Articles | Volume 24, issue 10
https://doi.org/10.5194/hess-24-4923-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4923-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Imprints of evaporative conditions and vegetation type in diurnal temperature variations
Biospheric Theory and Modeling group, Max Planck Institute for
Biogeochemistry, 07745 Jena, Germany
Maik Renner
Biospheric Theory and Modeling group, Max Planck Institute for
Biogeochemistry, 07745 Jena, Germany
now at: Brandenburg State Office for Environment, Flood Monitoring Centre, 15236 Frankfurt (Oder), Germany
Axel Kleidon
Biospheric Theory and Modeling group, Max Planck Institute for
Biogeochemistry, 07745 Jena, Germany
Related authors
No articles found.
Jonathan Minz, Axel Kleidon, and Nsilulu T. Mbungu
Wind Energ. Sci., 9, 2147–2169, https://doi.org/10.5194/wes-9-2147-2024, https://doi.org/10.5194/wes-9-2147-2024, 2024
Short summary
Short summary
Estimates of power output from regional wind turbine deployments in energy scenarios assume that the impact of the atmospheric feedback on them is minimal. But numerical models show that the impact is large at the proposed scales of future deployment. We show that this impact can be captured by accounting only for the kinetic energy removed by turbines from the atmosphere. This can be easily applied to energy scenarios and leads to more physically representative estimates.
Pin-Hsin Hu, Christian H. Reick, Reiner Schnur, Axel Kleidon, and Martin Claussen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-111, https://doi.org/10.5194/gmd-2024-111, 2024
Revised manuscript under review for GMD
Short summary
Short summary
We introduce the new plant functional diversity model JeDi-BACH, a novel tool that integrates the Jena Diversity Model (JeDi) within the land component of the ICON Earth System Model. JeDi-BACH captures a richer set of plant trait variations based on environmental filtering and functional tradeoffs without a priori knowledge of the vegetation types. JeDi-BACH represents a significant advancement in modeling the complex interactions between plant functional diversity and climate.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Yinglin Tian, Deyu Zhong, Sarosh Alam Ghausi, Guangqian Wang, and Axel Kleidon
Earth Syst. Dynam., 14, 1363–1374, https://doi.org/10.5194/esd-14-1363-2023, https://doi.org/10.5194/esd-14-1363-2023, 2023
Short summary
Short summary
Downward longwave radiation (Rld) is critical for the surface energy budget, but its climatological variation on a global scale is not yet well understood physically. We use a semi-empirical equation derived by Brutsaert (1975) to identify the controlling role that atmospheric heat storage plays in spatiotemporal variations of Rld. Our work helps us to better understand aspects of climate variability, extreme events, and global warming by linking these to the mechanistic contributions of Rld.
Axel Kleidon
Earth Syst. Dynam., 14, 861–896, https://doi.org/10.5194/esd-14-861-2023, https://doi.org/10.5194/esd-14-861-2023, 2023
Short summary
Short summary
The second law of thermodynamics has long intrigued scientists, but what role does it play in the Earth system? This review shows that its main role is that it shapes the conversion of sunlight into work. This work can then maintain the dynamics of the physical climate system, the biosphere, and human societies. The relevance of it is that apparently many processes work at their limits, directly or indirectly, so they become predictable by simple means.
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242, https://doi.org/10.5194/esd-14-241-2023, https://doi.org/10.5194/esd-14-241-2023, 2023
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022, https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary
Short summary
The observed response of extreme precipitation to global warming remains unclear with significant regional variations. We show that a large part of this uncertainty can be removed when the imprint of clouds in surface temperatures is removed. We used a thermodynamic systems approach to remove the cloud radiative effect from temperatures. We then found that precipitation extremes intensified with global warming at positive rates which is consistent with physical arguments and model simulations.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022, https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-79, https://doi.org/10.5194/hess-2021-79, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study we ask the basic question why surface runoff forms drainage networks and confluences at all and how structural macro form and micro topography is a result of thermodynamic laws. We find that on a macro level hillslopes should tend from negative exponential towards exponential forms and that on a micro level the formation of rills goes hand in hand with drainage network formation of river basins. We hypothesize that we can learn more about erosion processes if we extend this theory.
Axel Kleidon and Lee M. Miller
Geosci. Model Dev., 13, 4993–5005, https://doi.org/10.5194/gmd-13-4993-2020, https://doi.org/10.5194/gmd-13-4993-2020, 2020
Short summary
Short summary
When winds are used as renewable energy by more and more wind turbines, one needs to account for the effect of wind turbines on the atmospheric flow. The Kinetic Energy Budget of the Atmosphere (KEBA) model provides a simple, physics-based approach to account for this effect very well when compared to much more detailed numerical simulations with an atmospheric model. KEBA should be useful to derive lower, more realistic wind energy resource potentials of different regions.
