Articles | Volume 24, issue 6
https://doi.org/10.5194/hess-24-2895-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-2895-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the shape of forward transit time distributions in low-order catchments
Department of Hydrogeology, Helmholtz Centre for Environmental
Research – UFZ, 04318 Leipzig, Germany
Department of Hydrogeology, Helmholtz Centre for Environmental
Research – UFZ, 04318 Leipzig, Germany
Andreas Musolff
Department of Hydrogeology, Helmholtz Centre for Environmental
Research – UFZ, 04318 Leipzig, Germany
Peter Troch
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, 85721, USA
Ty Ferré
Department of Hydrology and Atmospheric Sciences, University of
Arizona, Tucson, 85721, USA
Jan H. Fleckenstein
Department of Hydrogeology, Helmholtz Centre for Environmental
Research – UFZ, 04318 Leipzig, Germany
Related authors
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Nguyen Le Duy, Ingo Heidbüchel, Hanno Meyer, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 22, 1239–1262, https://doi.org/10.5194/hess-22-1239-2018, https://doi.org/10.5194/hess-22-1239-2018, 2018
Short summary
Short summary
This study analyzes the influence of local and regional meteorological factors on the isotopic composition of precipitation. The impact of the different factors on the isotopic condition was quantified by multiple linear regression of all factor combinations combined with relative importance analysis. The proposed approach might open a pathway for the improved reconstruction of paleoclimates based on isotopic records.
Ingo Heidbüchel, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 20, 1269–1288, https://doi.org/10.5194/hess-20-1269-2016, https://doi.org/10.5194/hess-20-1269-2016, 2016
Short summary
Short summary
Cosmic-ray neutron sensors bridge the gap between point-scale measurements of soil moisture and remote sensing applications. We tested four distinct methods to calibrate the sensor in a temperate forest environment using different soil moisture weighting approaches. While the variable leaf biomass of the deciduous trees had no significant influence on the calibration, it proved necessary to modify the standard calibration method to achieve the best sensor performance.
Chloé Fandel, Ty Ferré, François Miville, Philippe Renard, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 4205–4215, https://doi.org/10.5194/hess-27-4205-2023, https://doi.org/10.5194/hess-27-4205-2023, 2023
Short summary
Short summary
From the surface, it is hard to tell where underground cave systems are located. We developed a computer model to create maps of the probable cave network in an area, based on the geologic setting. We then applied our approach in reverse: in a region where an old cave network was mapped, we used modeling to test what the geologic setting might have been like when the caves formed. This is useful because understanding past cave formation can help us predict where unmapped caves are located today.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Pia Ebeling, Rohini Kumar, Stefanie R. Lutz, Tam Nguyen, Fanny Sarrazin, Michael Weber, Olaf Büttner, Sabine Attinger, and Andreas Musolff
Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, https://doi.org/10.5194/essd-14-3715-2022, 2022
Short summary
Short summary
Environmental data are critical for understanding and managing ecosystems, including the mitigation of water quality degradation. To increase data availability, we present the first large-sample water quality data set (QUADICA) of riverine macronutrient concentrations combined with water quantity, meteorological, and nutrient forcing data as well as catchment attributes. QUADICA covers 1386 German catchments to facilitate large-sample data-driven and modeling water quality assessments.
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022, https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Short summary
In near-stream aquifers, mixing between stream water and ambient groundwater can lead to dilution and the removal of substances that can be harmful to the water ecosystem at high concentrations. We used a numerical model to track the spatiotemporal evolution of different water sources and their mixing around a stream, which are rather difficult in the field. Results show that mixing mainly develops as narrow spots, varying In time and space, and is affected by magnitudes of discharge events.
Kim Madsen van't Veen, Ty Paul Andrew Ferré, Bo Vangsø Iversen, and Christen Duus Børgesen
Hydrol. Earth Syst. Sci., 26, 55–70, https://doi.org/10.5194/hess-26-55-2022, https://doi.org/10.5194/hess-26-55-2022, 2022
Short summary
Short summary
Geophysical instruments are often used in hydrological surveys. A geophysical model that couples electrical conductivity in the subsurface layers with measurements from an electromagnetic induction instrument was combined with a machine learning algorithm. The study reveals that this combination can estimate the identifiability of electrical conductivity in a layered soil and provide insight into the best way to configure the instrument for a specific field site.
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Ravindra Dwivedi, Christopher Eastoe, John F. Knowles, Jennifer McIntosh, Thomas Meixner, Ty P. A. Ferre, Rebecca Minor, Greg Barron-Gafford, Nathan Abramson, Michael Stanley, and Jon Chorover
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-355, https://doi.org/10.5194/hess-2021-355, 2021
Manuscript not accepted for further review
Short summary
Short summary
This study applies multiple metrics including the fraction of young water and its discharge sensitivity and mean transit time using young as well as old groundwater age tracers to improve understanding of the dynamic nature of hydrologic flow paths at a sub-humid mountainous site. The results show that the aforementioned metrics yield unique information and they are helpful in understanding the nature of transient flow paths and observable storage volumes that contribute to streamflow.
André Almagro, Paulo Tarso S. Oliveira, Antônio Alves Meira Neto, Tirthankar Roy, and Peter Troch
Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021, https://doi.org/10.5194/hess-25-3105-2021, 2021
Short summary
Short summary
We have collected and synthesized catchment attributes from multiple sources into an extensive dataset, the Catchment Attributes for Brazil (CABra). CABra contains streamflow and climate daily series for 735 catchments in the 1980–2010 period, aside from dozens of attributes of topography, climate, streamflow, groundwater, soil, geology, land cover, and hydrologic disturbance. The CABra intends to pave the way for a better understanding of catchments' behavior in Brazil and the world.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Adam S. Ward, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Skuyler Herzog, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Noah M. Schmadel, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, Nathan I. Wisnoski, and Steven M. Wondzell
Earth Syst. Sci. Data, 11, 1567–1581, https://doi.org/10.5194/essd-11-1567-2019, https://doi.org/10.5194/essd-11-1567-2019, 2019
Short summary
Short summary
Studies of river corridor exchange commonly focus on characterization of the physical, chemical, or biological system. As a result, complimentary systems and context are often lacking, which may limit interpretation. Here, we present a characterization of all three systems at 62 sites in a 5th-order river basin, including samples of surface water, hyporheic water, and sediment. These data will allow assessment of interacting processes in the river corridor.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Peter A. Troch, Ravindra Dwivedi, Tao Liu, Antonio Alves Meira Neto, Tirthankar Roy, Rodrigo Valdés-Pineda, Matej Durcik, Saúl Arciniega-Esparza, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-449, https://doi.org/10.5194/hess-2018-449, 2018
Revised manuscript not accepted
Short summary
Short summary
Recharge to bedrock aquifers is an important source of water availability and sustains streamflow during long dry periods. It is therefore an important component in the catchment water balance that sustains aquatic ecosystems. Our study shows that it is possible to predict average recharge rates at the catchment scale using only climate and landscape properties. This is an important finding as it is notoriously difficult to measure and/or estimate recharge rates at large spatial scales.
Nguyen Le Duy, Ingo Heidbüchel, Hanno Meyer, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 22, 1239–1262, https://doi.org/10.5194/hess-22-1239-2018, https://doi.org/10.5194/hess-22-1239-2018, 2018
Short summary
Short summary
This study analyzes the influence of local and regional meteorological factors on the isotopic composition of precipitation. The impact of the different factors on the isotopic condition was quantified by multiple linear regression of all factor combinations combined with relative importance analysis. The proposed approach might open a pathway for the improved reconstruction of paleoclimates based on isotopic records.
