Articles | Volume 24, issue 11 
            
                
                    
                    
            
            
            https://doi.org/10.5194/hess-24-5519-2020
                    © Author(s) 2020. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5519-2020
                    © Author(s) 2020. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
On the potential of variational calibration for a fully distributed hydrological model: application on a Mediterranean catchment
Maxime Jay-Allemand
                                            RECOVER, INRAE, Aix-Marseille Université, 3275 Route de Cézanne, 13182 Aix-en-Provence, France
                                        
                                    
                                            INRAE, UMR G-EAU, 361 rue Jean-François Breton, 34196 Montpellier, France
                                        
                                    
                                            RECOVER, INRAE, Aix-Marseille Université, 3275 Route de Cézanne, 13182 Aix-en-Provence, France
                                        
                                    Igor Gejadze
                                            INRAE, UMR G-EAU, 361 rue Jean-François Breton, 34196 Montpellier, France
                                        
                                    Patrick Arnaud
                                            RECOVER, INRAE, Aix-Marseille Université, 3275 Route de Cézanne, 13182 Aix-en-Provence, France
                                        
                                    Pierre-Olivier Malaterre
                                            INRAE, UMR G-EAU, 361 rue Jean-François Breton, 34196 Montpellier, France
                                        
                                    Jean-Alain Fine
                                            HYDRIS Hydrologie, Parc Scientifique Agropolis II, 2196 Boulevard de la Lironde, 34980 Montferrier-sur-Lez, France
                                        
                                    Didier Organde
                                            HYDRIS Hydrologie, Parc Scientifique Agropolis II, 2196 Boulevard de la Lironde, 34980 Montferrier-sur-Lez, France
                                        
                                    Related authors
No articles found.
François Colleoni, Ngo Nghi Truyen Huynh, Pierre-André Garambois, Maxime Jay-Allemand, Didier Organde, Benjamin Renard, Thomas De Fournas, Apolline El Baz, Julie Demargne, and Pierre Javelle
                                    Geosci. Model Dev., 18, 7003–7034, https://doi.org/10.5194/gmd-18-7003-2025, https://doi.org/10.5194/gmd-18-7003-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We present smash, an open-source framework for high-resolution hydrological modeling and data assimilation. It combines process-based models with neural networks for regionalization, enabling accurate simulations from the catchment scale to the country scale. With an efficient, differentiable solver, smash supports large-scale calibration and parallel computing. Tested on open datasets, it shows strong performance in river flow prediction, making it a valuable tool for research and operational use.
                                            
                                            
                                        Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
                                    Earth Syst. Sci. Data, 17, 2963–2983, https://doi.org/10.5194/essd-17-2963-2025, https://doi.org/10.5194/essd-17-2963-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                This paper describes a dataset that includes input, output, and validation data for the simulation of flash flood hazards and three specific flash flood events in the French Mediterranean region. This dataset is particularly valuable as flood mapping methods often lack sufficient benchmark data. Additionally, we demonstrate how the hydraulic method we used, named Floodos, produces highly satisfactory results.
                                            
                                            
                                        Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
                                        EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
                                    Short summary
                                    Short summary
                                            
                                                The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
                                            
                                            
                                        Juliette Godet, Eric Gaume, Pierre Javelle, Thomas Dias, Pierre Nicolle, and Olivier Payrastre
                                    Abstr. Int. Cartogr. Assoc., 9, 16, https://doi.org/10.5194/ica-abs-9-16-2025, https://doi.org/10.5194/ica-abs-9-16-2025, 2025
                            Maxime Jay-Allemand, Julie Demargne, Pierre-André Garambois, Pierre Javelle, Igor Gejadze, François Colleoni, Didier Organde, Patrick Arnaud, and Catherine Fouchier
                                    Proc. IAHS, 385, 281–290, https://doi.org/10.5194/piahs-385-281-2024, https://doi.org/10.5194/piahs-385-281-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This work targets the improvement of a hydrologic model used for flash flood warnings. A gridded model is used to spatially describe the hydrological processes. We develop a method to estimate the best model setup based on scarce river flow observations. It uses a complex algorithm combined with geographical descriptors to generate gridded parameters that better capture catchment characteristics. Results are promising, improving the discharge estimations where no observations are available.
                                            