Cited articles
Anderson, M. C., Allen, R. G., Morse, A., and Kustas, W. P.: Use of Landsat
thermal imagery in monitoring evapotranspiration and managing water
resources, Remote Sens. Environ., 122, 50–65, https://doi.org/10.1016/j.rse.2011.08.025, 2012.
Baier, W. and Robertson, G. W.: Estimation of latent evaporation from simple weather observations, Can. J. Plant Sci., 45, 276–284, https://doi.org/10.4141/cjps65-051, 1965.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Betts, A. K. and Ball, J. H.: The FIFE surface diurnal cycle climate, J. Geophys. Res., 100, 25679, https://doi.org/10.1029/94JD03121, 1995.
Bevan, S. L., Los, S. O., and North, P. R. J.: Response of vegetation to the
2003 European drought was mitigated by height, Biogeosciences, 11, 2897–2908, https://doi.org/10.5194/bg-11-2897-2014, 2014.
Blaney, H. F. and Cridlle, W. D.: Determining Water Requirements in Irrigated Areas from Climatological Irrigation Data, Technical Paper No. 96, US Department of Agriculture, Soil Conservation Service, Washington, D.C., 48 pp., 1950.
Boegh, E., Soegaard, H., and Thomsen, A.: Evaluating evapotranspiration rates
and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance, Remote Sens. Environ., 79, 329–343,
https://doi.org/10.1016/S0034-4257(01)00283-8, 2002.
Bright, R. M., Davin, E., O'Halloran, T., Pongratz, J., Zhao, K., and Cescatti, A.: Local temperature response to land cover and management change
driven by non-radiative processes, Nat. Clim. Change, 7, 296–302,
https://doi.org/10.1038/nclimate3250, 2017.
Bristow, K. L. and Campbell, G. S.: On the relationship between incoming solar radiation and daily maximum and minimum temperature, Agr. Forest Meteorol., 31, 159–166, https://doi.org/10.1016/0168-1923(84)90017-0, 1984.
Chen, L. and Dirmeyer, P. A.: Adapting observationally based metrics of
biogeophysical feedbacks from land cover/land use change to climate modeling, Environ. Res. Lett., 11, 034002, https://doi.org/10.1088/1748-9326/11/3/034002, 2016.
Clothier, B. E., Clawson, K. L., Pinter, P. J., Moran, M. S., Reginato, R. J., and Jackson, R. D.: Estimation of soil heat flux from net radiation during the growth of alfalfa, Agr. Forest Meteorol., 37, 319–329, https://doi.org/10.1016/0168-1923(86)90069-9, 1986.
Cresswell, M. P., Morse, A. P., Thomson, M. C., and Connor, S. J.: Estimating
surface air temperatures, from Meteosat land surface temperatures, using an
empirical solar zenith angle model, Int. J. Remote Sens., 20, 1125–1132, https://doi.org/10.1080/014311699212885, 1999.
Dai, A., Trenberth, K. E., and Karl, T. R.: Effects of Clouds, Soil Moisture,
Precipitation, and Water Vapor on Diurnal Temperature Range, J. Climate, 12, 2451–2473, 1999.
Diak, G. R. and Whipple, M. S.: Improvements to models and methods for evaluating the land-surface energy balance and `effective' roughness using
radiosonde reports and satellite-measured `skin' temperature data, Agr. Forest Meteorol., 63, 189–218, https://doi.org/10.1016/0168-1923(93)90060-U, 1993.
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso,
D., Gutierrez, V., van Noordwijk, M., Creed, I. F., Pokorny, J., Gaveau, D.,
Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and
Sullivan, C. A.: Trees, forests and water: Cool insights for a hot world,
Global Environ. Change, 43, 51–61, https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017.
Falge, E., Aubinet, M., Bakwin, P. S., Baldocchi, D., Berbigier, P., Bernhofer, C., Black, T. A., Ceulemans, R., Davis, K. J., Dolman, A. J.,
Goldstein, A., Goulden, M. L., Granier, A., Hollinger, D. Y., Jarvis, P. G.,
Jensen, N., Pilegaard, K., Katul, G., Kyawthapaw, P., Law, B. E., Lindroth,
A., Loustau, D., Mahli, Y., Monson, R., Moncrieff, P., Moors, E., Munger, J.