Rémi Dupas, Andreas Musolff, James W. Jawitz, P. Suresh C. Rao, Christoph G. Jäger, Jan H. Fleckenstein, Michael Rode, and Dietrich Borchardt
Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, https://doi.org/10.5194/bg-14-4391-2017, 2017
Short summary
Short summary
Carbon and nutrient export regimes were analyzed from archetypal headwater catchments to
downstream reaches. In headwater catchments, land use and lithology determine
land-to-stream C, N and P transfer processes. The crucial role of riparian
zones in C, N and P coupling was investigated. In downstream reaches,
point-source contributions and in-stream processes alter C, N and P export
regimes.
Matthew B. Switanek, Peter A. Troch, Christopher L. Castro, Armin Leuprecht, Hsin-I Chang, Rajarshi Mukherjee, and Eleonora M. C. Demaria
Hydrol. Earth Syst. Sci., 21, 2649–2666, https://doi.org/10.5194/hess-21-2649-2017, https://doi.org/10.5194/hess-21-2649-2017, 2017
Short summary
Short summary
The commonly used bias correction method called quantile mapping assumes a constant function of error correction values between modeled and observed distributions. Our article finds that this function cannot be assumed to be constant. We propose a new bias correction method, called scaled distribution mapping, that does not rely on this assumption. Furthermore, the proposed method more explicitly accounts for the frequency of rain days and the likelihood of individual events.
Nikolaj Kruse Christensen, Ty Paul A. Ferre, Gianluca Fiandaca, and Steen Christensen
Hydrol. Earth Syst. Sci., 21, 1321–1337, https://doi.org/10.5194/hess-21-1321-2017, https://doi.org/10.5194/hess-21-1321-2017, 2017
Short summary
Short summary
This study presents a new method for coupling a 3-D geophysical model with a 3-D groundwater model for improved groundwater model construction and prediction accuracy. The hydrological data consist of 35 hydraulic head measurements and one river discharge measurement, while the geophysical data set consists of 6300 measurement positions. The results demonstrate that the geophysical inversion strategy significantly affects the construction and prediction capability of the groundwater model.
Ingo Heidbüchel, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 20, 1269–1288, https://doi.org/10.5194/hess-20-1269-2016, https://doi.org/10.5194/hess-20-1269-2016, 2016
Short summary
Short summary
Cosmic-ray neutron sensors bridge the gap between point-scale measurements of soil moisture and remote sensing applications. We tested four distinct methods to calibrate the sensor in a temperate forest environment using different soil moisture weighting approaches. While the variable leaf biomass of the deciduous trees had no significant influence on the calibration, it proved necessary to modify the standard calibration method to achieve the best sensor performance.
W. He, C. Beyer, J. H. Fleckenstein, E. Jang, O. Kolditz, D. Naumov, and T. Kalbacher
Geosci. Model Dev., 8, 3333–3348, https://doi.org/10.5194/gmd-8-3333-2015, https://doi.org/10.5194/gmd-8-3333-2015, 2015
Short summary
Short summary
This technical paper presents a new tool to simulate reactive transport processes in subsurface systems and which couples the open-source software packages OpenGeoSys and IPhreeqc. A flexible parallelization scheme was developed and implemented to enable an optimized allocation of computer resources. The performance tests of the coupling interface and parallelization scheme illustrate the promising efficiency of this generally valid approach to simulate reactive transport problems.
B. J. Kopp, J. H. Fleckenstein, N. T. Roulet, E. Humphreys, J. Talbot, and C. Blodau
Hydrol. Earth Syst. Sci., 17, 3485–3498, https://doi.org/10.5194/hess-17-3485-2013, https://doi.org/10.5194/hess-17-3485-2013, 2013
S. Strohmeier, K.-H. Knorr, M. Reichert, S. Frei, J. H. Fleckenstein, S. Peiffer, and E. Matzner
Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, https://doi.org/10.5194/bg-10-905-2013, 2013
T. E. Franz, M. Zreda, R. Rosolem, and T. P. A. Ferre
Hydrol. Earth Syst. Sci., 17, 453–460, https://doi.org/10.5194/hess-17-453-2013, https://doi.org/10.5194/hess-17-453-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Modelling flood frequency and magnitude in a glacially conditioned, heterogeneous landscape: testing the importance of land cover and land use
Direct integration of reservoirs' operations in a hydrological model for streamflow estimation: coupling a CLSTM model with MOHID-Land
Modelling the regional sensitivity of snowmelt, soil moisture, and streamflow generation to climate over the Canadian Prairies using a basin classification approach
To what extent does river routing matter in hydrological modeling?
Calibrating macroscale hydrological models in poorly gauged and heavily regulated basins
An advanced tool integrating failure and sensitivity analysis into novel modeling of the stormwater flood volume
airGRteaching: an open-source tool for teaching hydrological modeling with R
Stable water isotopes and tritium tracers tell the same tale: no evidence for underestimation of catchment transit times inferred by stable isotopes in StorAge Selection (SAS)-function models
Uncertainty in water transit time estimation with StorAge Selection functions and tracer data interpolation
Changes in Mediterranean flood processes and seasonality
Can the combining of wetlands with reservoir operation reduce the risk of future floods and droughts?
Knowledge-informed deep learning for hydrological model calibration: an application to Coal Creek Watershed in Colorado
When best is the enemy of good – critical evaluation of performance criteria in hydrological models
The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Projecting sediment export from two highly glacierized alpine catchments under climate change: Exploring non-parametric regression as an analysis tool
A Framework for Parameter Estimation, Sensitivity Analysis, and Uncertainty Analysis for Holistic Hydrologic Modeling Using SWAT+
Using normalised difference infrared index patterns to constrain semi-distributed rainfall–runoff models in tropical nested catchments
Towards robust seasonal streamflow forecasts in mountainous catchments: impact of calibration metric selection in hydrological modeling
Revisiting the hydrological basis of the Budyko framework with the principle of hydrologically similar groups
Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression
Water and energy budgets over hydrological basins on short and long timescales
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Hydrological response to climate change and human activities in the Three-River Source Region
Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
River hydraulic modeling with ICESat-2 land and water surface elevation
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Monetizing the role of water in sustaining watershed ecosystem services using a fully integrated subsurface–surface water model
Technical note: How physically based is hydrograph separation by recursive digital filtering?
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Disentangling scatter in long-term concentration–discharge relationships: the role of event types
Simulating the hydrological impacts of land use conversion from annual crop to perennial forage in the Canadian Prairies using the Cold Regions Hydrological Modelling platform
Comparing machine learning and deep learning models for probabilistic post-processing of satellite precipitation-driven streamflow simulation
How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?
On the value of satellite remote sensing to reduce uncertainties of regional simulations of the Colorado River
Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Effects of passive-storage conceptualization on modeling hydrological function and isotope dynamics in the flow system of a cockpit karst landscape
Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations
A time-varying distributed unit hydrograph method considering soil moisture
Flood patterns in a catchment with mixed bedrock geology and a hilly landscape: identification of flashy runoff contributions during storm events
A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion
Improving hydrologic models for predictions and process understanding using neural ODEs
Response of active catchment water storage capacity to a prolonged meteorological drought and asymptotic climate variation
HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists
Pamela E. Tetford and Joseph R. Desloges
Hydrol. Earth Syst. Sci., 27, 3977–3998, https://doi.org/10.5194/hess-27-3977-2023, https://doi.org/10.5194/hess-27-3977-2023, 2023
Short summary
Short summary
An efficient regional flood frequency model relates drainage area to discharge, with a major assumption of similar basin conditions. In a landscape with variable glacial deposits and land use, we characterize varying hydrological function using 28 explanatory variables. We demonstrate that (1) a heterogeneous landscape requires objective model selection criteria to optimize the fit of flow data, and (2) incorporating land use as a predictor variable improves the drainage area to discharge model.
