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Abstract. Calibration of a conceptual distributed model is
challenging due to a number of reasons, which include fun-
damental (model adequacy and identifiability) and algorith-
mic (e.g., local search vs. global search) issues. The aim of
the presented study is to investigate the potential of the vari-
ational approach for calibrating a simple continuous hydro-
logical model (GRD; Génie Rural distributed involved in sev-
eral flash flood modeling applications. This model is defined
on a rectangular 1 km2 resolution grid, with three parame-
ters being associated with each cell. The Gardon d’Anduze
watershed (543 km2) is chosen as the study benchmark. For
this watershed, the discharge observations at five gauging sta-
tions, gridded rainfall and potential-evapotranspiration esti-
mates are continuously available for the 2007–2018 period
at an hourly time step.

In the variational approach one looks for the optimal so-
lution by minimizing the standard quadratic cost function,
which penalizes the misfit between the observed and pre-
dicted values, under some additional a priori constraints. The
cost function gradient is efficiently computed using the ad-
joint model. In numerical experiments, the benefits of using
the distributed against the uniform calibration are measured
in terms of the model predictive performance, in temporal,
spatial and spatiotemporal validation, both globally and for
particular flood events. Overall, distributed calibration shows
encouraging results, providing better model predictions and
relevant spatial distribution of some parameters. The numer-
ical stability analysis has been performed to understand the
impact of different factors on the calibration quality. This
analysis indicates the possible directions for future develop-

ments, which may include considering a non-Gaussian like-
lihood and upgrading the model structure.

1 Introduction

Flash flood prediction remains a challenging task of modern
hydrology due to a number of reasons. First, the heavy pre-
cipitation events (HPEs) leading to flash floods are difficult
to forecast due to complexity of the processes involved (deep
convection triggered by orographic lifting, low-level wind
convergence and/or cold pools) (Ducrocq et al., 2016). Sec-
ond, the hydrological response of the watershed is difficult to
model, since it depends on many factors. These include the
watershed properties (topography, geology and land cover)
and its initial state, for example the soil moisture (Braud
et al., 2016). For the western Mediterranean region, which
is often affected by flash floods, the HyMeX program (Hy-
drological Cycle in the Mediterranean Experiment) offers a
good opportunity to conduct multidisciplinary studies on the
relevant subjects (Drobinski et al., 2014).

In order to better predict flash floods and reduce their po-
tentially devastating impact, warning systems have been de-
veloped or are currently under development (Collier, 2007;
Hapuarachchi et al., 2011; Gourley et al., 2017). The dis-
tributed hydrological models utilizing the rainfall radar mea-
surements are widely implemented in such systems. These
models take into account the spatial variability of the catch-
ment properties and of the rainfall and are capable of pre-
dicting the discharge at ungauged locations. The latter is
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important for small- or medium-sized watersheds which are
not covered by an extensive gauging network (Borga et al.,
2011). Among operational models presently used for flash
flood prediction at a national scale, one could mention the
CREST (Coupled Routing and Excess Storage) model in the
USA developed by Wang et al. (2011) or the G2G (Grid-to-
Grid) model (UK) from Bell et al. (2007). Those distributed
models are often “conceptual”, because considering more
complex “physically based” models may not be justified for
the flash flood prediction purpose (Beven, 1989). Since the
conceptual parameters are not directly observable, they have
to be defined using calibration. However, due to a potentially
significant number of cells or subcatchments, the calibration
process has to deal with overparameterization and unique-
ness (equifinality) issues (Beven, 1993, 2001). Another set of
difficulties stems from a dubious adequacy of such models,
in which case the very definitions of “overparameterization”
and “overfitting” should be refined.

As noticed in De Lavenne et al. (2019), all existing calibra-
tion methods developed for the distributed hydrological mod-
els involve some sort of regularization strategy. One possible
approach is the control set reduction. For example, for each
distributed parameter one can try to evaluate a nonuniform
spatial pattern from information about the catchment char-
acteristics, including its geological formation, soil properties
and land use (Anderson et al., 2006). Then, instead of cali-
brating the local values of parameters associated with each
grid cell, one calibrates a few “superparameters” (additive
constant, multiplier and power) that modify this pattern ac-
cording to a chosen law (see, e.g., Pokhrel and Gupta, 2010).
The same idea but in the multiscale setting is implemented
in the multiscale parameter regionalization (MPR) method
described in Samaniego et al. (2010). Other strategies can
also include the use of additional data, as in Rakovec et al.
(2016), where a satellite-based total water storage (TWS)
anomaly is used to complement the discharge data. For a
low-dimensional unknown vector one can use a variety of
probabilistic or gradient-free methods to find the sought esti-
mate. It has to be recognized, however, that evaluating useful
spatial patterns from auxiliary information is a difficult task
by itself. In the presented paper we investigate the possibility
of calibrating the distributed parameters without considering
any predefined spatial structures. Such a calibration problem
falls into the category of high-dimensional inverse problems
which can be addressed through the appropriate data assimi-
lation methods.

Methods of data assimilation (DA) have been engaged
for several decades in geosciences, including meteorology,
oceanography, river hydraulics and hydrology applications.
These methods are used for estimating the driving condi-
tions, states and/or parameters (calibration) of a dynamical
model describing the evolution of natural phenomena. The
estimates are conditioned on observations (usually incom-
plete) of a prototype system. Some early applications of DA
in hydrology are described in the review paper of McLaugh-

lin (1995). More recently the review paper of Liu et al. (2012)
reports the progress and challenges of data assimilation ap-
plications in operational hydrological forecasting. It seems
that the Kalman filtering has been recently the most popu-
lar DA method in hydrology (Sun et al., 2016). For instance,
in Quesney et al. (2000) the extended Kalman filter is ap-
plied with a lumped conceptual rainfall–runoff model to esti-
mate the soil moisture by assimilating the SAR (synthetic
aperture radar) data. In Munier et al. (2014), the standard
Kalman filter is applied with the semi-distributed concep-
tual TGR (Transfer with the Génie Rural) model, where the
discharge observations are assimilated to adjust the initial
model states. It has been shown that the predictive perfor-
mance depends on the degree of “spatialization” of the wa-
tershed and on the number of gauging stations engaged. In
Sun et al. (2015), the extended Kalman filter is used with
the distributed SWAT (soil and water assessment tool) model
to improve flood prediction on the upstream Senegal River
catchment. In this work, given the large number of state vari-
ables, only the spatially averaged low-resolution updates are
estimated. This shows that for DA involving distributed mod-
els, scalable methods must be used (scalable algorithm is the
one able to maintain the same efficiency when the workload
grows). The choice of DA methods is, therefore, limited to
the ensemble Kalman filter and the variational estimation.