W., Meyers, T., Oechel, W., Schulze, E.-D., Thorgeirsson, H., Tenhunen, J.,
Valentini, R., Verma, S. B., Vesala, T., and Wofsy, S. C.: FLUXNET Research
Network Site Characteristics, Investigators, and Bibliography, 2016,
1459.4803539999996 MB, ORNL DAAC – Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1530, 2017.
Fu, G., Shen, Z., Zhang, X., Shi, P., Zhang, Y., and Wu, J.: Estimating air
temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS
land surface temperature, Acta Ecol. Sin., 31, 8–13,
https://doi.org/10.1016/j.chnaes.2010.11.002, 2011.
Gallo, K. P.: The Influence of Land Use/Land Cover on Climatological Values of the Diurnal Temperature Range, J. Climate, 9, 2941–2944, 1996.
Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration from
Temperature, Appl. Eng. Agricult., 1, 96–99, https://doi.org/10.13031/2013.26773, 1985.
Hengl, T., Heuvelink, G. B. M., Perèec Tadiæ, M., and Pebesma, E. J.:
Spatio-temporal prediction of daily temperatures using time-series of MODIS
LST images, Theor. Appl. Climatol., 107, 265–277, https://doi.org/10.1007/s00704-011-0464-2, 2012.
Jackson, L. S. and Forster, P. M.: An Empirical Study of Geographic and Seasonal Variations in Diurnal Temperature Range, J. Climate, 23, 3205–3221, https://doi.org/10.1175/2010JCLI3215.1, 2010.
Jackson, T. J., Le Vine, D. M., Hsu, A. Y., Oldak, A., Starks, P. J., Swift,
C. T., Isham, J. D., and Haken, M.: Soil moisture mapping at regional scales
using microwave radiometry: the Southern Great Plains Hydrology Experiment,
IEEE T. Geosci. Remote., 37, 2136–2151, https://doi.org/10.1109/36.789610, 1999.
Jang, J.-D., Viau, A. A., and Anctil, F.: Neural network estimation of air
temperatures from AVHRR data, Int. J. Remote Sens., 25, 4541–4554, https://doi.org/10.1080/01431160310001657533, 2004.
Jarvis, P. G. and McNaughton, K. G.: Stomatal Control of Transpiration:
Scaling Up from Leaf' to Region, Adv. Ecol. Res., 15, 1–49, 1986.
Jones, H. G.: Plants and Microclimate, Cambridge University Press, New York, USA, 47–67, 1992.
Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P., and Novick, K.: Separating
the effects of albedo from eco-physiological changes on surface temperature
along a successional chronosequence in the southeastern United States, Geophys. Res. Lett., 34, L21408, https://doi.org/10.1029/2007GL031296, 2007.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Scient. Data, 6, 74,
https://doi.org/10.1038/s41597-019-0076-8, 2019.
Kilibarda, M., Hengl, T., Heuvelink, G. B. M., Gräler, B., Pebesma, E.,
Perèec Tadiæ, M., and Bajat, B.: Spatio-temporal interpolation of
daily temperatures for global land areas at 1 km resolution, J. Geophys.
Res.-Atmos., 119, 2294–2313, https://doi.org/10.1002/2013JD020803, 2014.
Kustas, W. P. and Daughtry, C. S. T.: Estimation of the soil heat flux/net
radiation ratio from spectral data, Agr. Forest Meteorol., 49, 205–223, https://doi.org/10.1016/0168-1923(90)90033-3, 1990.
Kustas, W. P. and Norman, J. M.: Evaluation of soil and vegetation heat flux
predictions using a simple two-source model with radiometric temperatures
for partial canopy cover, Agr. Forest Meteorol., 94, 13–29, https://doi.org/10.1016/S0168-1923(99)00005-2, 1999.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer, G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law,
B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K.
T., Richardson, A. D., Schmid, H. P., Staebler, R., Wofsy, S., and Zhao, L.:
Observed increase in local cooling effect of deforestation at higher
latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588, 2011a.
Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A., Bohrer,
G., Bracho, R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law,
B. E., Margolis, H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K.
T., Richardson, A. D., Schmid, H. P., Staebler, R., Wofsy, S., and Zhao, L.:
Observed increase in local cooling effect of deforestation at higher latitudes, Nature, 479, 384–387, https://doi.org/10.1038/nature10588, 2011b.
Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., and Li, S.: Local cooling and warming effects of forests based on satellite observations, Nat.
Commun., 6, 6603, https://doi.org/10.1038/ncomms7603, 2015.
Lindvall, J. and Svensson, G.: The diurnal temperature range in the CMIP5
models, Clim. Dynam., 44, 405–421, https://doi.org/10.1007/s00382-014-2144-2, 2015.