Ana Ramos Oliveira, Tiago Brito Ramos, Lígia Pinto, and Ramiro Neves
Hydrol. Earth Syst. Sci., 27, 3875–3893, https://doi.org/10.5194/hess-27-3875-2023, https://doi.org/10.5194/hess-27-3875-2023, 2023
Short summary
Short summary
This paper intends to demonstrate the adequacy of a hybrid solution to overcome the difficulties related to the incorporation of human behavior when modeling hydrological processes. Two models were implemented, one to estimate the outflow of a reservoir and the other to simulate the hydrological processes of the watershed. With both models feeding each other, results show that the proposed approach significantly improved the streamflow estimation downstream of the reservoir.
Zhihua He, Kevin Shook, Christopher Spence, John W. Pomeroy, and Colin Whitfield
Hydrol. Earth Syst. Sci., 27, 3525–3546, https://doi.org/10.5194/hess-27-3525-2023, https://doi.org/10.5194/hess-27-3525-2023, 2023
Short summary
Short summary
This study evaluated the impacts of climate change on snowmelt, soil moisture, and streamflow over the Canadian Prairies. The entire prairie region was divided into seven basin types. We found strong variations of hydrological sensitivity to precipitation and temperature changes in different land covers and basins, which suggests that different water management and adaptation methods are needed to address enhanced water stress due to expected climate change in different regions of the prairies.
Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo A. Mendoza, and Ximena Vargas
Hydrol. Earth Syst. Sci., 27, 3505–3524, https://doi.org/10.5194/hess-27-3505-2023, https://doi.org/10.5194/hess-27-3505-2023, 2023
Short summary
Short summary
This paper shows how important river models can be for water resource applications that involve hydrological models and, in particular, parameter calibration. To this end, we conduct numerical experiments in a pilot basin using a combination of hydrologic model simulations obtained from a large sample of parameter sets and different routing methods. We find that routing can affect streamflow simulations, even at monthly time steps; the choice of parameters; and relevant streamflow metrics.
Dung Trung Vu, Thanh Duc Dang, Francesca Pianosi, and Stefano Galelli
Hydrol. Earth Syst. Sci., 27, 3485–3504, https://doi.org/10.5194/hess-27-3485-2023, https://doi.org/10.5194/hess-27-3485-2023, 2023
Short summary
Short summary
The calibration of hydrological models over extensive spatial domains is often challenged by the lack of data on river discharge and the operations of hydraulic infrastructures. Here, we use satellite data to address the lack of data that could unintentionally bias the calibration process. Our study is underpinned by a computational framework that quantifies this bias and provides a safe approach to the calibration of models in poorly gauged and heavily regulated basins.
Francesco Fatone, Bartosz Szeląg, Przemysław Kowal, Arthur McGarity, Adam Kiczko, Grzegorz Wałek, Ewa Wojciechowska, Michał Stachura, and Nicolas Caradot
Hydrol. Earth Syst. Sci., 27, 3329–3349, https://doi.org/10.5194/hess-27-3329-2023, https://doi.org/10.5194/hess-27-3329-2023, 2023
Short summary
Short summary
A novel methodology for the development of a stormwater network performance simulator including advanced risk assessment was proposed. The applied tool enables the analysis of the influence of spatial variability in catchment and stormwater network characteristics on the relation between (SWMM) model parameters and specific flood volume, as an alternative approach to mechanistic models. The proposed method can be used at the stage of catchment model development and spatial planning management.
Olivier Delaigue, Pierre Brigode, Guillaume Thirel, and Laurent Coron
Hydrol. Earth Syst. Sci., 27, 3293–3327, https://doi.org/10.5194/hess-27-3293-2023, https://doi.org/10.5194/hess-27-3293-2023, 2023
Short summary
Short summary
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate tools and teaching material. In this article, we present the airGRteaching package, which is an open-source software tool relying on widely used hydrological models. This tool proposes an interface and numerous hydrological modeling exercises representing a wide range of hydrological applications. We show how this tool can be applied to simple but real-life cases.
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023, https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Short summary
This study shows that previously reported underestimations of water ages are most likely not due to the use of seasonally variable tracers. Rather, these underestimations can be largely attributed to the choices of model approaches which rely on assumptions not frequently met in catchment hydrology. We therefore strongly advocate avoiding the use of this model type in combination with seasonally variable tracers and instead adopting StorAge Selection (SAS)-based or comparable model formulations.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Yves Tramblay, Patrick Arnaud, Guillaume Artigue, Michel Lang, Emmanuel Paquet, Luc Neppel, and Eric Sauquet
Hydrol. Earth Syst. Sci., 27, 2973–2987, https://doi.org/10.5194/hess-27-2973-2023, https://doi.org/10.5194/hess-27-2973-2023, 2023
Short summary
Short summary
Mediterranean floods are causing major damage, and recent studies have shown that, despite the increase in intense rainfall, there has been no increase in river floods. This study reveals that the seasonality of floods changed in the Mediterranean Basin during 1959–2021. There was also an increased frequency of floods linked to short episodes of intense rain, associated with a decrease in soil moisture. These changes need to be taken into consideration to adapt flood warning systems.
Yanfeng Wu, Jingxuan Sun, Boting Hu, Y. Jun Xu, Alain N. Rousseau, and Guangxin Zhang
Hydrol. Earth Syst. Sci., 27, 2725–2745, https://doi.org/10.5194/hess-27-2725-2023, https://doi.org/10.5194/hess-27-2725-2023, 2023
Short summary
Short summary
Reservoirs and wetlands are important regulators of watershed hydrology, which should be considered when projecting floods and droughts. We first coupled wetlands and reservoir operations into a semi-spatially-explicit hydrological model and then applied it in a case study involving a large river basin in northeast China. We found that, overall, the risk of future floods and droughts will increase further even under the combined influence of reservoirs and wetlands.
Peishi Jiang, Pin Shuai, Alexander Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 27, 2621–2644, https://doi.org/10.5194/hess-27-2621-2023, https://doi.org/10.5194/hess-27-2621-2023, 2023
Short summary
Short summary
We developed a novel deep learning approach to estimate the parameters of a computationally expensive hydrological model on only a few hundred realizations. Our approach leverages the knowledge obtained by data-driven analysis to guide the design of the deep learning model used for parameter estimation. We demonstrate this approach by calibrating a state-of-the-art hydrological model against streamflow and evapotranspiration observations at a snow-dominated watershed in Colorado.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023, https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Short summary
The Kling–Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, when assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without an associated increase in model relevance. We suggest that one carefully choose performance criteria and use scaling factors.
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023, https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
Short summary
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates for global hydrologic assessment.
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023, https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
Short summary
A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. The proposed approach supports the participation of end-users in interpreting the impact of climate change on water resources.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
EGUsphere, https://doi.org/10.5194/egusphere-2023-1063, https://doi.org/10.5194/egusphere-2023-1063, 2023
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable, as many interacting processes are involved and appropriate physical models are lacking. We present the first study to our knowledge exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that ‘peak sediment’ may have already passed.