In variational estimation, one looks for the minimum of the
cost function dependent on the control vector (i.e., vector of
unknown model inputs) using a gradient-based iterative pro-
cess. The cost function itself represents the maximum a pos-
teriori (MAP) estimator, which turns into the standard 4D-
Var (variational) cost function (Rabier and Courtier, 1992)
under the Gaussian assumption. The key issue of variational
estimation is the method used for computing the gradient.
For a low-dimensional control vector the finite-difference ap-
proach can be used. For example, Abbaris et al. (2014) ex-
plored such a variational-estimation algorithm involving the
lumped conceptual HBV (Hydrologiska Byråns Vattenbal-
ansavdelning) model in operational setting. It has been used
to update the soil moisture and the states of the routing tank
reservoirs on some events. It has been shown that DA helps to
improve the peak flow prediction; however the correct choice
of the assimilation period and the forecast horizon is vital.
In Thirel et al. (2010), the cost function is minimized itera-
tively using the BLUE (best linear unbiased estimator) for-
mulation, which is equivalent to the “algebraic” form of the
Gauss–Newton method. Here, DA is implemented involving
the SIM (SAFRAN–ISBA–MODCOU; Système d’analyse
fournissant des renseignements atmosphériques à la neige–
Interaction Sol-Biosphère-Atmosphère–MODlisation COU-
plée) model. It has been shown that the improved estimate
of the moisture of the soil layers leads to a significantly bet-
ter discharge simulation. However, the genuine variational-
estimation method relies on the adjoint model, which al-
lows the precise (up to round-off errors) gradient of the
cost function to be computed in a single adjoint run. Then,
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different minimization methods can be applied. For exam-
ple, in weather and ocean forecasting, where the models
involved are computationally very expensive, the Gauss–
Newton method (e.g., “incremental approach”) is used. This
method (as any local-search method) leads to a nearest local
minimum in the vicinity of the prior guess. This could be a
serious problem if the posterior distribution is multimodal.
Certain past attempts with the local-search methods in hy-
drology were not always successful, and several authors have
reported that these methods fail to deliver the global opti-
mal solution (Moradkhani and Sorooshian, 2009; Abbaspour
et al., 2007). For high-dimensional but relatively inexpensive
models, the gradient-enhanced global-search minimization
methods can be considered (Laurent et al., 2019).

Using the variational estimation involving the adjoint is
very common in atmospheric and oceanographic applica-
tions. But, in hydrology, only a very few cases have been
actually reported. In particular, in Castaings et al. (2009) and
Nguyen et al. (2016), the adjoint model has been generated
or derived for the kinematic-wave overland flow model with
the source term including the rainfall as a driving condition
and the infiltration term described by a Green–Ampt model
(Castaings et al., 2009) or the Horton model (Nguyen et al.,
2016). Since models are represented by a partial differen-
tial equation, this is a standard case for which a significant
experience has been accumulated within the data assimila-
tion community. The major difference between the two pa-
pers is that in Castaings et al. (2009) the adjoint has been
generated by automatic differentiation applied to the existing
MARINE (Modélisation de l’Anticipation du Ruissellement
et des Inondations pour des évéNements Extrêmes) model,
while in Nguyen et al. (2016) it is derived and implemented
manually. In Castaings et al. (2009) the distributed parame-
ters of the infiltration model has been calibrated considering
a single flood event in an identical twin experiment frame-
work, whereas in Nguyen et al. (2016) the author looks for
a few global parameters considering two realistic events. In
Seo et al. (2009) the adjoint is used for state updating of a
lumped model, while in Lee et al. (2012) it is for state updat-
ing of a distributed model.

The aim of our study is to assess a set of parameters which
may represent the spatially varying hydrological properties
of a chosen watershed; thus the distributed model parame-
ters have to be calibrated over a very long assimilation win-
dow (i.e., several years). With this purpose we develop a
variational-calibration method using the adjoint applied on
a simple fully distributed model (GRD; Génie Rural dis-
tributed), involving a conceptual cell-to-cell routing scheme.
This scheme has been designed keeping in mind the differ-
entiability requirement. The adjoint is obtained by automatic
differentiation and manually optimized to provide the capac-
ity to work for long time periods (up to several consecu-
tive years) over large spatial areas, with fine resolution. This
requires a memory efficient and fast code. The distributed
parameters of the GRD model are calibrated over a French

Mediterranean catchment, the Gardon d’Anduze, using rain-
fall radar data and the discharge data from the outlet gauge
station. The discharge data from other gauge stations avail-
able in this catchment are used for cross-validation (10 years,
being split in two periods). Thus, the major questions ad-
dressed in this paper are: (a) can we, in principle, benefit
from considering the spatially distributed set of coefficients
given by the method instead of the uniform (homogeneous)
set of coefficients, and, if so, to what extent? In particular,
does it help to improve the discharge prediction over the
catchment area including “ungauged” locations? (b) What
are the major difficulties associated with this approach (in-
sufficient data, structural deficiency of the model, identifia-
bility issue, etc.), and what could possibly be done to improve
the model predictive performance?

The paper is organized as follows. In Sect. 2.1 the GRD
model used in this study is described. In Sect. 2.2 we present
the variational-estimation algorithm adapted for the parame-
ter calibration purpose. The testing benchmark is described
in Sect. 2.3, and the testing methodology in Sect. 2.4. The
results are presented in Sect. 3, followed by the “Discussion
and conclusions” section.

2 Methodology and data

2.1 Distributed rainfall–runoff model GRD

The GRD model is a conceptual distributed hydrological
model designed for flash flood prediction (Javelle et al.,
2010, 2016; Arnaud et al., 2011; Javelle et al., 2014). Since
March 2017, it has been used operationally by the national
French flash flood warning system called “Vigicrues Flash”
(Javelle et al., 2019). The model version used in the present
study has been specially developed for testing the potential
of distributed calibration using the variational approach. It is
defined on a regular 1 km2 grid and runs continuously at an
hourly time step. For each time step the model input includes
the gridded rainfall and potential evapotranspiration, and the
output is the discharge field defined at the routing scheme
nodes.

Our model incorporates some features from the GR
(Génie Rural) model family, which include several lumped
and semi-distributed bucket-style continuous models de-
veloped over the last 30 years at INRAE Antony (Insti-
tut national de recherche pour l’agriculture, l’alimentation
et l’environnement). Those models have been extensively
tested and have demonstrated good performance in various
conditions and for different time steps (Perrin et al., 2003;
Mouelhi et al., 2006; Lobligeois et al., 2014; Ficchì et al.,
2016; Santos et al., 2018; Riboust et al., 2019; De Lavenne
et al., 2019).

Let us consider a 2D spatial domain (basin, catchment and
watershed) � covered by the rectangular grid. For each cell
(pixel), the model involves the production and transfer reser-
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Figure 1. General outlines of the GRD model: P represents the
local rainfall over one cell; E is the potential evapotranspiration; Pr
is the effective rainfall; q is the elementary discharge; and Q is the
total routed discharge.

voirs, characterized by capacities cp and ct, correspondingly,
and the discharge generated within each cell is routed be-
tween cells with local routing velocity v (see Fig. 1). It means
that only three parameters need to be defined for each cell.
The integral flow, without distinction between surface, sub-
surface or groundwater flow, is simulated by the production
and transfer reservoirs at the cell level and by the routing
scheme at the inter-cell level. Obviously, such model concep-
tually describes the overall hydrological process rather than
its physically meaningful components.

2.1.1 The water balance operator

Let P(t) be the local total rainfall (function of time t) and
E(t) be the local total potential evapotranspiration. For each
cell (pixel), a water balance function determines the effective
rainfall Pr, i.e., the amount of rainfall that will participate
to the flow. This function is defined via the following steps.
First, the net rainfall Pn and the net potential evapotranspira-
tion En are defined from the following equation:{
Pn = P −E, En = 0, if P ≥ E,

Pn = 0, En = E−P, if P < E.
(1)

Next, the production reservoir is filled by Pp, a part of Pn.
Similarly, the production reservoir is emptied byEp, a part of
En representing the actual evapotranspiration. The variation
of the reservoir level hp is driven by the following differential
equation (Edijatno, 1991):

dhp =

[
1−

(
hp

cp

)2
]

dPn−
hp

cp

(
2−

hp

cp

)
dEn. (2)

Assuming a stepwise approximation of input variables P(t)
and E(t), Eq. (2) is integrated over one time step 1t to ob-
tain the amount Pp filling the reservoir and the amount Ep

evaporated from it:

Pp = cp

(
1−

(
hp

cp

)2
)

tanh
(
Pn
cp

)
1+

(
hp
cp

)
tanh

(
Pn
cp

) , (3)

Ep = hp

(
2−

hp

cp

) tanh
(
En
cp

)
1+

(
1− hp

cp

)
tanh

(
En
cp

) . (4)

It should be noted that with this discretized temporal formu-
lation, hp is the reservoir level at the beginning of 1t and Pp
and Ep are the volume of water gained or lost by the reser-
voir over 1t . At the end of 1t , hp is updated by adding Pp
or removing Ep before progressing to the next time step. Fi-
nally, Pr is the part of the net rainfall that does not enter into
the production reservoir:

Pr = Pn−Pp. (5)

One can see that the state of the production reservoir hp plays
the role of the humidity state of the soil. An empty reser-
voir (hp = 0) means that the soil is completely dry: effec-
tive rainfall and evapotranspiration are equal to zero, and all
amount of the net rainfall enters into the production reservoir
(Ep = 0, Pp = Pn and Pr = 0). On the contrary, a full reser-
voir (hp = cp) means that the soil is completely saturated: no
more rainfall enters into the production reservoir, the evapo-
transpiration is maximal and all the net rainfall produces the
effective rainfall (Ep = En, Pp = 0 and Pr = Pn).