                                            
                                        Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
                                    Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024, https://doi.org/10.5194/hess-28-1403-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                This work was performed in order to precisely address a point that is often neglected by hydrologists: the allocation of points located on a river network to grid cells, which is often a mandatory step for hydrological modelling.
                                            
                                            
                                        Reyhaneh Hashemi, Pierre Javelle, Olivier Delestre, and Saman Razavi
                                        Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-282, https://doi.org/10.5194/hess-2023-282, 2023
                                    Manuscript not accepted for further review 
                                    Short summary
                                    Short summary
                                            
                                                Here, we have tackled the challenge of estimating water flow in areas without direct measurements, a crucial task in hydrology. We have applied deep learning techniques to a large sample of French catchments with various hydrological regimes. We have also compared our approach with traditional methods. We found that incorporating more data improves the accuracy of our deep learning predictions. Notably, our method outperforms traditional approaches in certain regimes, though not universally.
                                            
                                            
                                        Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
                                    Nat. Hazards Earth Syst. Sci., 23, 3355–3377, https://doi.org/10.5194/nhess-23-3355-2023, https://doi.org/10.5194/nhess-23-3355-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                This article results from a master's research project which was part of a natural hazards programme developed by the French Ministry of Ecological Transition. The objective of this work was to investigate a possible way to improve the operational flash flood warning service by adding rainfall forecasts upstream of the forecasting chain. The results showed that the tested forecast product, which is new and experimental, has a real added value compared to other classical forecast products.
                                            
                                            
                                        Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
                                    Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023, https://doi.org/10.5194/hess-27-2973-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Mediterranean floods are causing major damage, and recent studies have shown that, despite the increase in intense rainfall, there has been no increase in river floods. This study reveals that the seasonality of floods changed in the Mediterranean Basin during 1959–2021. There was also an increased frequency of floods linked to short episodes of intense rain, associated with a decrease in soil moisture. These changes need to be taken into consideration to adapt flood warning systems.
                                            
                                            
                                        Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
                                    Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
                                            
                                            
                                        François Colleoni, Pierre-André Garambois, Pierre Javelle, Maxime Jay-Allemand, and Patrick Arnaud
                                        EGUsphere, https://doi.org/10.5194/egusphere-2022-506, https://doi.org/10.5194/egusphere-2022-506, 2022
                                    Preprint archived 
                                    Short summary
                                    Short summary
                                            
                                                This contribution presents the first evaluation of Variational Data Assimilation successfully applied over a large sample to the spatially distributed calibration of a newly taylored grid-based parsimonious model structure and corresponding adjoint. High performances are obtained in spatio-temporal validation and at flood time scales, especially for mediterranenan and oceanic catchments. Regional sensitivity analysis revealed the importance of the non conservative and production components.
                                            
                                            
                                        Abubakar Haruna, Pierre-Andre Garambois, Helene Roux, Pierre Javelle, and Maxime Jay-Allemand
                                        Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-414, https://doi.org/10.5194/hess-2021-414, 2021
                                    Manuscript not accepted for further review 
                                    Short summary
                                    Short summary
                                            
                                                We compared three hydrological models in a flash flood modelling framework. We first identified the sensitive parameters of each model, then compared their performances in terms of outlet discharge and soil moisture simulation. We found out that resulting from the differences in their complexities/process representation, performance depends on the aspect/measure used. The study then highlights and proposed some future investigations/modifications to improve the models.
                                            
                                            
                                        Cited articles
                        
                        Abbaris, A., Dakhlaoui, H., Thiria, S., and Bargaoui, Z.:
Variational data assimilation with the YAO platform for hydrological forecasting, P. Int. Ass. Hydrol. Sci.,
364, 3–8, https://doi.org/10.5194/piahs-364-3-2014, 2014. a
                    