Salam A. Abbas, Ryan T. Bailey, Jeremy T. White, Jeffrey G. Arnold, Michael J. White, Natalja Čerkasova, and Jungang Gao
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-127, https://doi.org/10.5194/hess-2023-127, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Research Highlights. 1. Implemented groundwater module (gwflow) into SWAT+ for four watersheds with different unique hydrologic features across the United States. 2. Present methods for sensitivity analysis, uncertainty analysis, and parameter estimation for coupled models. 3. Sensitivity analysis for streamflow and groundwater head conducted using Morris method. 4. Uncertainty analysis and parameter estimation performed using an iterative Ensemble Smoother within the PEST framework.
Nutchanart Sriwongsitanon, Wasana Jandang, James Williams, Thienchart Suwawong, Ekkarin Maekan, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2149–2171, https://doi.org/10.5194/hess-27-2149-2023, https://doi.org/10.5194/hess-27-2149-2023, 2023
Short summary
Short summary
We developed predictive semi-distributed rainfall–runoff models for nested sub-catchments in the upper Ping basin, which yielded better or similar performance compared to calibrated lumped models. The normalised difference infrared index proves to be an effective proxy for distributed root zone moisture capacity over sub-catchments and is well correlated with the percentage of evergreen forest. In validation, soil moisture simulations appeared to be highly correlated with the soil wetness index.
Diego Araya, Pablo A. Mendoza, Eduardo Muñoz-Castro, and James McPhee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-116, https://doi.org/10.5194/hess-2023-116, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Dynamical systems are used by many agencies worldwide to produce seasonal streamflow forecasts, which are critical for decision-making. Such systems rely on hydrology models, which contain parameters that are typically estimated using a target performance metric (i.e., objective function). This study explores the effects of this decision across mountainous basins in Chile, illustrating tradeoffs between seasonal forecast quality and the models' capability to simulate streamflow characteristics.
Yuchan Chen, Xiuzhi Chen, Meimei Xue, Chuanxun Yang, Wei Zheng, Jun Cao, Wenting Yan, and Wenping Yuan
Hydrol. Earth Syst. Sci., 27, 1929–1943, https://doi.org/10.5194/hess-27-1929-2023, https://doi.org/10.5194/hess-27-1929-2023, 2023
Short summary
Short summary
This study addresses the quantification and estimation of the watershed-characteristic-related parameter (Pw) in the Budyko framework with the principle of hydrologically similar groups. The results show that Pw is closely related to soil moisture and fractional vegetation cover, and the relationship varies across specific hydrologic similarity groups. The overall satisfactory performance of the Pw estimation model improves the applicability of the Budyko framework for global runoff estimation.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Samantha Petch, Bo Dong, Tristan Quaife, Robert P. King, and Keith Haines
Hydrol. Earth Syst. Sci., 27, 1723–1744, https://doi.org/10.5194/hess-27-1723-2023, https://doi.org/10.5194/hess-27-1723-2023, 2023
Short summary
Short summary
Gravitational measurements of water storage from GRACE (Gravity Recovery and Climate Experiment) can improve understanding of the water budget. We produce flux estimates over large river catchments based on observations that close the monthly water budget and ensure consistency with GRACE on short and long timescales. We use energy data to provide additional constraints and balance the long-term energy budget. These flux estimates are important for evaluating climate models.
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, Alexandre Mas, François Colleoni, David Penot, Pierre-André Garambois, and Olivier Laurantin
EGUsphere, https://doi.org/10.5194/egusphere-2023-845, https://doi.org/10.5194/egusphere-2023-845, 2023
Short summary
Short summary
Hydrological modelling of mountainous catchments is challenging for many reasons, the main one being the temporal and spatial representation of precipitation forcings. This study presents an evaluation of the hydrological modelling of 55 small mountainous catchments of the Northern French Alps, focusing on the influence of the type of precipitation reanalyses used as inputs. These evaluations emphasize the added value of radar measurements, in particular for the reproduction of flood events.
Ting Su, Chiyuan Miao, Qingyun Duan, Jiaojiao Gou, Xiaoying Guo, and Xi Zhao
Hydrol. Earth Syst. Sci., 27, 1477–1492, https://doi.org/10.5194/hess-27-1477-2023, https://doi.org/10.5194/hess-27-1477-2023, 2023
Short summary
Short summary
The Three-River Source Region (TRSR) plays an extremely important role in water resources security and ecological and environmental protection in China and even all of Southeast Asia. This study used the variable infiltration capacity (VIC) land surface hydrologic model linked with the degree-day factor algorithm to simulate the runoff change in the TRSR. These results will help to guide current and future regulation and management of water resources in the TRSR.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023, https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
Short summary
This study examines, for the first time, the potential of various machine learning models in streamflow prediction over the Sutlej River basin (rainfall-dominated zone) in western Himalaya during the period 2041–2070 (2050s) and 2071–2100 (2080s) and its relationship to climate variability. The mean ensemble of the model results shows that the mean annual streamflow of the Sutlej River is expected to rise between the 2050s and 2080s by 0.79 to 1.43 % for SSP585 and by 0.87 to 1.10 % for SSP245.
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023, https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Short summary
Daily and hourly rainfall observations were inputted to a Soil and Water Assessment Tool (SWAT) hydrological model to investigate the impacts of rainfall temporal resolution on a discharge simulation. Results indicated that groundwater flow parameters were more sensitive to daily time intervals, and channel routing parameters were more influential for hourly time intervals. This study suggests that the SWAT model appears to be a reliable tool to predict discharge in a mixed-land-use basin.
Tariq Aziz, Steven K. Frey, David R. Lapen, Susan Preston, Hazen A. J. Russell, Omar Khader, Andre R. Erler, and Edward A. Sudicky
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-25, https://doi.org/10.5194/hess-2023-25, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The study determines the value of water towards ecosystem services production in an agricultural watershed in Ontario, Canada. It uses a computer model and an economic valuation approach to determine how subsurface and surface water affect ecosystem services supply. The results show that subsurface water plays a critical role in maintaining ecosystem services. The study informs on the sustainable use of subsurface water and introduces a new method for managing watershed ecosystem services.
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023, https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
Short summary
An important hydrological issue is to identify components of streamflow that react to precipitation with different degrees of attenuation and delay. From the multitude of methods that have been developed for this so-called hydrograph separation, a specific, frequently used one is singled out here. It is shown to be derived from plausible physical principles. This increases confidence in its results.
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023, https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary
Short summary
Numerical modelling is often used for climate impact studies in water resources management. It is, however, not yet highly accessible to many students of hydrology in Central Asia. One big hurdle for new learners is the preparation of relevant data prior to the actual modelling. We present a robust, open-source workflow and comprehensive teaching material that can be used by teachers and by students for self study.
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212, https://doi.org/10.5194/hess-27-191-2023, https://doi.org/10.5194/hess-27-191-2023, 2023
Short summary
Short summary
Patchy snow cover during spring impacts mountainous ecosystems on a large range of spatio-temporal scales. A hydrological model simulated such snow patchiness at 10 m resolution. Slope and orientation controls precipitation, radiation, and wind generate differences in snowmelt, subsurface storage, streamflow, and evapotranspiration. The snow patchiness increases the duration of the snowmelt to stream and subsurface storage, which sustains the plants and streamflow later in the summer.
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023, https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441, https://doi.org/10.5194/hess-26-6427-2022, https://doi.org/10.5194/hess-26-6427-2022, 2022
Short summary
Short summary
We produced a daily 0.1° dataset of precipitation, soil moisture, and snow water equivalent in 1981–2017 across China via reconstructions. The dataset used global background data and local on-site data as forcing input and satellite-based data as reconstruction benchmarks. This long-term high-resolution national hydrological dataset is valuable for national investigations of hydrological processes.