2.1.2 The transfer operator

The effective rainfall Pr(t) fills the transfer reservoir char-
acterized by state ht and capacity ct. The emission from
the transfer reservoir during 1t gives the elementary dis-
charge q. This transformation is modeled by a conservative
operator which is derived from the differential equation de-
scribing the evolution of ht under the mass conservation con-
dition:
dht

dt
+ ahbt = Pr. (6)

It has been noticed (Perrin et al., 2003) that Eq. (6) correctly
replicates the flooding and drying processes for b = 5. This is
an empirical knowledge which has no physical justification.
Assuming Pr is the impulse function, Eq. (6) is integrated
over one time step 1t to obtain the expression for q:

q = ht − (h
−4
t + c

−4
t )−0.25, c−4

t = 4a1t. (7)

More details about the production and the transfer reservoirs
can be found in Perrin et al. (2003).

2.1.3 The routing scheme (cell to cell)

The total discharge (Q) in a cell is then obtained by rout-
ing through the catchment all the upstream elementary dis-
charges (q). This routing is built on top of a digital elevation
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model which, for a given node, defines the flow direction.
The routing nodes are placed at the center of the correspond-
ing cells.

For the sake of simplicity we describe the routing model
in the 1D setting. The total discharge from node i−1 to node
i is delayed by time

τ(vi−1,i)=
di−1,i

vi−1,i
, (8)

where di−1,i and vi−1,i are the distance and the routing ve-
locity between the nodes, respectively. In the simplest im-
plementation, the output discharge (more precisely, the mass
over the time step 1t) is given as

Qi(t)= qi(t)+Qi−1(t − τ(vi−1,i)), (9)

where Qi is the total discharge in cell i, Qi−1 is the total
discharge in the neighboring upstream cell and qi is the el-
ementary discharge emitted from the transfer reservoir over
time period δt at cell i. Note that in a 2D case, the second
term of the right-hand side of Eq. (9) could be a sum of a few
contributions from direct neighboring cells, with their own
values of d and v. Since no explicit expression for Q is pro-
vided, Q is not differentiable with respect to v. That is why
the above formulation is not suitable for the variational ap-
proach, which requires the gradient of the cost function to
be computed. In order to tackle this issue we represent the
second term in Eq. (9) in the integral form as follows:

Qi−1(t − τ(vi−1,i))=

t∫
t ′=−∞

Qi−1(t
′) δ(t ′− t + τ(vi−1,i))dt ′. (10)

Next, instead of the δ function we use the unscaled Gaussian
function, i.e.,

Qi−1(t − τ(vi−1,i))=

t∫
t ′=−∞

Qi−1(t
′)ω

(
t ′− t +

di−1,i

vi−1,i
, σ

)
dt ′, (11)

where

ω(t,σ )= exp
(
−
t2

2σ 2

)
. (12)

It is easy to see that function Eq. (11) explicitly depends on vi
via ω; therefore the gradient of Qi−1 with respect to vi can
be computed. AssumingQ(t) is a constant during a time step
period 1t , Eq. (11) can be written in the discrete form as
follows:

Qi−1
(
t − τ(vi−1,i)

)
=

L∑
l=1

βi, lQi−1(t − (l− 1)1t), (13)

where

βi, l = βi, l/

L∑
l=1

βi, l,

βi, l = w

(
t − (l− 1)1t +

di−1,i

vi−1,i
,σ

)
, l = 1, . . .,L

and L defines the finite time period (in terms of 1t) instead
of the semi-infinite period considered in Eq. (10). For the
given estimate of routing velocities vi−1,i , the coefficient βi,l
does not change with time and, therefore, can be precom-
puted and saved in memory. The spread coefficient σ mod-
els the diffusion. The value of parameter σ should not be
lower than 0.5 to avoid numerical instability (i.e., when a
small variation of the routing velocity results in a large varia-
tion of “delay”). Therefore, σ = 0.5 is used in computations.
In terms of using the exponential weights the presented rout-
ing model resembles the lag-and-route (LR) model described
in Laganier et al. (2014) and Tramblay et al. (2010). How-
ever, the Gaussian function represents the hydraulic response
function in a more realistic way. Indeed, in the lag-and-route
method, the kernel function ω is discontinuous, being zero
for t ′ > t − τ . It means the outflow from cell i− 1 arrives to
cell i in a “shock” manner. If the Gaussian function is used,
there is no discontinuity; i.e., outflow from cell i−1 arrives to
cell i progressively. This scheme is more suitable for cell-to-
cell implementation, as it is more stable for direct modeling
and the absence of discontinuity is a necessary condition to
achieve the differentiability of the forward operator.

2.2 Variational-calibration algorithm

Calibrating a distributed model is often difficult due to a
number of reasons. First, the total number of the sought
parameters can be quite large (high dimensionality). This
strictly limits the choice of suitable inference methodologies.
Second, there is an identifiability issue given the sparsity
of observations in space, the information content of the test
signal (rainfall variability) and, possibly, the chosen model
structure. The first two can be partially compensated by in-
creasing the observation period or observation frequency to
better analyze the system dynamics.

For distributed models the variational-estimation algo-
rithm could be a natural choice, since it is scalable, i.e., it
works efficiently for a practically unlimited size of the con-
trol vector. That is why this method (branded as 4D-Var) is
commonly used in meteorology and oceanography for oper-
ational forecasting and reanalysis (Ledimet and Talagrand,
1986; Rabier and Courtier, 1992). The method provides the
exact mode of the posterior distribution by minimizing the
cost function defined over the given observation window.
The key element of the method is the adjoint model, which
provides the precise gradient of the cost function with re-
spect to all elements of the control vector in a single run
(Errico, 1997). This allows for the fast-converging gradient-

https://doi.org/10.5194/hess-24-5519-2020 Hydrol. Earth Syst. Sci., 24, 5519–5538, 2020



5524 M. Jay-Allemand et al.: Variational calibration of a fully distributed hydrological model

based minimization methods to be used, such as the BFGS
(Broyden–Fletcher–Goldfarb–Shanno) or the Newton type.
Quite often, the need for development of the adjoint model
becomes an obstacle for the practical implementation of this
method. Heuristic methods such as the Nelder–Mead algo-
rithm do not require the gradient to evaluate the descent di-
rections but converge slowly and are not suitable for solv-
ing problems in high dimensions. The same is true as for
the general-purpose statistical methods such as the Markov
chain Monte Carlo (e.g., Metropolis–Hastings algorithm), as
well as for the methods specially designed for hydrology ap-
plications, such as SUFI-2 (Sequential Uncertainty Fitting)
(Abbaspour et al., 2007).