                
                        
                        Anderson, R. M., Koren, V. I., and Reed, S. M.:
Using SSURGO data to improve Sacramento Model a priori parameter estimates,
J. Hydrol.,
320, 103–116, https://doi.org/10.1016/j.jhydrol.2005.07.020, 2006. a
                    
                
                        
                        Arnaud, P., Lavabre, J., Fouchier, C., Diss, S., and Javelle, P.:
Sensitivity of hydrological models to uncertainty in rainfall input,
Hydrolog. Sci. J.,
56, 397–410, 2011. a
                    
                
                        
                        Artigue, G., Johannet, A., Borrell, V., and Pistre, S.: Flash flood forecasting in poorly gauged basins using neural networks: case study of the Gardon de Mialet basin (southern France), Nat. Hazards Earth Syst. Sci., 12, 3307–3324, https://doi.org/10.5194/nhess-12-3307-2012, 2012. a
                    
                
                        
                        Bell, V. A., Kay, A. L., Jones, R. G., and Moore, R. J.: Development of a high resolution grid-based river flow model for use with regional climate model output, Hydrol. Earth Syst. Sci., 11, 532–549, https://doi.org/10.5194/hess-11-532-2007, 2007. a
                    
                
                        
                        Beven, K.:
Changing ideas in hydrology – The case of physically-based models,
J. Hydrol.,
105, 157–172, https://doi.org/10.1016/0022-1694(89)90101-7, 1989. a
                    
                
                        
                        Beven, K.:
Prophecy, reality and uncertainty in distributed hydrological modelling,
Adv. Water Res.,
16, 41–51, 1993. a
                    
                
                        
                        Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1–12, https://doi.org/10.5194/hess-5-1-2001, 2001. a
                    
                
                        
                        Borga, M., Anagnostou, E. N., Blöschl, G., and Creutin, J. D.:
Flash flood forecasting, warning and risk management: the HYDRATE project,
Environ. Sci. Policy,
14, 834–844, https://doi.org/10.1016/j.envsci.2011.05.017, 2011. a
                    
                
                        
                        Bouvier, C. and DelClaux, F.:
ATHYS: a hydrological environment for spatial modelling and coupling with GIS,
IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences,
235, 19–28, 1996. a
                    
                
                        
                        Braud, I., Roux, H., Anquetin, S., Maubourguet, M.-M., Manus, C., Viallet, P., and Dartus, D.:
The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes,
J. Hydrol.,
394, 162–181, https://doi.org/10.1016/j.jhydrol.2010.03.033, 2010. a
                    
                
                        
                        Braud, I., Ayral, P.-A., Bouvier, C., Branger, F., Delrieu, G., Le Coz, J., Nord, G., Vandervaere, J.-P., Anquetin, S., Adamovic, M., Andrieu, J., Batiot, C., Boudevillain, B., Brunet, P., Carreau, J., Confoland, A., Didon-Lescot, J.-F., Domergue, J.-M., Douvinet, J., Dramais, G., Freydier, R., Gérard, S., Huza, J., Leblois, E., Le Bourgeois, O., Le Boursicaud, R., Marchand, P., Martin, P., Nottale, L., Patris, N., Renard, B., Seidel, J.-L., Taupin, J.-D., Vannier, O., Vincendon, B., and Wijbrans, A.: Multi-scale hydrometeorological observation and modelling for flash flood understanding, Hydrol. Earth Syst. Sci., 18, 3733–3761, https://doi.org/10.5194/hess-18-3733-2014, 2014. a
                    
                
                        
                        Braud, I., Borga, M., Gourley, J., Hurlimann Ziegler, M., Zappa, M., and Gallart, F.:
Flash floods, hydro-geomorphic response and risk management,
J. Hydrol.,
541, 1–5, 2016. a
                    
                
                        