Felipe A. Saavedra, Andreas Musolff, Jana von Freyberg, Ralf Merz, Stefano Basso, and Larisa Tarasova
Hydrol. Earth Syst. Sci., 26, 6227–6245, https://doi.org/10.5194/hess-26-6227-2022, https://doi.org/10.5194/hess-26-6227-2022, 2022
Short summary
Short summary
Nitrate contamination of rivers from agricultural sources is a challenge for water quality management. During runoff events, different transport paths within the catchment might be activated, generating a variety of responses in nitrate concentration in stream water. Using nitrate samples from 184 German catchments and a runoff event classification, we show that hydrologic connectivity during runoff events is a key control of nitrate transport from catchments to streams in our study domain.
Marcos R. C. Cordeiro, Kang Liang, Henry F. Wilson, Jason Vanrobaeys, David A. Lobb, Xing Fang, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 26, 5917–5931, https://doi.org/10.5194/hess-26-5917-2022, https://doi.org/10.5194/hess-26-5917-2022, 2022
Short summary
Short summary
This study addresses the issue of increasing interest in the hydrological impacts of converting cropland to perennial forage cover in the Canadian Prairies. By developing customized models using the Cold Regions Hydrological Modelling (CRHM) platform, this long-term (1992–2013) modelling study is expected to provide stakeholders with science-based information regarding the hydrological impacts of land use conversion from annual crop to perennial forage cover in the Canadian Prairies.
Yuhang Zhang, Aizhong Ye, Phu Nguyen, Bita Analui, Soroosh Sorooshian, Kuolin Hsu, and Yuxuan Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-377, https://doi.org/10.5194/hess-2022-377, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
We compared probabilistic long short-term memory (PLSTM) model and quantile regression forest model (QRF). The results show the QRF model is more efficient, taking only half the time of the PLSTM model to do all the experiments in terms of model efficiency, the QRF model and the PLSTM model are comparable in terms of probabilistic (multi-point) prediction, the QRF model performs better in small watersheds and the PLSTM model performs better in large watersheds.
Reyhaneh Hashemi, Pierre Brigode, Pierre-André Garambois, and Pierre Javelle
Hydrol. Earth Syst. Sci., 26, 5793–5816, https://doi.org/10.5194/hess-26-5793-2022, https://doi.org/10.5194/hess-26-5793-2022, 2022
Short summary
Short summary
Hydrologists have long dreamed of a tool that could adequately predict runoff in catchments. Data-driven long short-term memory (LSTM) models appear very promising to the hydrology community in this respect. Here, we have sought to benefit from traditional practices in hydrology to improve the effectiveness of LSTM models. We discovered that one LSTM parameter has a hydrologic interpretation and that there is a need to increase the data and to tune two parameters, thereby improving predictions.
Mu Xiao, Giuseppe Mascaro, Zhaocheng Wang, Kristen M. Whitney, and Enrique R. Vivoni
Hydrol. Earth Syst. Sci., 26, 5627–5646, https://doi.org/10.5194/hess-26-5627-2022, https://doi.org/10.5194/hess-26-5627-2022, 2022
Short summary
Short summary
As the major water resource in the southwestern United States, the Colorado River is experiencing decreases in naturalized streamflow and is predicted to face severe challenges under future climate scenarios. Here, we demonstrate the value of Earth observing satellites to improve and build confidence in the spatiotemporal simulations from regional hydrologic models for assessing the sensitivity of the Colorado River to climate change and supporting regional water managers.
Christopher Spence, Zhihua He, Kevin R. Shook, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 5555–5575, https://doi.org/10.5194/hess-26-5555-2022, https://doi.org/10.5194/hess-26-5555-2022, 2022
Short summary
Short summary
We learnt how streamflow from small creeks could be altered by wetland removal in the Canadian Prairies, where this practice is pervasive. Every creek basin in the region was placed into one of seven groups. We selected one of these groups and used its traits to simulate streamflow. The model worked well enough so that we could trust the results even if we removed the wetlands. Wetland removal did not change low flow amounts very much, but it doubled high flow and tripled average flow.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Grey S. Nearing, Daniel Klotz, Jonathan M. Frame, Martin Gauch, Oren Gilon, Frederik Kratzert, Alden Keefe Sampson, Guy Shalev, and Sella Nevo
Hydrol. Earth Syst. Sci., 26, 5493–5513, https://doi.org/10.5194/hess-26-5493-2022, https://doi.org/10.5194/hess-26-5493-2022, 2022
Short summary
Short summary
When designing flood forecasting models, it is necessary to use all available data to achieve the most accurate predictions possible. This manuscript explores two basic ways of ingesting near-real-time streamflow data into machine learning streamflow models. The point we want to make is that when working in the context of machine learning (instead of traditional hydrology models that are based on
bio-geophysics), it is not necessary to use complex statistical methods for injecting sparse data.
Xiongpeng Tang, Guobin Fu, Silong Zhang, Chao Gao, Guoqing Wang, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin
Hydrol. Earth Syst. Sci., 26, 5315–5339, https://doi.org/10.5194/hess-26-5315-2022, https://doi.org/10.5194/hess-26-5315-2022, 2022
Short summary
Short summary
In this study, we proposed a new framework that considered the uncertainties of model simulations in quantifying the contribution rate of climate change and human activities to streamflow changes. Then, the Lancang River basin was selected for the case study. The results of quantitative analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was mainly human activities.
Bin Yi, Lu Chen, Hansong Zhang, Vijay P. Singh, Ping Jiang, Yizhuo Liu, Hexiang Guo, and Hongya Qiu
Hydrol. Earth Syst. Sci., 26, 5269–5289, https://doi.org/10.5194/hess-26-5269-2022, https://doi.org/10.5194/hess-26-5269-2022, 2022
Short summary
Short summary
An improved GIS-derived distributed unit hydrograph routing method considering time-varying soil moisture was proposed for flow routing. The method considered the changes of time-varying soil moisture and rainfall intensity. The response of underlying surface to the soil moisture content was considered an important factor in this study. The SUH, DUH, TDUH and proposed routing methods (TDUH-MC) were used for flood forecasts, and the simulated results were compared and discussed.
Audrey Douinot, Jean François Iffly, Cyrille Tailliez, Claude Meisch, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 5185–5206, https://doi.org/10.5194/hess-26-5185-2022, https://doi.org/10.5194/hess-26-5185-2022, 2022
Short summary
Short summary
The objective of the paper is to highlight the seasonal and singular shift of the transfer time distributions of two catchments (≅10 km2).
Based on 2 years of rainfall and discharge observations, we compare variations in the properties of TTDs with the physiographic characteristics of catchment areas and the eco-hydrological cycle. The paper eventually aims to deduce several factors conducive to particularly rapid and concentrated water transfers, which leads to flash floods.
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022, https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Short summary
High-resolution river modeling is of great interest to local governments and stakeholders for flood-hazard mitigation. This work presents a physics-guided, machine learning (ML) framework for combining the strengths of high-resolution process-based river network models with a graph-based ML model capable of modeling spatiotemporal processes. Results show that the ML model can approximate the dynamics of the process model with high fidelity, and data fusion further improves the forecasting skill.
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Cited articles
Ali, M., Fiori, A., and Russo, D.: A comparison of travel-time based
catchment transport models, with application to numerical experiments, J.
Hydrol., 511, 605–618, https://doi.org/10.1016/j.jhydrol.2014.02.010, 2014.
Ameli, A. A., Amvrosiadi, N., Grabs, T., Laudon, H., Creed, I. F.,
McDonnell, J. J., and Bishop, K.: Hillslope permeability architecture
controls on subsurface transit time distribution and flow paths, J. Hydrol.,
543, 17–30, https://doi.org/10.1016/j.jhydrol.2016.04.071,
2016.