Let us consider the rainfall and potential-
evapotranspiration fields P(x, t) and E(x, t), ∀x ∈�.
We represent the hydrological model in Sect. 2.1 as an
operator A mapping the input fields P (x, t) and E(x, t) into
the discharge Qk(t) at the gauged nodes xk ∈�, k = 1,Ng:

Qk(t)= A(P (x, t
′),E(x, t ′),h(x,0),θ(x), t),

∀x ∈�, t ′ ∈ (0, t), (14)

where h(x, t)= (hp(x, t),ht(x, t))
T is the state vector,

which includes the states of production and transfer reser-
voirs for all cells at time t ; θ(x)= (cp(x),ct(x),v(x))

T is the
parameter vector, which includes the corresponding capaci-
ties and the routing velocities at all routing nodes; and Ng
is the number of gauged routing nodes, i.e., where discharge
observations are available. If the observation period is much
longer than the characteristic time of the system (which is
the case for calibration or reanalysis), one can use the trivial
initial state h(x,0)= 0, but consider the observation window
t ∈ (t∗,T ), where t∗ is the relaxation period. Given the ob-
served inputs P ∗(x, t ′), E∗(x, t ′), t ′ ∈ (0, t) and the output
Q∗k(t), the calibration cost function can be defined as follows:

J (θ)=

Ng∑
k=1

a−1
k (t∗)

T∫
t=t∗

(
A(P ∗,E∗,0,θ , t)−Q∗k(t)

)2 dt

+α‖B−1/2(θ − θ∗)‖2
L2 , (15)

where B is the background error covariance; θ∗ is a prior
guess on θ , which comes from special measurements, land
expertise or a modeling; α is the regularization parameter;
and ak are the scaling constraints. If we consider

ak(t
∗)=

T∫
t=t∗

(
〈Q∗k〉−Q

∗

k(t)
)2 dt,

where 〈Q∗k〉 is the temporal mean of Q∗k(t), then for each
k the misfit term becomes 1−NSE, where NSE stands for
the Nash–Sutcliffe efficiency criterion (Nash and Sutcliffe,
1970) widely used in hydrology. In essence, Eq. (15) is
more or less a standard quadratic cost function similar to

the one used in variational data assimilation (4D-Var), where
the weight α is introduced to mitigate the uncertainty in θ∗

and B. Let us note that this paper is focused on the parameter
calibration problem involving long time series of observa-
tions.

We use additional constraints in the form

θmin ≤ θ ≤ θmax, (16)

where θmin and θmax are the bounds which come from the
empirical knowledge or physical considerations. Thus, the
optimal estimate of the parameters θ̂ is obtained from the
condition

θ̂ = argmin
θ

J (θ), (17)

given constraints of Eqs. (14) and (16).
Matrix B can be represented in the form B= σ θ · IC σ θ ·

I, where σ θ is the vector of mean deviations of θ , C is the
correlation matrix, I is the identity matrix and “·” stands for
the element-wise (Hadamard) product. Next, the scaling of
parameters is introduced such that θ = θmin+ θ̃(θmax−θmin)

to ensure that 0≤ θ̃ ≤ 1. Then, the penalty term in Eq. (15)
takes the form

α‖(θmax− θmin) · σ
−1
θ · IC−1/2(θ̃ − θ̃∗)‖2

L2 .

Assuming that (θmax−θmin) ·σ
−1
θ = const, the cost function

of Eq. (15) reads as follows:

J (θ̃)=

Ng∑
k=1

a−1
k (t∗)

T∫
t=t∗

(
A(P ∗,E∗,0,θ)−Q∗k

)2 dt

+α‖C−1/2(θ̃ − θ̃∗)‖2
L2 , (18)

given

θ = θmin+ θ̃(θmax− θmin), 0≤ θ̃ ≤ 1. (19)

The results presented in this paper correspond to the simplest
approach to regularization: we assume that C= I, and the
regularization parameter is chosen a priori as a small value
(α = 10−4) to ensure the formal well-posedness of the cal-
ibration problem. More sophisticated approaches for regu-
larization (nontrivial correlation matrix C and the optimal
choice of α using the L-curve approach) have been utilized
(Jay-Allemand et al., 2018) but are not presented in this pa-
per for the sake of simplicity. In practice, the simplifications
mentioned above lead to significantly more oscillating pa-
rameter fields, which does not seem to have a critical in-
fluence on the predictive performance of the model (in the
open-loop forecasting, at least).

Minimization of Eq. (18) given constraints of Eq. (19)
is performed by LBFGS-B (limited-memory Broyden–
Fletcher–Goldfarb–Shanno bound-constrained; Zhu et al.,
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1994). The minimization process can be written in the form

θ̃ i+1 = θ̃ i + γH−1(θ i)R[J
′

θ̃
(θ i)],

i = 0,1, . . ., θ̃0 = θ̃
∗, (20)

where J ′(θ i) and H−1(θi) are the gradient (with respect to
θ̃ ) and the limited-memory inverse Hessian of Eq. (18) at
point θ i , respectively, γ is a descent step, i is the iteration
number, and R is the gradient projection operator to account
for the box constraints. Let us note that H−1(θ i) is directly
computed inside the minimization algorithm in such a way
that its norm is always bounded. This serves as an additional
regularization; thus the solution θ̂ is always bounded, even
for α = 0 in Eq. (18), i.e., even without the penalty term. The
gradient J ′(θ i) is obtained by solving the adjoint model. This
model has been generated by the automatic differentiation
engine Tapenade (Hascoet and Pascual, 2013), then manually
optimized and, finally, verified using the standard gradient
test.

The background value θ∗ is used both as a starting point
for iterations and in the penalty term. Given the fact that the
information content of the test signal (rainfall) and observa-
tions (discharge) may not be sufficient to uniquely identify
the distributed coefficients, evaluating an appropriate θ∗ be-
comes an important issue. Thus, the overall calibration pro-
cess involves two steps. In the first step we consider a uni-
form approximation: cp(x)= cp, ct(x)= ct and v(x)= v,
∀x ∈�. In this case (referred as “uniform calibration”) the
sought vector θ = (cp,ct,v)

T consists of just three elements.
For such a low-dimensional problem, obtaining the globally

optimal estimate ˆθ (i.e., the one which corresponds to the
global minimum of Eq. 18) is feasible by a variety of meth-
ods. In particular, we use a simple global-minimization algo-
rithm, the steepest descent method summarized in Edijatno
(1991). In the second step we estimate the distributed pa-
rameters using the uniform estimate as a background, i.e.,

θ∗ =
ˆ
θ . Here, three unknown parameters for each cell are es-

timated using the variational algorithm described above. This
two-step algorithm is referred as “distributed calibration”.

Parameter bounds are defined for each step. Numerical
and physical considerations enforce the lower bounds so that
(cp,ct,v) > 0. For the uniform calibration, the upper bounds
are chosen to preserve the model dynamics. For example,
5 ms−1 is used as the velocity upper bound, since above this
value the flow delay does not decrease significantly. For the
production and transfer reservoirs the upper bounds are set to
5000 and 2000 mm, respectively, since the higher values do
not noticeably change the model dynamics (reservoir states
remain almost constant in time). For the distributed calibra-
tion, bounds are recomputed as θmax =K

ˆ
θ and θmin =

ˆ
θ/K .

In particular,K = 4 is used for results presented in this paper.
Further increasing K does not seem to have any influence on
the estimates.