Liu, B., Xu, M., Henderson, M., Qi, Y., and Li, Y.: Taking China's Temperature: Daily Range, Warming Trends, and Regional Variations, 1955–2000, J. Climate, 17, 4453–4462, https://doi.org/10.1175/3230.1, 2004.
Loveland, T. R. and Belward, A. S.: The International Geosphere Biosphere
Programme Data and Information System global land cover data set (DISCover),
Acta Astronaut., 41, 681–689, https://doi.org/10.1016/S0094-5765(98)00050-2, 1997.
Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., Churkina, G., Don, A., Erb, K., Ferlicoq, M., Gielen, B., Grünwald, T., Houghton, R. A., Klumpp, K., Knohl, A., Kolb, T., Kuemmerle, T., Laurila, T., Lohila, A., Loustau, D., McGrath, M. J., Meyfroidt, P., Moors, E. J., Naudts, K., Novick, K., Otto, J., Pilegaard, K., Pio, C. A., Rambal, S., Rebmann, C., Ryder, J., Suyker, A. E., Varlagin, A., Wattenbach, M., and Dolman, A. J.: Land management and land-cover change have impacts of similar magnitude on surface temperature, Nat. Clim. Change, 4, 389–393, https://doi.org/10.1038/nclimate2196, 2014.
Makowski, K., Jaeger, E. B., Chiacchio, M., Wild, M., Ewen, T., and Ohmura,
A.: On the relationship between diurnal temperature range and surface solar
radiation in Europe, J. Geophys. Res., 114, D00D07, https://doi.org/10.1029/2008JD011104, 2009.
Mallick, K., Jarvis, A., Fisher, J. B., Tu, K. P., Boegh, E., and Niyogi, D.:
Latent Heat Flux and Canopy Conductance Based on Penman–Monteith,
Priestley–Taylor Equation, and Bouchet's Complementary Hypothesis, J. Hydrometeorol., 14, 419–442, https://doi.org/10.1175/JHM-D-12-0117.1, 2013.
Mearns, L. O., Giorgi, F., McDaniel, L., and Shields, C.: Analysis of variability and diurnal range of daily temperature in a nested regional
climate model: comparison with observations and doubled CO2 results, Clim. Dynam., 11, 193–209, https://doi.org/10.1007/BF00215007, 1995.
Mildrexler, D. J., Zhao, M., and Running, S. W.: A global comparison between
station air temperatures and MODIS land surface temperatures reveals the
cooling role of forests, J. Geophys. Res., 116, G03025, https://doi.org/10.1029/2010JG001486, 2011.
Oke, T. R.: Boundary layer climates, Methuen and Co., Ltd., London, Halsted Press, New York, p. 390, 1978.
Oyler, J. W., Dobrowski, S. Z., Holden, Z. A., and Running, S. W.: Remotely
Sensed Land Skin Temperature as a Spatial Predictor of Air Temperature across the Conterminous United States, J. Appl. Meteorol. Clim., 55, 1441–1457, https://doi.org/10.1175/JAMC-D-15-0276.1, 2016.
Panwar, A., Kleidon, A., and Renner, M.: Do Surface and Air Temperatures
Contain Similar Imprints of Evaporative Conditions?, Geophys. Res. Lett., 46, 3802–3809, https://doi.org/10.1029/2019GL082248, 2019.
Price, J. C.: Estimation of Regional Scale Evapotranspiration Through Analysis of Satellite Thermal-infrared Data, IEEE T. Geosci. Remote, GE-20, 286–292, https://doi.org/10.1109/TGRS.1982.350445, 1982.
Renner, M., Wild, M., Schwarz, M., and Kleidon, A.: Estimating Shortwave
Clear-Sky Fluxes From Hourly Global Radiation Records by Quantile Regression, Earth Space Sci., 6, 1532–1546, https://doi.org/10.1029/2019EA000686, 2019.
Rigden, A. J. and Li, D.: Attribution of surface temperature anomalies induced by land use and land cover changes: Attribution of Temperature Anomalies, Geophys. Res. Lett., 44, 6814–6822, https://doi.org/10.1002/2017GL073811, 2017.
Ronda, R. J., de Bruin, H. A. R., and Holtslag, A. A. M.: Representation of
the Canopy Conductance in Modeling the Surface Energy Budget for Low Vegetation, J. Appl. Meteorol., 40, 1431–1444,
https://doi.org/10.1175/1520-0450(2001)040<1431:ROTCCI>2.0.CO;2, 2001.
