 20, 1913–1930, https://doi.org/10.1002/1097-0088(200012)20:15<1913::AID-JOC594>3.0.CO;2-J, 2000.
Stewart, B., Strehlow, K., and Davis, J.: Impacts of deep open drains on
water quality and biodiversity of receiving waterways in the Wheatbelt of
Western Australia, Hydrobiologia, 619, 103–118, https://doi.org/10.1007/s10750-008-9603-x, 2009.
Sturman, A. P. and Tapper, N. J.: The weather and climate of Australia and New Zealand, Oxford University Press, Melbourne, 1996.
Teakle, L. J. H. and Burvill, G. H.: The movement of soluble salts in soils
under light rainfall conditions, J. Agricult. West. Aust., 15, 218–245, 1938.
Thornes, J. B.: Catchment and Channel Hydrology, in: Geomorphology of Desert
Environments, edited by: Parsons, A. J. and Abrahams, A. D., Springer Netherlands, 2009.
Tooth, S.: Process, form and change in dryland rivers: a review of recent
research, Earth Sci. Rev., 51, 67–107, https://doi.org/10.1016/S0012-8252(00)00014-3, 2000.
Turnbull, L., Wilcox, B. P., Belnap, J., Ravi, S., D'Odorico, P., Childers,
D., Gwenzi, W., Okin, G., Wainwright, J., Caylor, K. K., and Sankey, T.:
Understanding the role of ecohydrological feedbacks in ecosystem state
change in drylands, Ecohydrology, 5, 174–183, https://doi.org/10.1002/eco.265, 2012.
US Army Corps of Engineers: HEC-RAS River Systems Analysis User's Manual, Hydrologic Engineering Center, Institute of Water Resources, US Army Corps of Engineers, Davis, 2008
van de Graaff, W. J. E., Crowe, R. W. A., Bunting, J. A., and Jackson, M. J.: Relict Early Cainozoic drainages in arid Western Australia, Z. Geomorphol., 21, 379–400, 1977.
Verboom, W.: Soils of the Toolibin Lake Catchment, Agriculture Western Australia, Perth, Australia, 2003.
Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification and Hydrologic Similarity, Geogr. Compass, 1, 901–931,
https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007.
Walker, K. F., Sheldon, F., and Puckridge, J. T.: A perspective on dryland
river ecosystems, Regulat. Rivers: Res. Manage., 11, 85–104, 1995.
Wang, L., D'Odorico, P., Evans, J. P., Eldridge, D. J., McCabe, M. F., Caylor, K. K., and King, E. G.: Dryland ecohydrology and climate change:
critical issues and technical advances, Hydrol. Earth Syst. Sci., 16,
2585–2603, https://doi.org/10.5194/hess-16-2585-2012, 2012.
Watson, A. N.: The clearing history of the Toolibin area and some of its
effects, Compliled for the Northern Arthur River Rehabilitation Committee,
Unpublished Report to the State Minister of Fisheries and Wildlife, Perth, Western Australia, 1978.
Wilcox, B. P. and Newman, B. D.: Ecohydrology of Semiarid Landscapes, Ecology, 86, 275–276, https://doi.org/10.1890/04-0631, 2005.
Wood, W. E.: Increase of salt in soil and streams following the destruction
of the native vegetation, J. Roy. Soc. West. Aust., 10, 35–47, 1924.
Wood, W. E. and Wilsmore, N. T. M.: Salinity of rain in Western Australia, J. Roy. Soc. West. Aust., 15, 22–30, 1928.
Short summary
Secondary dryland salinity is a global land degradation issue. Our understanding of causal processes is adapted from wet and hydrologically connected landscapes and concludes that low end-of-catchment runoff indicates land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface causing salinity. This study shows surface flows play an important role in causing valley floor recharge and dryland salinity in low-gradient landscapes.
Secondary dryland salinity is a global land degradation issue. Our understanding of causal...