2.3 Study area and data

A French watershed, the Gardon d’Anduze, has been consid-
ered for testing our model and calibration algorithm. Located
in the western Mediterranean region, this catchment and its
surrounding have been deeply studied in the framework of
the HyMeX program (Drobinski et al., 2014) to understand
the processes leading to flash floods. For instance, some stud-
ies exploited a number of very detailed field measurements
during severe storm events (Braud et al., 2014; Vannier et al.,
2014). Others tested hypotheses using physically distributed
models, for instance the MARINE model (Roux et al., 2011;
Garambois et al., 2013, 2015; Douinot et al., 2016, 2018)
or the CéVeNnes (VCN) model (Braud et al., 2010; Vannier
et al., 2016). A few conceptual distributed models were also
considered in this area, such as those implemented into the
ATHYS (Atelier Hydrologique Spatialisé) platform (Bouvier
and DelClaux, 1996; Laganier et al., 2014; Tramblay et al.,
2010).

The main properties of the Gardon d’Anduze are de-
scribed in Darras (2015). In brief, this is a steep mountain-
ous watershed with a dense hydrographic network spread-
ing over 540 km2 in the eastern part of the Cévennes moun-
tains (France). The difference in levels between the highest
elevation point and Anduze is about 800 m, and the slope
reaches 50 % in the upstream part. A metamorphic (schist)
but fractured geological formation dominates the watershed.
Water infiltrates very quickly (the saturated hydraulic con-
ductivity is greater than 100 mmh−1). The water circulation
appends mainly underground, but with very short response
times (less than 12 h). This area is governed by a transitional
Mediterranean–oceanic climate with warm and dry summers,
alleviated by the oceanic influence, followed by recurrent
short, intense but persistent heavy rainfalls in autumn and
winter, known as épisode méditerranéen, generating flash
floods.

This watershed is well gauged: at least five stations with
continuous data collection are operational here (see Fig. 2
and Table 1). For numerical experiments, the discharge data
have been extracted from the HYDRO database of the French
ministry in charge of the environment. Rainfall gridded data
have been provided by Météo France. It is a pseudo-real-
time reanalysis (ANTILOPE – ANalyse par spaTIaLisation
hOraire des PrEcipitations – J+1, i.e., available 1 d after the
current date), merging radar rainfall estimation with in situ
rain gauges. The gridded potential evapotranspiration is com-
puted using interannual air temperature values and the for-
mula developed by Oudin et al. (2005). The temperature
data were provided by the SAFRAN reanalysis (Vidal et al.,
2010). All the time series have been processed at an hourly
time step over the continuous 2007–2018 period. All the
gridded data are defined at a 1 km× 1 km spatial resolution,
over the same 46 km× 40 km domain overlapping the water-
shed. Furthermore, the flow direction (eight directions) map
and the flow accumulation map have been carefully checked,
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Table 1. Characteristics of the five gauging stations on the Gardon watershed. QIX2 and QIX10 stand for the quantile discharge, respectively,
for 2- and 10-year return periods.

Rivers and station names Codes Surfaces (km2) QIX2 (m3 s−1) QIX10 (m3 s−1)

The Gardon de Mialet at Mialet V7124015 219 243 486
The Gardon de Mialet at Générargues V7124010 244 346 618
The Gardon de Saint-Jean at Saint-Jean-du-Gard V7135017 158 230 460
The Gardon de Saint-Jean at Saint-Jean de Corbès V7135010 262 320 598
The Gardon d’Anduze at Anduze V7144010 543 634 1300

Figure 2. The Gardon watershed at Anduze: hydrographic network
(blue) and gauging stations V7124015, V7124010, V7135017,
V7135010 and V7144010 (red).

in order to ensure that every cell is connected to the correct
downstream cell.

2.4 Investigating methodology

The variational algorithm described in Sect. 2.2 is applied
to the hydrological model presented in Sect. 2.1, using the
Gardon d’Anduze watershed as a benchmark. The number of
“active” cells (i.e., included into the watershed) is 540, so the
total number of parameters to be calibrated is 3 · 540.

The calibrated-model validation step consists of checking
the model predictive performance (referred as MPP) using
the data not involved in calibration. That is, the full set of ob-
servations Q∗k(t), k = 1, . . .,Ng, t ∈ (0,T ) is divided in two
complementary subsets: a calibration subset and validation
subset. Since Q∗ depends on k (defining the spatial distri-
bution of sensors) and t , we distinguish the temporal, spa-
tial and spatiotemporal validation, following the split sam-
ple test defined by Klemes (1986). In particular, we divide
the whole period in two parts: P 1 from 1 January 2008 to
1 January 2013 and P 2 from 1 January 2013 to 1 January
2018. Each period of P 1 and P2 can be considered as a cal-
ibration or validation period. A model warm-up of 1 year is
performed before starting the simulations. We assume that

1 year is enough, according to recommendations by Perrin
et al. (2003).

If data from a station are used in calibration, the corre-
sponding catchment is called the “calibration catchment”;
otherwise it is called the “validation catchment”.

Both the calibration quality and the MPP in validation are
measured using the NSE criterion and the Kling–Gupta effi-
ciency (KGE) criterion (Gupta et al., 2009).

The spatiotemporal measured discharge data are parti-
tioned into calibration and validation complementary sets.
Then, we refer to:

a. “temporal validation” if MPP is evaluated for all cali-
bration catchments over the validation period

b. “spatial validation” for all validation catchments over
the calibration period

c. “spatiotemporal validation” for all validation catch-
ments over the validation period.

The following numerical experiments have been performed:

1. Calibration uniform-5-station and calibration
distributed-5-sta. These are uniform and distributed
calibration, respectively, using discharge data from all
five gauging stations, with calibration periods P 1 or
P 2. This is followed by temporal validation; i.e., the
parameter estimate obtained using data from P1 is
validated on data from P 2, and vice versa. The appends
uniform-5-sta and distributed-5-sta to the “temporal
validation” in Fig. 3 indicate the relevant calibration
procedure.

2. Calibration uniform-1-sta and calibration distributed-
1-sta. These are uniform and distributed calibration, re-
spectively, using discharge data from one downstream
gauging station (Anduze), with calibration periods P 1
or P 2. This is followed by spatial validation using data
from the remaining four gauging stations (Générargues,
Mialet, Saint-Jean and Corbès), with calibration periods
P 1 or P2 and by spatiotemporal validation on data from
the remaining four gauging stations but for validation
periods P 2 or P 1.
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Figure 3. “Statistical” distribution of the NSE criterion comparing distributed vs. uniform calibration and the corresponding validation
results: calibration of experiment 1 (a), temporal validation of experiment 1 (b), spatial validation of experiment 2 (c) and spatiotemporal
validation of experiment 2 (d).

3. Ensemble distributed-1-sta. This is multiple distributed
calibration using discharge data from the Anduze gaug-
ing station, starting from different uniform priors.

The main purpose of experiments 1 and 2 is to quantify the
anticipated MPP improvement, achieved in “distributed cal-
ibration”. Given the rainfall data, we compare the ability of
the calibrated model to predict the discharge at observation
points without using the discharge data for the validation pe-
riod (experiment 1, temporal validation); then we compare
the ability to resolve the spatial distribution of discharge in
ungauged areas, given the discharge data for the validation
period at the catchment outlet (experiment 2, spatial valida-
tion) and the ability to predict the discharge in ungauged ar-
eas and without using the discharge data for the validation
period (experiment 2, spatiotemporal validation). Clearly, the
latter is the ultimate performance test. The purpose of exper-
iment 3 is to investigate the stability of the parameter esti-
mates with respect to their priors. This is necessary to assess

the impacts of equifinality and limitations related to the local-
search minimization.

In addition, the current MPP is analyzed for the eight ma-
jor flood events for periods P 1 and P2, listed in Table 2.
Three other criteria from (Artigue et al., 2012) are used,
which compare the magnitude and the synchronization of the
modeled and observed flood peak.

1. The percentage peak discharge PD:

PD = 100×
Qmax

Q∗max
, (21)

where Qmax =Q(tm) and Q∗max =Q
∗(t∗m) are the pre-

dicted and the observed maximum discharges, respec-
tively. These maximum values are achieved at different
time instants tm and t∗m, within the chosen time period.