Amin, I. E. and Campana, M. E.: A general lumped parameter model for the
interpretation of tracer data and transit time calculation in hydrologic
systems, J. Hydrol., 179, 1–21,
https://doi.org/10.1016/0022-1694(95)02880-3, 1996.
Becker, M. W. and Shapiro, A. M.: Interpreting tracer breakthrough tailing
from different forced-gradient tracer experiment configurations in fractured
bedrock, Water Resour. Res., 39, 1024, https://doi.org/10.1029/2001WR001190,
2003.
Begemann, F. and Libby, W. F.: Continental water balance, ground water
inventory and storage times, surface ocean mixing rates and world-wide water
circulation patterns from cosmic-ray and bomb tritium, Geochim. Cosmochim.
Ac., 12, 277–296,
https://doi.org/10.1016/0016-7037(57)90040-6, 1957.
Benettin, P., Kirchner, J. W., Rinaldo, A., and Botter, G.: Modeling
chloride transport using travel time distributions at Plynlimon, Wales,
Water Resour. Res., 51, 3259-3276,
https://doi.org/10.1002/2014WR016600, 2015.
Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., and
Rinaldo, A.: Using SAS functions and high-resolution isotope data to unravel
travel time distributions in headwater catchments, Water Resour. Res.,
53, 1864–1878, https://doi.org/10.1002/2016WR020117, 2017.
Berghuijs, W. R. and Kirchner, J. W.: The relationship between contrasting
ages of groundwater and streamflow, Geophys. Res. Lett., 44, 8925–8935,
https://doi.org/10.1002/2017GL074962, 2017.
Birkel, C., Geris, J., Molina, M. J., Mendez, C., Arce, R., Dick, J., Tetzlaff, D., and Soulsby, C.: Hydroclimatic controls on non-stationary stream water ages in humid
tropical catchments, J. Hydrol., 542, 231–240,
https://doi.org/10.1016/j.jhydrol.2016.09.006, 2016.
Birkel, C., Soulsby, C., Tetzlaff, D., Dunn, S., and Spezia, L.:
High-frequency storm event isotope sampling reveals time-variant transit
time distributions and influence of diurnal cycles, Hydrol. Process., 26,
308–316, https://doi.org/10.1002/hyp.8210, 2012.
Bishop, K., Seibert, J., Köhler, S., and Laudon, H.: Resolving the
double paradox of rapidly mobilized old water with highly variable responses
in runoff chemistry, Hydrol. Process., 18, 185–189,
https://doi.org/10.1002/hyp.5209, 2004.
Botter, G., Bertuzzo, E., and Rinaldo, A.: Transport in the hydrologic
response: Travel time distributions, soil moisture dynamics, and the old
water paradox, Water Resour. Res., 46, W03514,
https://doi.org/10.1029/2009WR008371, 2010.
Botter, G., Bertuzzo, E., and Rinaldo, A.: Catchment residence and travel
time distributions: The master equation, Geophys. Res. Lett., 38, L11403,
https://doi.org/10.1029/2011GL047666, 2011.
Cardenas, M. B. and Jiang, X. W.: Groundwater flow, transport, and residence
times through topography-driven basins with exponentially decreasing
permeability and porosity, Water Resour. Res., 46, W11538,
https://doi.org/10.1029/2010WR009370, 2010.
Chapman, S. W., Parker, B. L., Sale, T. C., and Doner, L. A.: Testing high
resolution numerical models for analysis of contaminant storage and release
from low permeability zones, J. Contam. Hydrol., 136, 106–116,
https://doi.org/10.1016/j.jconhyd.2012.04.006, 2012.
Cox, D. R. and Isham, V.: A simple spatial-temporal model of rainfall, Philos. T.
R. Soc. Lond., 415, 317–328, 1988.
Danesh-Yazdi, M., Klaus, J., Condon, L. E., and Maxwell, R. M.: Bridging the
gap between numerical solutions of travel time distributions and analytical
storage selection functions, Hydrol. Process., 32, 1063–1076, https://doi.org/10.1002/hyp.11481, 2018.
Dinçer, T., Payne, B. R., Florkowski, T., Martinec, J., and Tongiorgi,
E.: Snowmelt runoff from measurements of tritium and oxygen-18, Water
Resour. Res., 6, 110–124,
https://doi.org/10.1029/WR006i001p00110, 1970.
Eriksson, E.: The Possible Use of Tritium for Estimating Groundwater
Storage, Tellus, 10, 472–478, https://doi.org/10.3402/tellusa.v10i4.9265, 1958.
Fiori, A. and Becker, M. W.: Power law breakthrough curve tailing in a
fracture: The role of advection, J. Hydrol., 525, 706–710, https://doi.org/10.1016/j.jhydrol.2015.04.029, 2015.
Fiori, A. and Russo, D.: Travel time distribution in a hillslope: Insight
from numerical simulations, Water Resour. Res., 44, W12426, https://doi.org/10.1029/2008WR007135, 2008.
Fiori, A., Russo, D., and Di Lazzaro, M.: Stochastic analysis of transport
in hillslopes: Travel time distribution and source zone dispersion, Water
Resour. Res., 45, W08435, https://doi.org/10.1029/2008WR007668,
2009.
Gelhar, L. W., Welty, C., and Rehfeldt, K. R.: A critical review of data on
field-scale dispersion in aquifers, Water Resour. Res., 28, 1955–1974,
https://doi.org/10.1029/92WR00607, 1992.
Gilfedder, B. S., Cartwright, I., Hofmann, H., and Frei, S.: Explicit
Modeling of Radon-222 in HydroGeoSphere During Steady State and Dynamic
Transient Storage, Groundwater, 57, 36-47, https://doi.org/10.1111/gwat.12847, 2019.
Godsey, S. E., Aas, W., Clair, T. A., de Wit, H. A., Fernandez, I. J., Kahl, J. S., Malcolm, I. A., Neal, C., Neal, M., Nelson, S. J., Norton, S. A., Palucis, M. C., Skjelkvåle, B. L., Soulsby, C., Tetzlaff, D., and Kirchner, J. W.: Generality of fractal 1∕f scaling in catchment tracer time
series, and its implications for catchment travel time distributions,
Hydrol. Process., 24, 1660–1671, https://doi.org/10.1002/hyp.7677, 2010.
Haggerty, R., McKenna, S. A., and Meigs, L. C.: On the late-time behavior of
tracer test breakthrough curves. Water Resour. Res., 36, 3467–3479,
https://doi.org/10.1029/2000WR900214, 2000.
Haitjema, H. M.: On the residence time distribution in idealized
groundwatersheds, J. Hydrol., 172, 127–146, https://doi.org/10.1016/0022-1694(95)02732-5, 1995.
Harman, C. J.: Time-variable transit time distributions and transport:
Theory and application to storage-dependent transport of chloride in a
watershed, Water Resour. Res., 51, 1–30, https://doi.org/10.1002/2014WR015707, 2015.
Harman, C. J. and Kim, M.: An efficient tracer test for time-variable
transit time distributions in periodic hydrodynamic systems, Geophys. Res.
Lett., 41, 1567–1575, https://doi.org/10.1002/2013GL058980,
2014.
Harman, C. J., Rao, P. S. C., Basu, N. B., McGrath, G. S., Kumar, P., and
Sivapalan, M.: Climate, soil, and vegetation controls on the temporal
variability of vadose zone transport, Water Resour. Res., 47, W00J13, https://doi.org/10.1029/2010WR010194, 2011.