                        Castaings, W., Dartus, D., Le Dimet, F.-X., and Saulnier, G.-M.: Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods, Hydrol. Earth Syst. Sci., 13, 503–517, https://doi.org/10.5194/hess-13-503-2009, 2009. a, b, c, d
                    
                
                        
                        Collier, C.:
Flash flood forecasting: What are the limits of predictability?,
Q. J. Roy. Meteor. Soc.,
133, 3–23, https://doi.org/10.1002/qj.29, 2007. a
                    
                
                        
                        De Lavenne, A., Andréassian, V., Thirel, G., Ramos, M.-H., and Perrin, C.:
A Regularization Approach to Improve the Sequential Calibration of a Semidistributed Hydrological Model,
Water Resour. Res.,
55, 8821–8839, https://doi.org/10.1029/2018WR024266, 2019. a, b
                    
                
                        
                        Douinot, A., Roux, H., Garambois, P.-A., Larnier, K., Labat, D., and Dartus, D.:
Accounting for rainfall systematic spatial variability in flash flood forecasting,
J. Hydrol.,
541, 359–370, 2016. a
                    
                
                        
                        Douinot, A., Roux, H., Garambois, P.-A., and Dartus, D.: Using a multi-hypothesis framework to improve the understanding of flow dynamics during flash floods, Hydrol. Earth Syst. Sci., 22, 5317–5340, https://doi.org/10.5194/hess-22-5317-2018, 2018. a
                    
                
                        
                        Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K., Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C., Boubrahmi, N. F., Font, J., Grubišić, V., Gualdi, S., Homar, V., Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello, P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E., Romero, R., Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage, I., Tintore, J., Uijlenhoet, R., and Wernli, H.:
HyMeX: A 10-Year Multidisciplinary Program on the Mediterranean Water Cycle,
B. Am. Meteorol. Soc.,
95, 1063–1082, https://doi.org/10.1175/BAMS-D-12-00242.1, 2014. a, b
                    
                
                        
                        Ducrocq, V., Davolio, S., Ferretti, R., Flamant, C., Santaner, V. H., Kalthoff, N., Richard, E., and Wernli, H.:
Introduction to the HyMeX Special Issue on “Advances in understanding and forecasting of heavy precipitation in the Mediterranean through the HyMeX SOP1 field campaign”,
Q. J. Roy. Meteor. Soc.,
142, 1–6, https://doi.org/10.1002/qj.2856, 2016. a
                    
                
                        
                        Errico, R. M.:
What is an adjoint model?,
B. Am. Meteorol. Soc.,
78, 2577–2591, 1997. a
                    
                
                        
                        Ficchì, A., Perrin, C., and Andréassian, V.:
Impact of temporal resolution of inputs on hydrological model performance: An analysis based on 2400 flood events,
J. Hydrol.,
538, 454–470, https://doi.org/10.1016/j.jhydrol.2016.04.016, 2016. a
                    
                
                        
                        Ficchì, A., Raso, L., Dorchies, D., Pianosi, F., Malaterre, P.-O., Overloop, P.-J. V., and Jay-Allemand, M.:
Optimal Operation of the Multireservoir System in the Seine River Basin Using Deterministic and Ensemble Forecasts,
J. Water Res. Pl.,
142, 05015005, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000571, 2016. a
                    
                
                        
                        Garambois, P. A., Roux, H., Larnier, K., Castaings, W., and Dartus, D.: Characterization of process-oriented hydrologic model behavior with temporal sensitivity analysis for flash floods in Mediterranean catchments, Hydrol. Earth Syst. Sci., 17, 2305–2322, https://doi.org/10.5194/hess-17-2305-2013, 2013. a
                    
                
                        
                        Garambois, P.-A., Roux, H., Larnier, K., Labat, D., and Dartus, D.:
Parameter regionalization for a process-oriented distributed model dedicated to flash floods,
J. Hydrol.,
525, 383–399, 2015. a
                    
                
                        