2. The synchronous percentage of the peak discharge
SPPD:

SPPD = 100×
Q(t∗m)

Q∗max
. (22)
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Table 2. Selection of major floods for each period P 1 and P2 at
station Anduze (V7144010)

Event Date Maximum peak
names discharge

(m3 s−1)

Event 1/P1 21 Oct 2008–23 Oct 2008 1020
Event 2/P1 31 Oct 2008–7 Nov 2008 1030
Event 3/P1 31 Jan 2009–5 Feb 2009 390
Event 4/P1 31 Oct 2011–8 Nov 2011 1070

Event 1/P2 17 Sep 2014–21 Sep 2014 1080
Event 2/P2 9 Oct 2014–16 Oct 2014 1180
Event 3/P2 12 Sep 2015–15 Sep 2015 1120
Event 4/P2 27 Oct 2015–29 Oct 2015 1530

3. The peak delay PD:

PD = tm− t
∗
m. (23)

3 Results

3.1 Performance analysis

The results associated with experiments 1 and 2 are presented
in Fig. 3 in a “statistical” form (as a distribution of the NSE
criterion ranked in increasing order), without relation to the
period or gauge station.

Figure 3a shows the results of the “uniform” and “dis-
tributed” calibration from experiment 1. All five gauging
stations are involved in calibration over two periods; thus
we have 5 · 2 calibration points. One can see that the dis-
tributed calibration allows for a much better approximation
of the observed discharge than the uniform one. This result
confirms that the data assimilation procedure works. It also
suggests that hydrological properties of the catchment are
not uniform and may be captured using distributed parame-
ters. On the other hand, the mismatch between the predicted
and observed discharges remains significant. Since the model
looks overparameterized and the regularization parameter in
Eq. (18) is very small, this indicates that a few issues, either
alone or in combination, may be presented: corrupted data
(the data used are not synthetic), a deficient model structure
(such as an unaccounted sink term, for example) or a local
minimum is reached instead of the global one. Some of these
issues will be later discussed. Figure 3b shows the same re-
sults for experiment 1, but they are this time in temporal vali-
dation. One can see that the distributed calibration allows for
achieving a better “global” temporal MPP than the uniform
one.

Figure 3c shows the results of spatial validation of ex-
periment 2 (i.e., calibrating only with data from the Anduze
gauging station). The remaining four gauging stations are in-
volved in validation for two time periods; thus we have 4 · 2

spatial validation points. The calibration results for the An-
duze station are not presented graphically, but the NSE values
achieved are (for P 1 and P 2, respectively) uniform of 0.82
and 0.78 and distributed of 0.93 and 0.88, whereas the KGE
values are uniform of 0.81 and 0.71 and distributed of 0.89
and 0.69. One can see once again that the distributed calibra-
tion allows for clearly achieving a better global spatial MPP
than the uniform one. Finally, Fig. 3d shows the results of
spatiotemporal validation (experiment 2), evaluated over the
period not used for calibration. As before, only data from
the Anduze gauging station are used for calibration, but data
from all five gauging stations from a different time period are
used for validation, giving 5·2 validation points. Two of them
(in “×”) show the corresponding temporal validation results
at the Anduze gauge station; others (shown in “⊗”) are the
spatiotemporal validation results at the remaining gauge sta-
tions. One can see that the spatiotemporal MPP is generally
better if the distributed calibration is used.

3.2 Period-based analysis

To get a more detailed view of the results of experiment 2,
Fig. 4 relates each NSE value to the particular time period
and gauging station. Here, Fig. 4a presents the NSE val-
ues calculated over the period P 1, with parameters opti-
mized over the same period (calibration); Fig. 4b presents
the NSE values calculated over P 1, with parameters opti-
mized over P 2 (validation). Conversely, Fig. 4c contains the
NSE values calculated over the period P2, with parameters
optimized over the same period; Fig. 4d presents the values
calculated over P 2, with parameters optimized over P 1. All
panels present results for the uniform and distributed param-
eters (blue and red, respectively). The similar figure has been
obtained for experiment 1 but not presented here, since the
results are also similar. Based on this figure the following
observations can be made:

1. Considering the results obtained with uniform param-
eters (blue), the NSE values are always better (larger)
when calculated over the period P1, whatever case is
considered: calibration (+), spatial validation (o), tem-
poral validation (×) or spatiotemporal validation (⊗).

2. Considering the results obtained with distributed param-
eters (red), better results are always obtained when the
NSE values are calculated over P 1 in calibration (+)
and temporal validation (×). But in spatial validation
(o), better results are obtained on P 2, for two out of
four upstream stations: Mialet and Corbès (V7124015
and V7135010, respectively).

3. Comparing the NSE values for the uniform (blue) and
the distributed (red) calibration, we notice that for the
latter we obtain better results, except in two cases:
in spatial validation over P1 for Mialet and Corbès
(V7124015 and V7135010) and in spatiotemporal val-
idation over P 2 for Corbès and Saint-Jean (V7135010
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and V7135017). Note that in both cases the distributed
parameters have been calibrated over P 1.

To complete the analysis, the MPP obtained in spa-
tiotemporal validation at Mialet (V7124015) and Saint-Jean
(V7135017) – two stations identified as “particular” just
above – have been studied in more detail, for 2·4 flood events
described in Table 2, corresponding to the four biggest floods
over each period. The corresponding hydrographs are plotted
in Fig. 5, and the resulting MPP criteria of NSE, KGE, PPD,
SPPD and PD are presented in Tables 3 and 4. Based on these
results, the following conclusions can be drawn.

1. Flood events at those stations which occur during the
period P 1 are well simulated using both a uniform
and distributed set of parameters calibrated over P 2
(NSE> 0.70 and KGE> 0.60). In particular, the pre-
diction of the event 3/P1 is noticeably improved for the
distributed calibration. The simulated flood peak is well
synchronized with the observed one, though slightly
shifted when the distributed calibration is used. Note
that these minor shifts are not critical for the peak dis-
charge prediction, as PPD and SPPD remain similar.

2. In contrast, the prediction of flood events which occur
during P 2 is unsatisfactory. Moreover, the results are
even worse for distributed calibration. Modeled flood
peaks are severely underestimated at station Saint-Jean
(V7135017) for all four events, both for uniform and
distributed calibration. At station Mialet (V7124015)
the peak discharge is overestimated for the distributed
calibration.

These results are consistent with those from Fig. 4 in spa-
tiotemporal validation (⊗), for the same two stations. A
smaller cost achieved during calibration does not necessary
imply a better MPP, indicating an excessive assimilation of
errors associated with P1.

Figures 6 and 7 represent the maps of the calibrated pa-
rameters obtained in experiment 1 and experiment 2, respec-
tively, whereas Table 5 provides the corresponding uniform
values ˆθ used as priors in the variational-estimation step.
Comparing panels a–c and d–f in Fig. 7 corresponding to dif-
ferent time periods P 1 and P 2, one can notice a significant
difference between the calibrated capacities cp and ct. The
spatial variability of cp and ct is also higher when the cali-
bration is performed on period P 1. One can notice that the
results of the uniform calibration are also different for both
periods. Concerning the routing velocity v, the maps look
rather similar. The velocity changes occur mainly at the cells
located in the drainage (see Fig. 2), because the sensitivity
of the cost function with respect to the velocities in these
cells is the largest. The trend is that these velocities increase
during calibration. Note that the velocities above 5 ms−1 do
not affect significantly the delay between cells. Moreover,
the routing velocities obtained are generally consistent with

the fast hydrological response of the Gardon watershed (Dar-
ras, 2015). A few questions concerning the results in Figs. 6
and 7 should be answered. For example, why are the esti-
mates associated with periods P1 and P2 so different? Is it
an “algorithmic” issue (for example, due to the use of the
local-search minimization, uncorrelated priors, etc.), which
can be resolved by improving the calibration algorithm, or a
“fundamental” issue related to identifiability (which depends
of the data available, properties of the model under investiga-
tion, and its adequacy regarding the real natural system and
its physical characteristics)? We try to answer this question
in the next section.