Heidbüchel, I., Troch, P. A., and Lyon, S. W.: Separating physical and
meteorological controls of variable transit times in zero-order catchments,
Water Resour. Res., 49, 7644–7657, https://doi.org/10.1002/2012WR013149, 2013.
Heidbüchel, I., Troch, P. A., Lyon, S. W., and Weiler, M.: The master
transit time distribution of variable flow systems, Water Resour. Res.,
48, W06520, https://doi.org/10.1029/2011WR011293, 2012.
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Dawson, J. J. C., Dunn, S. M.,
and Malcolm, I. A.: Using long-term data sets to understand transit times in
contrasting headwater catchments, J. Hydrol., 367, 237–248,
https://doi.org/10.1016/j.jhydrol.2009.01.001, 2009.
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Malcolm, I. A., and Schoups, G.:
Gamma distribution models for transit time estimation in catchments:
Physical interpretation of parameters and implications for time-variant
transit time assessment, Water Resour. Res., 46, W10536, https://doi.org/10.1029/2010WR009148, 2010.
Hrachowitz, M., Soulsby, C., Tetzlaff, D., and Malcolm, I. A.: Sensitivity
of mean transit time estimates to model conditioning and data availability,
Hydrol. Process., 25, 980–990, https://doi.org/10.1002/hyp.7922, 2011.
Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., and Soulsby, C.: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?, Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, 2013.
Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O., Howden, N. J. K., Ruiz, L., van der Velde, Y., and Wade, A. J.: Transit times – the link between hydrology and water
quality at the catchment scale, Wiley Interdisciplinary Reviews: Water,
3, 629–657, https://doi.org/10.1002/wat2.1155, 2016.
Jasechko, S., Kirchner, J. W., Welker, J. M., and McDonnell, J. J.:
Substantial proportion of global streamflow less than three months old, Nat.
Geosci., 9, 126–129, https://doi.org/10.1038/NGEO2636, 2016.
Jiang, X. W., Wan, L., Wang, X. S., Ge, S., and Liu, J.: Effect of
exponential decay in hydraulic conductivity with depth on regional
groundwater flow, Geophys. Res. Lett., 36, L24402, https://doi.org/10.1029/2009GL041251, 2009.
Kim, M., Pangle, L. A., Cardoso, C., Lora, M., Volkmann, T. H. M., Wang, Y., Harman, C. J., and Troch, P. A.:
Transit time distributions and StorAge Selection functions in a sloping soil
lysimeter with time-varying flow paths: Direct observation of internal and
external transport variability, Water Resour. Res., 52, 7105–7129,
https://doi.org/10.1002/2016WR018620, 2016.
Kirchner, J. W.: Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrol. Earth Syst. Sci., 20, 279–297, https://doi.org/10.5194/hess-20-279-2016, 2016.
Kirchner, J. W., Feng, X., and Neal, C.: Fractal stream chemistry and its
implications for contaminant transport in catchments, Nature, 403,
524–527, https://doi.org/10.1038/35000537, 2000.
Kirchner, J. W., Feng, X., and Neal, C.: Catchment-scale advection and
dispersion as a mechanism for fractal scaling in stream tracer
concentrations, J. Hydrol., 254, 82–101, https://doi.org/10.1016/S0022-1694(01)00487-5, 2001.
Kollet, S. J. and Maxwell, R. M.: Demonstrating fractal scaling of baseflow
residence time distributions using a fully-coupled groundwater and land
surface model, Geophys. Res. Lett., 35, L07402, https://doi.org/10.1029/2008GL033215, 2008.
Kollet, S., Sulis, M., Maxwell, R. M., Paniconi, C., Putti, M., Bertoldi, G., Coon, E. T., Cordano, E., Endrizzi, S., Kikinzon, E., Mouche, E., Mügler, C., Park, Y.-J., Refsgaard, J. C., Stisen, S., and Sudicky, E.: The integrated hydrologic model intercomparison project,
IH-MIP2: A second set of benchmark results to diagnose integrated hydrology
and feedbacks, Water Resour. Res., 53, 867–890, https://doi.org/10.1002/2016WR019191, 2017.
Liggett, J. E., Partington, D., Frei, S., Werner, A. D., Simmons, C. T., and
Fleckenstein, J. H.: An exploration of coupled surface–subsurface solute
transport in a fully integrated catchment model, J. Hydrol., 529, 969–979,
https://doi.org/10.1016/j.jhydrol.2015.09.006, 2015.
Lutz, S. R., Velde, Y. V. D., Elsayed, O. F., Imfeld, G., Lefrancq, M.,
Payraudeau, S., and Breukelen, B. M. V.: Pesticide fate on catchment scale:
conceptual modelling of stream CSIA data, Hydrol. Earth Syst. Sc., 21,
5243–5261, https://doi.org/10.5194/hess-21-5243-2017, 2017.
Małoszewski, P., Rauert, W., Stichler, W., and Herrmann, A.: Application
of flow models in an alpine catchment area using tritium and deuterium data,
J. Hydrol., 66, 319–330, https://doi.org/10.1016/0022-1694(83)90193-2, 1983.
Małoszewski, P. and Zuber, A.: Determining the turnover time of
groundwater systems with the aid of environmental tracers: 1. Models and
their applicability, J. Hydrol., 57, 207–231, https://doi.org/10.1016/0022-1694(82)90147-0, 1982.
Massoudieh, A., Visser, A., Sharifi, S., and Broers, H. P.: A Bayesian
modeling approach for estimation of a shape-free groundwater age
distribution using multiple tracers, Appl. Geochem., 50, 252–264, https://doi.org/10.1016/j.apgeochem.2013.10.004, 2014.
Maxwell, R. M., Putti, M., Meyerhoff, S., Delfs, J.-O., Ferguson, I. M., Ivanov, V., Kim, J., Kolditz, O., Kollet, S. J., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M. S., Shen, C., Sudicky, E. A., and Sulis, M.: Surface-subsurface model intercomparison: A first set of
benchmark results to diagnose integrated hydrology and feedbacks, Water
Resour. Res., 50, 1531–1549, https://doi.org/10.1002/2013WR013725, 2014.
McDonnell, J. J., McGuire, K., Aggarwal, P., Beven, K. J., Biondi, D., Destouni, G., Dunn, S., James, A., Kirchner, J., Kraft, P., Lyon, S., Maloszewski, P., Newman, B., Pfister, L., Rinaldo, A., Rodhe, A., Sayama, T., Seibert, J., Solomon, K., Soulsby, C., Stewart, M., Tetzlaff, D., Tobin, C., Troch, P., Weiler, M., Western, A., Wörman, A., and Wrede, S.: How old is streamwater? Open questions in catchment
transit time conceptualization, modelling and analysis, Hydrol. Process.,
24, 1745–1754, https://doi.org/10.1002/hyp.7796, 2010.
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L.,
Welker, J. M., and Seibert, J.: The role of topography on catchment-scale
water residence time, Water Resour. Res., 41, https://doi.org/10.1029/2004WR003657, 2005.
McGuire, K. J. and McDonnell, J. J.: A review and evaluation of catchment
transit time modeling, J. Hydrol., 330, 543–563, https://doi.org/10.1016/j.jhydrol.2006.04.020, 2006.
McMillan, H., Tetzlaff, D., Clark, M., and Soulsby, C.: Do time-variable
tracers aid the evaluation of hydrological model structure? A multimodel
approach, Water Resour. Res., 48, W05501, https://doi.org/10.1029/2011WR011688, 2012.