                        Gourley, J., Flamig, Z., Vergara, H., Kirstetter, P.-E., Clark, R., Argyle, E., Arthur, A., Martinaitis, S., Terti, G., Erlingis, J., Hong, Y., and Howard, K.:
The flash project Improving the Tools for Flash Flood Monitoring and Prediction across the United States,
B. Am. Meteorol. Soc.,
98, 361–372, https://doi.org/10.1175/BAMS-D-15-00247.1, 2017. a
                    
                
                        
                        Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.:
Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling,
J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
                    
                
                        
                        Hapuarachchi, H., Wang, Q., and Pagano, T.:
A review of advances in flash flood forecasting,
Hydrol. Process.,
25, 2771–2784, https://doi.org/10.1002/hyp.8040, 2011. a
                    
                
                        
                        Hascoet, L. and Pascual, V.:
The Tapenade Automatic Differentiation tool: principles, model, and specification, ACM T. Math. Software,
39, 20, https://doi.org/10.1145/2450153.2450158, 2013. a
                    
                
                        
                        Javelle, P., Fouchier, C., Arnaud, P., and Lavabre, J.:
Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations,
J. Hydrol.,
394, 267–274, 2010. a
                    
                
                        
                        Javelle, P., Demargne, J., Defrance, D., Pansu, J., and Arnaud, P.:
Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system,
Hydrolog. Sci. J.,
59, 1390–1402, 2014. a
                    
                
                        
                        Javelle, P., Organde, D., Demargne, J., Saint-Martin, C., de Saint-Aubin, C., Garandeau, L., and Janet, B.:
Setting up a French national flash flood warning system for ungauged catchments based on the AIGA method,
in: 3rd European Conference on Flood Risk Management (FLOODrisk 2016), 17–21 October 2016, Lyon, France, Proceedings, https://doi.org/10.1051/e3sconf/20160718010, 2016. a
                    
                
                        
                        Javelle, P., Saint-Martin, C., Garandeau, L., and Janet, B.:
Flash flood warnings: Recent achievements in France with the national Vigicrues Flash system,
United Nations Office for Disaster Risk Reduction, Contributing Paper to the Global Assessment Report on Disaster Risk Reduction (GAR 2019),
available at:
https://www.undrr.org/publication/flash-flood-warnings-recent-achievements-france-national-vigicrues-flash-system (last access: 7 October 2020), 2019. a
                    
                
                        
                        Jay-Allemand, M., Gejadze, I., Javelle, P., Organde, D., Fine, J.-A., Patrick, A., and Malaterre, P.-O.:
Assimilation de données appliquée à un modèle pluie-débit distribué pour la prévision des crues,
in: De la prévision des crues à la gestion de crise,
Société hydaulique de France, Avignon, 2018. a
                    
                
                        
                        Klemes, V.:
Operational testing of hydrological simulation models,
Hydrolog. Sci. J.,
31, 13–24, https://doi.org/10.1080/02626668609491024, 1986. a
                    
                
                        
                        Laganier, O., Ayral, P. A., Salze, D., and Sauvagnargues, S.: A coupling of hydrologic and hydraulic models appropriate for the fast floods of the Gardon River basin (France), Nat. Hazards Earth Syst. Sci., 14, 2899–2920, https://doi.org/10.5194/nhess-14-2899-2014, 2014. a, b
                    
                
                        
                        Laurent, L., Le Riche, R., Soulier, B., and Boucard, P.-A.:
An Overview of Gradient-Enhanced Metamodels with Applications,
Arch. Comput. Method. E.,
26, 61–106, 2019. a
                    
                
                        
                        Ledimet, F. and Talagrand, O.:
Variational Algorithms For Analysis And Assimilation Of Meteorological Observations – Theoretical Aspects,
Tellus A,
38, 97–110, https://doi.org/10.3402/tellusa.v38i2.11706, 1986. a
                    
                
                        