3.3 Stability analysis

An inverse problem is well-posed if a solution to the prob-
lem exists, is unique and is continuous with respect to the
input data. Let us consider a mathematical model describing
a certain physical phenomenon and assume that some vari-
ables of this phenomenon are partly observed. If the model is
perfect (adequate) and observations are exact then, given the
input, the model’s output has to match observations. This im-
plies that the minimum of a cost function penalizing the mis-
match (mismatch functional) equals zero. Parameter calibra-
tion problems are often ill-posed in terms of the uniqueness
(equifinality): there may exist a set of solutions for which the
mismatch functional equals zero. However, the “true” value
of parameters does exist as one element of this set. If the
model involved is nonlinear with respect to its parameters,
the mismatch functional may contain additional minimum
points where its value is not zero. While the corresponding
parameters do not belong to the set of solutions, in the local-
search minimization methods such points are interpreted as
solutions. Adding a penalty (regularization) term to the mis-
match functional allows one particular solution, which is the
“closest” to the prior in terms of a chosen norm, to be defined.
This makes the problem formally well-posed but, in practical
terms, transforms the non-uniqueness issue into the issue of
choosing the prior. Thus, investigating the stability of the es-
timates with respect to the priors is an important step in the
design and validation of a calibration algorithm. In particu-
lar, such an analysis allows for the parts of the solution dom-
inated by observations and by the prior to be distinguished.

A straightforward approach implies solving an ensemble
of calibration problems involving random (or quasi-random)
uniform priors subjected to box constraints of Eq. (16). Let
us remember that the priors are used in two ways: as starting
points for minimization and to define the penalty term. The
influence of the latter has been neglected by choosing small
α in Eq. (18). Let θ̂ |θ l

be the parameter estimate conditioned
on the uniform prior θ l, l = 1, . . .,L from the ensemble of
priors of size L. Then, the stability for each element of the
parameter vector is measured by the standard deviation (SD)
given as follows:
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Figure 4. NSE criterion calibration and corresponding validation results for experiment 2 (one upstream gauging station), by stations and
periods: P 1 (a) and P2 (b) for uniform parameters (blue) and distributed parameters (red).

Table 3. MPP criteria (NSE, KGE, SPPD and PD) computed for major flood events selected over the period P1, using distributed (dist) and
uniform (unif) calibration over P 2.

NSE KGE PPD SPPD PD (h)

dist unif dist unif dist unif dist unif dist unif

Event 1/P1 V7124015 0.38 0.64 0.36 0.47 47.00 54.72 40.15 54.72 1 0
Event 1/P1 V7135017 0.71 0.64 0.84 0.59 80.69 121.23 77.15 121.23 1 0

Event 2/P1 V7124015 0.95 0.93 0.90 0.91 92.33 87.73 92.33 87.73 0 0
Event 2/P1 V7135017 0.79 0.87 0.68 0.84 66.26 79.28 64.43 79.28 −1 0

Event 3/P1 V7124015 0.92 0.68 0.91 0.57 102.38 126.21 100.43 126.21 −1 0
Event 3/P1 V7135017 0.76 0.20 0.57 0.18 119.18 141.48 115.08 134.26 −2 −3

Event 4/P1 V7124015 0.93 0.92 0.82 0.81 94.62 120.92 94.62 120.92 0 0
Event 4/P1 V7135017 0.71 0.86 0.47 0.63 90.10 100.70 87.82 100.70 1 0

Average 0.77 0.72 0.69 0.63 86.57 104.03 84.00 103.13 −0.13 −0.38

σ θ = sign(a)
√
| a |,

a =
1
L

L∑
l=1

[(
θ̂ |θ l
−〈θ̂〉

)2
−

(
θ l−〈θ〉

)2
]
, (24)

where 〈θ〉 and 〈θ̂〉 are the ensemble average of priors and
estimates, respectively. One can see that the negative values
of σ θ correspond to the case when the solution tends to ap-
proach the same value for all priors; i.e., it is dominated (or
stabilized) by observations, whereas the positive values of σ θ
are for the case when the solution is dominated by the prior.
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Figure 5. Spatiotemporal predicted discharges (with the distributed and uniform set of parameters) and observed discharges during the height
major events issued from period P 1 and P 2 at stations V7124015 and V7135017. Please note that the date format in this figure is two-digit
year-month-day. QOBS: observed Q; POBS: observed P .

https://doi.org/10.5194/hess-24-5519-2020 Hydrol. Earth Syst. Sci., 24, 5519–5538, 2020



5532 M. Jay-Allemand et al.: Variational calibration of a fully distributed hydrological model

Table 4. MPP criteria (NSE, KGE, SPPD and PD) computed for major flood events selected over the period P2, using distributed (dist) and
uniform (unif) calibration over P 1.

NSE KGE PPD SPPD PD (h)

dist unif dist unif dist unif dist unif dist unif

Event 1/P2 V7124015 0.43 0.45 0.72 0.64 105.32 86.69 17.00 30.70 31 32
Event 1/P2 V7135017 −0.10 0.24 −0.12 0.22 9.69 16.27 5.14 14.15 31 2

Event 2/P2 V7124015 0.43 0.86 0.51 0.90 148.00 73.79 126.57 73.79 −1 0
Event 2/P2 V7135017 0.31 0.47 0.13 0.37 18.76 29.48 17.86 17.51 39 40

Event 3/P2 V7124015 0.59 0.63 0.41 0.34 124.36 98.42 123.30 91.35 −1 4
Event 3/P2 V7135017 0.27 0.35 0.09 0.27 14.96 22.68 13.08 13.33 5 6

Event 4/P2 V7124015 0.94 0.79 0.83 0.73 85.69 58.20 85.69 58.20 0 0
Event 4/P2 V7135017 0.26 0.46 0.02 0.24 21.64 32.94 21.64 31.17 0 1

Average 0.39 0.53 0.32 0.46 66.05 52.31 51.29 41.28 13 10.625

Figure 6. Maps of the calibrated coefficients (experiment 1 and 5-sta): (a–c) data from P 1 and (d–f) data from P 2.
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Figure 7. Maps of the calibrated coefficients (experiment 3 and 1-sta): (a–c) data from P 1 and (d–f) data from P 2.

Table 5. Optimal uniform set of parameters for experiments
uniform-5-sta and uniform-1-sta.

Parameters Period P 1 (5-sta/1-sta) Period P 2 (5-sta/1-sta)

cp (mm) 1014.2 and 1276.5 1288.5 and 1202.3
ct (mm) 250 and 214.7 150.7 and 150.1
v (ms−1) 5 and 5 5 and 5

In reality, the conceptual GRD model used in this study is a
fairly crude approximation of the hydrological phenomenon.
Thus, no solution can be considered as a “truth”, but it is
rather as an interpretation of data, given the model and the
judgment criteria (cost function). Moreover, the measured
data (test signal and observations) are not perfect. These im-
perfections result in a “generalized observation error”. The
stability analysis described above can also be applied in this
case, though understanding of results is more difficult. For
example, the ensemble average of the mismatch functional
values (achieved in minimization) can be considered as a ref-

erence level. The parameter estimates which correspond to
the values around this level can be considered as possible so-
lutions, whereas the outliers must be discarded.