Saltzman, B. and Pollack, J. A.: Sensitivity of the Diurnal Surface Temperature Range to Changes in Physical Parameters, J. Appl. Meteorol., 16, 614–619, https://doi.org/10.1175/1520-0450(1977)016<0614:SOTDST>2.0.CO;2, 1977.
Shukla, J. and Mintz, Y.: Influence of Land-Surface Evapotranspiration on the Earth's Climate, Science, 215, 1498–1501, https://doi.org/10.1126/science.215.4539.1498, 1982.
Shuttleworth, W. J., Gurney, R. J., Hsu, A. Y., and Ormsby, J. P.: FIFE: the
variation in energy partition at surface flux sites, IAHS-AISH Publication, IAHS Publication – International Association of Hydrological Sciences, Belgium, 67–74, ISSN 0144-7815, 1989.
Steduto, P. and Hsiao, T. C.: Maize canopies under two soil water regimes, Agr. Forest Meteorol., 89, 169–184, https://doi.org/10.1016/S0168-1923(97)00085-3, 1998.
Stenchikov, G. L. and Robock, A.: Diurnal asymmetry of climatic response to
increased CO2 and aerosols: Forcings and feedbacks, J. Geophys. Res., 100, 26211, https://doi.org/10.1029/95JD02166, 1995.
Su, H., Wood, E. F., Mccabe, M. F., and Su, Z.: Evaluation of Remotely Sensed
Evapotranspiration Over the CEOP EOP-1 Reference Sites, J. Meteorol. Soc. Jpn. A, 85, 439–459, https://doi.org/10.2151/jmsj.85A.439, 2007.
Tang, B., Zhao, X., and Zhao, W.: Local Effects of Forests on Temperatures
across Europe, Remote Sens., 10, 529, https://doi.org/10.3390/rs10040529, 2018.
Thom, A. S.: Momentum, mass and heat exchange of vegetation, Q. J. Roy. Meteorol. Soc., 98, 124–134, https://doi.org/10.1002/qj.49709841510, 1972.
Thornthwaite, C. W.: An Approach toward a Rational Classification of Climate, Geogr. Rev., 38, 55–75, https://doi.org/10.2307/210739, 1948.
Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.
Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.: Global
estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches, Remote Sens. Environ., 115, 801–823, https://doi.org/10.1016/j.rse.2010.11.006, 2011.
Wang, K. and Dickinson, R. E.: Contribution of solar radiation to decadal
temperature variability over land, P. Natl. Acad. Sci. USA, 110, 14877–14882, https://doi.org/10.1073/pnas.1311433110, 2013.
Wild, M.: From Dimming to Brightening: Decadal Changes in Solar Radiation at
Earth's Surface, Science, 308, 847–850, https://doi.org/10.1126/science.1103215, 2005.
Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang, X., Jia, K., Zhao, X., Qin, Q., Zhao, B., Han, S., Zhou, G., Zhou, G., Li, Y., and Zhao, S.: MODIS-driven estimation of terrestrial latent heat flux in China based
on a modified Priestley–Taylor algorithm, Agr. Forest Meteorol., 171–172, 187–202, https://doi.org/10.1016/j.agrformet.2012.11.016, 2013.
Zhang, W., Huang, Y., Yu, Y., and Sun, W.: Empirical models for estimating
daily maximum, minimum and mean air temperatures with MODIS land surface
temperatures, Int. J. Remote Sens., 32, 9415–9440, https://doi.org/10.1080/01431161.2011.560622, 2011.
Zhao, L., Lee, X., Smith, R. B., and Oleson, K.: Strong contributions of local background climate to urban heat islands, Nature, 511, 216–219,
https://doi.org/10.1038/nature13462, 2014a.
Zhao, L., Lee, X., Smith, R. B., and Oleson, K.: Strong contributions of local background climate to urban heat islands, Nature, 511, 216–219,
https://doi.org/10.1038/nature13462, 2014b.
Zhu, W., Lû, A., and Jia, S.: Estimation of daily maximum and minimum air
temperature using MODIS land surface temperature products, Remote Sens. Environ., 130, 62–73, https://doi.org/10.1016/j.rse.2012.10.034, 2013.
Short summary
Here we examine the effect of evaporative cooling across different vegetation types. Evaporation cools surface temperature significantly in short vegetation. In the forest, the high aerodynamic conductance explains 56 % of the reduced surface temperature. Therefore, the main cooling agent in the forest is the high aerodynamic conductance and not evaporation. Additionally, we propose the diurnal variation in surface temperature as being a potential indicator of evaporation in short vegetation.
Here we examine the effect of evaporative cooling across different vegetation types. Evaporation...