                        Lee, H., Seo, D.-J., Liu, Y., Koren, V., McKee, P., and Corby, R.: Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal scale of adjustment, Hydrol. Earth Syst. Sci., 16, 2233–2251, https://doi.org/10.5194/hess-16-2233-2012, 2012. a
                    
                
                        
                        Liu, Y., Weerts, A. H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A. I. J. M., van Velzen, N., He, M., Lee, H., Noh, S. J., Rakovec, O., and Restrepo, P.: Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, Hydrol. Earth Syst. Sci., 16, 3863–3887, https://doi.org/10.5194/hess-16-3863-2012, 2012. a
                    
                
                        
                        Lobligeois, F., Andréassian, V., Perrin, C., Tabary, P., and Loumagne, C.: When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events, Hydrol. Earth Syst. Sci., 18, 575–594, https://doi.org/10.5194/hess-18-575-2014, 2014. a
                    
                
                        
                        McLaughlin, D.:
Recent developments in hydrologic data assimilation,
Rev. Geophys.,
33, 977–984, 1995. a
                    
                
                        
                        Moradkhani, H. and Sorooshian, S.:
General review of rainfall-runoff modeling: model calibration, data assimilation, and uncertainty analysis,
in: Hydrological modelling and the water cycle,
edited by: Sorooshian, S., Hsu, K.-L., Coppola, E. Tomassetti, B. Verdecchia, M., and Visconti, G.,
Springer, Berlin, Heidelberg, 1–24, https://doi.org/10.1007/978-3-540-77843-1, 2009. a
                    
                
                        
                        Mouelhi, S., Michel, C., Perrin, C., and Andréassian, V.:
Linking stream flow to rainfall at the annual time step: the Manabe bucket model revisited,
J. Hydrol.,
328, 283–296, 2006. a
                    
                
                        
                        Munier, S., Litrico, X., Belaud, G., and Perrin, C.:
Assimilation of discharge data into semidistributed catchment models for short-term flow forecasting: Case study of the Seine River basin,
J. Hydrol. Eng.,
20, 05014021, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001054, 2014. a
                    
                
                        
                        Nash, J. E. and Sutcliffe, J. V.:
River flow forecasting through conceptual models. Part I. A conceptual models discussion of principles.,
J. Hydrol.,
10, 282–290, 1970. a
                    
                
                        
                        Nguyen, V. T., Georges, D., Besançon, G., and Zin, I.:
Parameter estimation of a real hydrological system using an adjoint method,
IFAC Papersonline,
49, 300–305, https://doi.org/10.1016/j.ifacol.2016.07.978, 2016. a, b, c, d
                    
                
                        
                        Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., and Loumagne, C.:
Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2 – Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling,
J. Hydrol.,
303, 290–306, 2005. a
                    
                
                        
                        Perrin, C., Michel, C., and Andréassian, V.:
Improvement of a parsimonious model for streamflow simulation,
J. Hydrol.,
279, 275-289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. a, b, c, d
                    
                
                        
                        Pokhrel, P. and Gupta, H. V.:
On the use of spatial regularization strategies to improve calibration of distributed watershed models,
Water Resour. Res.,
46, W01505, https://doi.org/10.1029/2009WR008066, 2010. a
                    
                
                        
                        Quesney, A., Francois, C., Ottle, C., Hegarat, S., Loumagne, C., Normand, M., et al.:
Sequential assimilation of SAR/ERS data in a lumped rainfall-runoff model with an extended Kalman filter,
IAHS Publ., 267, 495–497, 2000. a
                    
                
                        
                        Rakovec, O., Kumar, R., Attinger, S., and Samaniego, L.:
Improving the realism of hydrologic model functioning through multivariate parameter estimation,
Water Resour. Res.,
52, 7779–7792, https://www.scopus.com, 2016. a
                    
                
                        
                        Riboust, P., Thirel, G., Moine, N. L., and Ribstein, P.:
Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses,
J. Hydrol. Hydromech.,
67, 70–81, 2019. a
                    
                
                        