The stability analysis (experiment 3) has been performed
for L= 16 configurations of uniform priors cp and ct (see
Table 6) with the same routing velocity v= 5 ms−1. The ta-
ble shows the values of the cost function J (θ) of Eq. (18) for
θ before and after minimization.

One can see that all minimization processes for a chosen
assimilation period converge to a similar value of the cost
function: for P1 the mean value is 0.055, and the SD is
0.002, i.e., about 3.6 % of the mean; for P 2 the correspond-
ing numbers are 0.129, 0.004 and 3.1 %. No obvious outliers
have been observed, which indicates that the cost function
surface is sufficiently regular and the issue of “local search
vs. global search” is not critical. The latter is not surprising,
since, considering the operators involved, the model seems
to be mildly nonlinear.

The spatial distributions of σ θ are presented in Fig. 8,
where the stable areas of the estimated parameter fields, i.e.,
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Table 6. Initial and final values (separated by a forward slash) of the cost function of Eq. (18) for different uniform priors for periods P1 (a)
and P 2 (b) for experiment 3.

(a) 1 2 3 4
cp = 425.5 cp = 851.0 cp = 1276.5 cp = 1702.0

1 ct = 71.5 1.20/0.054 0.689/0.054 0.528/0.057 0.451/0.057
2 ct = 143.1 0.563/0.055 0.280/0.056 0.210/0.057 0.195/0.058
3 ct = 214.7 0.350/0.057 0.186/0.053 0.161/0.054 0.177/0.054
4 ct = 286.2 0.280/0.057 0.185/0.055 0.185/0.056 0.217/0.052

(b) 1 2 3 4
cp = 413.0 cp = 825.9 cp = 1238.9 cp = 1651.9

1 ct = 50.0 1.39/0.130 0.924/0.130 0.776/0.131 0.707/0.130
2 ct = 100.1 0.642/0.125 0.369/0.126 0.296/0.132 0.288/0.125
3 ct = 150.1 0.396/0.134 0.252/0.124 0.224/0.130 0.24/0.129
4 ct = 200.1 0.325/0.131 0.26/0.121 0.258/0.136 0.286/0.126

Figure 8. Maps of stability measure σ θ for cp (a, b) and ct (c, d), for periods P 1 (a, c) and P 2 (b, d)

those influenced by observations, are shown in blue. The pur-
pose of this analysis is to understand why the estimates asso-
ciated with periods P1 and P 2 are so different. In particular,
the question rises concerning the high capacities obtained for
P 1; see red areas in Fig. 7a–c for cp and dark-yellow areas
for ct. In contrast, the capacities obtained for P 2 are the low-
est in the corresponding areas. However, comparing Figs. 7
and 8, we notice that these “questionable” areas in Fig. 7
largely coincide with the blue (stable) areas in Fig. 8. This
clearly indicates that the corresponding estimates are deter-
mined by the observed data used in each case. Thus, one may
suspect here the data information content issue, the data in-
terpretation criteria (cost function) issue and/or the model
adequacy issue, rather than algorithmic issues. This is the
main conclusion drawn from the stability analysis. One can

also notice that the estimates associated with period 2 (P 2)
are generally more stable than those associated with period
1 (P 1), whereas the ensemble-average cost function value
achieved for P 2 is larger than for P 1, i.e., 0.129 compared to
0.055. While a better minimization result has been achieved
for P1, it looks like more error has been assimilated in this
case.

4 Discussion and conclusions

The validation results presented in Sects. 3.1 and 3.2 confirm
that the distributed calibration globally improves the tempo-
ral and spatial MPP (measured by NSE) as compared to the
uniform calibration. The conclusions are less definite with
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the spatiotemporal MPP, but this is the most difficult per-
formance test. Moreover, the global improvement does not
mean that any particular event could be better predicted, as
follows from Sect. 3.2. We observe that, on the one hand, the
capacity cp and ct estimates obtained using different calibra-
tion periods are quite different, whereas, on the other hand,
for a chosen calibration period these estimates are relatively
stable with respect to their priors. The latter means that the
difference is rather due to different data involved in calibra-
tion than due to the algorithmic or identifiability problems
(see Sect.3.3). Let us note that the cross-validation experi-
ments could help the best set of parameters to be selected.
For example, the MPP analysis above suggests that the sets
calibrated using data from P 2 should be preferred.

It seems that the routing velocity v is the most stable
among all estimated parameters: the velocity fields plotted
in Figs. 6 and 7 remain similar for different experiments.
Looking at the hydrographic network in Fig. 2, one can see
that the velocities are generally much higher along the main
drains than on the side slopes, which is in agreement with
the true physical behavior of the system, though the routing
scheme applied is conceptual. One can notice a few occa-
sions where the velocities are lower in the drain: the Gardon
de Saint-Jean, experiment 1 (P 2), the southwestern tributary
connected to Corbès, experiment 1 (P 1) and the upstream
Gardon catchment in experiment 2 (P2). This is likely to be a
consequence of an overestimated uniform background, with
v = 5 ms−1.

Calibration of the distributed hydrological models is a dif-
ficult task, with the data information content issue, the data
interpretation criteria issue and the model adequacy. Some
of these issues will be addressed in the near future. For ex-
ample, the use of the Gaussian likelihood which leads to the
quadratic cost function of the type in Eq. (15) does not seem
to be the best choice. Taking into account that the discharge
itself is a positive variable and the discharge observation er-
ror is, most likely, an increasing function of discharge, using
the gamma likelihood looks more appropriate.

It is evident that, because of its conceptual nature and
simplicity, the GRD model has some structural limitations.
Looking for a simple structural upgrade, which may help
to improve the adequacy without increasing noticeably the
dimensions and computational costs, is an important future
task. Another one is to provide better priors. For instance,
one can use the nonuniform priors. In particular, for the ca-
pacities cp and ct one could consider locally uniform val-
ues relevant to the given hydrogeological or soil occupation
class. For the velocity, a higher value in the drainage net-
work with respect to the accumulated flow surface has to be
enforced. The abovementioned subjects will be addressed in
immediate future research.

In this paper, the model has been calibrated using data
from different time periods, and the cross-validation exper-
iments have helped to select the best optimal set of the dis-
tributed parameters. However, using a longer calibration pe-

riod may not necessarily improve the model predictive per-
formance due to the likely presence of very different hydro-
logical regimes over the extended period, including some
extreme cases. As a way forward, one could consider cal-
ibrating the model independently for different hydrological
regimes. This approach is coherent to the idea of the “pooled
analysis”. Dependent on the calibration strategy, different pa-
rameter sets could be used for the prediction purpose. In the
operational flood forecasting context, the model parameters
are likely to be fixed, whereas the real-time update of the
model initial state should be considered instead. In that case,
the initial states of the distributed reservoirs will serve as a
control vector, and the assimilation will be performed over a
relatively short assimilation window (comparable to the char-
acteristic time of the system). Finally, a running ensemble of
models with different calibrated sets of parameters could be
considered. In the framework of a flash flood warning sys-
tem design, the latter approach could be combined with an
automatic predictive control strategy such as the tree-based
model (Ficchì et al., 2016).

In summary, the variational approach based on the ad-
joint model has proved its great computational efficiency and
relevance for solving the calibration problem involving the
distributed hydrological model GRD. Technically, this prob-
lem can be solved over long time periods and for large spa-
tial areas. The difficulties discovered in this process are the
fundamental issues of calibration, not related to the chosen
method. The answer to the main research question formu-
lated at the beginning of this paper is positive: it is possible
and beneficial to calibrate and then use distributed parame-
ters rather than uniform parameters. A variational algorithm
involving adjoint sensitivities has proved to be an efficient
tool for such calibration. The calibration quality is expected
to be improved by using a more appropriate cost function
and by enhancing the model structure. Overall, this means
that the suggested research and hydrological forecasting tool
development direction is quite promising.
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