                        Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J., and Dartus, D.: A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments, Nat. Hazards Earth Syst. Sci., 11, 2567–2582, https://doi.org/10.5194/nhess-11-2567-2011, 2011.
 a
                    
                
                        
                        Samaniego, L., Kumar, R., and Attinger, S.:
Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale,
Water Resour. Res.,
46, W05523, https://doi.org/10.1029/2008WR007327, 2010. a
                    
                
                        
                        Santos, L., Thirel, G., and Perrin, C.: Continuous state-space representation of a bucket-type rainfall-runoff model: a case study with the GR4 model using state-space GR4 (version 1.0), Geosci. Model Dev., 11, 1591–1605, https://doi.org/10.5194/gmd-11-1591-2018, 2018. a
                    
                
                        
                        Seo, D.-J., Cajina, L., Corby, R., and Howieson, T.:
Automatic state updating for operational streamflow forecasting via variational data assimilation,
J. Hydrol.,
367, 255–275, https://doi.org/10.1016/j.jhydrol.2009.01.019, 2009. a
                    
                
                        
                        Sun, L., Nistor, I., and Seidou, O.:
Streamflow data assimilation in SWAT model using Extended Kalman Filter,
J. Hydrol.,
531, 671–684, 2015. a
                    
                
                        
                        Sun, L., Seidou, O., Nistor, I., and Liu, K.:
Review of the Kalman-type hydrological data assimilation,
Hydrolog. Sci. J.,
61, 2348–2366, 2016. a
                    
                
                        
                        Thirel, G., Martin, E., Mahfouf, J.-F., Massart, S., Ricci, S., and Habets, F.: A past discharges assimilation system for ensemble streamflow forecasts over France – Part 1: Description and validation of the assimilation system, Hydrol. Earth Syst. Sci., 14, 1623–1637, https://doi.org/10.5194/hess-14-1623-2010, 2010. a
                    
                
                        
                        Tramblay, Y., Bouvier, C., Crespy, A., and Marchandise, A.:
Improvement of flash flood modelling using spatial patterns of rainfall: A case study in southern France, in: Sixth World FRIEND Conference, the Global Change: Facing Risks and Threats to Water Resources, October 2010, Fez, Morocco, IAHS Publ. 340, 172–178, 2010. a, b
                    
                
                        
                        Vannier, O., Braud, I., and Anquetin, S.:
Regional estimation of catchment-scale soil properties by means of streamflow recession analysis for use in distributed hydrological models,
Hydrol. Process.,
28, 6276–6291, https://doi.org/10.1002/hyp.10101, 2014. a
                    
                
                        
                        Vannier, O., Anquetin, S., and Braud, I.:
Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: Regional modelling study and process understanding,
J. Hydrol.,
541, 158–172, https://doi.org/10.1016/j.jhydrol.2016.04.001, 2016. a
                    
                
                        
                        Vidal, J. P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J. M.:
A 50-year high-resolution atmospheric reanalysis over France with the Safran system,
Int. J. Climatol.,
30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010. a
                    
                
                        
                        Wang, J., Hong, Y., Li, L., Gourley, J. J., Khan, S. I., Yilmaz, K. K., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., et al.:
The coupled routing and excess storage (CREST) distributed hydrological model,
Hydrolog. Sci. J.,
56, 84–98, 2011. a
                    
                
                        
                        Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.:
L-BFGS-B: a limited memory FORTRAN code for solving bound constrained optimization problems,
Technical Report No. NAM-11,
EECS Department, Northwestern University, Evanston, IL, 1994. a
                    
                Short summary
            This study contributes to flash flood prediction using a hydrological model. The model describes the spatial properties of the watersheds with hundreds of unknown parameters. The Gardon d'Anduze watershed is chosen as the study benchmark. A sophisticated numerical algorithm and the downstream discharge measurements make the identification of the model parameters possible. Results provide better model predictions and relevant spatial variability of some parameters inside this watershed.
            This study contributes to flash flood prediction using a hydrological model. The model describes...