Musolff, A., Fleckenstein, J. H., Rao, P. S. C., and Jawitz, J. W.: Emergent
archetype patterns of coupled hydrologic and biogeochemical responses in
catchments, Geophys. Res. Lett., 44, 4143–4151, https://doi.org/10.1002/2017GL072630, 2017.
Nauman, E. B.: Residence time distribution theory for unsteady stirred tank
reactors, Chem. Eng. Sci., 24, 1461–1470, https://doi.org/10.1016/0009-2509(69)85074-8, 1969.
Niemi, A. J.: Residence time distributions of variable flow processes, Int.
J. Appl. Radiat. Is., 28, 855–860, https://doi.org/10.1016/0020-708X(77)90026-6, 1977.
Nir, A.: On the interpretation of tritium “age” measurements of groundwater,
J. Geophys. Res., 69, 2589–2595, https://doi.org/10.1029/JZ069i012p02589, 1964.
Nyström, U.: Transit time distributions of water in two small forested
catchments, Ecol. Bull., 37, 97–100, 1985.
Pangle, L. A., Kim, M., Cardoso, C., Lora, M., Meira Neto, A.
A., Volkmann, Wang, Y., Troch, P. A., and Harman, C. J.: The mechanistic basis for storage-dependent age distributions of
water discharged from an experimental hillslope, Water Resour. Res., 53,
2733–2754, https://doi.org/10.1002/2016WR019901, 2017.
Pedretti, D. and Bianchi, M.: Reproducing tailing in breakthrough curves:
Are statistical models equally representative and predictive?, Adv. Water
Resour., 113, 236–248, https://doi.org/10.1016/j.advwatres.2018.01.023, 2018.
Pedretti, D., Fernàndez-Garcia, D., Bolster, D., and Sanchez-Vila, X.:
On the formation of breakthrough curves tailing during convergent flow
tracer tests in three-dimensional heterogeneous aquifers, Water Resour.
Res., 49, 4157–4173, https://doi.org/10.1002/wrcr.20330,
2013.
Peralta-Tapia, A., Soulsby, C., Tetzlaff, D., Sponseller, R., Bishop, K.,
and Laudon, H.: Hydroclimatic influences on non-stationary transit time
distributions in a boreal headwater catchment, J. Hydrol., 543, 7–16,
https://doi.org/10.1016/j.jhydrol.2016.01.079, 2016.
Remondi, F., Kirchner, J. W., Burlando, P., and Fatichi, S.: Water Flux
Tracking With a Distributed Hydrological Model to Quantify Controls on the
Spatio-temporal Variability of Transit Time Distributions, Water Resour.
Res., 54, 3081–3099, https://doi.org/10.1002/2017WR021689,
2018.
Rinaldo, A., Beven, K. J., Bertuzzo, E., Nicotina, L., Davies, J., Fiori, A., Russo, D., and Botter, G.: Catchment travel time distributions and water flow in soils,
Water Resour. Res., 47, W07537, https://doi.org/10.1029/2011WR010478, 2011.
Roa-García, M. C. and Weiler, M.: Integrated response and transit time distributions of watersheds by combining hydrograph separation and long-term transit time modeling, Hydrol. Earth Syst. Sci., 14, 1537–1549, https://doi.org/10.5194/hess-14-1537-2010, 2010.
Rodhe, A., Nyberg, L., and Bishop, K.: Transit times for water in a small
till catchment from a step shift in the oxygen 18 content of the water
input, Water Resour. Res., 32, 3497–3511, https://doi.org/10.1029/95WR01806, 1996.
Schulze-Makuch, D.: Longitudinal dispersivity data and implications for
scaling behavior, Groundwater, 43, 443–456, https://doi.org/10.1111/j.1745-6584.2005.0051.x, 2005.
Seeger, S. and Weiler, M.: Reevaluation of transit time distributions, mean transit times and their relation to catchment topography, Hydrol. Earth Syst. Sci., 18, 4751–4771, https://doi.org/10.5194/hess-18-4751-2014, 2014.
Soulsby, C., Birkel, C., Geris, J., and Tetzlaff, D.: Spatial aggregation of
time-variant stream water ages in urbanizing catchments, Hydrol. Process.,
29, 3038–3050, https://doi.org/10.1002/hyp.10500, 2015.
Sprenger, M., Seeger, S., Blume, T., and Weiler, M.: Travel times in the
vadose zone: Variability in space and time, Water Resour. Res., 52,
5727–5754, https://doi.org/10.1002/2015WR018077, 2016.
Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrueger, B., Weiler,
M., and Vereecken, H.: Seasonal soil moisture patterns: Controlling transit
time distributions in a forested headwater catchment, Water Resour. Res.,
50, 5270–5289, https://doi.org/10.1002/2013WR014815, 2014.
Sudicky, E. A., Illman, W. A., Goltz, I. K., Adams, J. J., and McLaren, R.
G.: Heterogeneity in hydraulic conductivity and its role on the macroscale
transport of a solute plume: From measurements to a practical application of
stochastic flow and transport theory, Water Resour. Res., 46, W01508, https://doi.org/10.1029/2008WR007558, 2010.
Tetzlaff, D., Birkel, C., Dick, J., Geris, J., and Soulsby, C.: Storage
dynamics in hydropedological units control hillslope connectivity, runoff
generation, and the evolution of catchment transit time distributions, Water
Resour. Res., 50, 969–985, https://doi.org/10.1002/2013WR014147, 2014.
Therrien, R., McLaren, R. G., Sudicky, E. A., and Panday, S. M.:
HydroGeoSphere: a three-dimensional numerical model describing
fully-integrated subsurface and surface flow and solute transport,
Groundwater Simulations Group, University of Waterloo, Waterloo, ON, 2010.
Timbe, E., Windhorst, D., Celleri, R., Timbe, L., Crespo, P., Frede, H.-G., Feyen, J., and Breuer, L.: Sampling frequency trade-offs in the assessment of mean transit times of tropical montane catchment waters under semi-steady-state conditions, Hydrol. Earth Syst. Sci., 19, 1153–1168, https://doi.org/10.5194/hess-19-1153-2015, 2015.
van der Velde, Y., de Rooij, G. H., Rozemeijer, J. C., van Geer, F. C., and
Broers, H. P.: Nitrate response of a lowland catchment: On the relation
between stream concentration and travel time distribution dynamics, Water
Resour. Res., 46, W11534, https://doi.org/10.1029/2010WR009105,
2010.
van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. A. T. M., and
Uijlenhoet, R.: Quantifying catchment-scale mixing and its effect on
time-varying travel time distributions, Water Resour. Res., 48, W06536,
https://doi.org/10.1029/2011WR011310, 2012.
van der Velde, Y., Heidbüchel, I., Lyon, S. W., Nyberg, L., Rodhe, A.,
Bishop, K., and Troch, P. A.: Consequences of mixing assumptions for
time-variable travel time distributions, Hydrol. Process., 29,
3460–3474, https://doi.org/10.1002/hyp.10372, 2015.
Weiler, M., McGlynn, B. L., McGuire, K. J., and McDonnell, J. J.: How does
rainfall become runoff? A combined tracer and runoff transfer function
approach, Water Resour. Res., 39, 1315, https://doi.org/10.1029/2003WR002331, 2003.
Wilusz, D. C., Harman, C. J., and Ball, W. P.: Sensitivity of catchment
transit times to rainfall variability under present and future climates,
Water Resour. Res., 53, 10231–10256, https://doi.org/10.1002/2017WR020894, 2017.
Yang, J., Heidbüchel, I., Musolff, A., Reinstorf, F., and Fleckenstein,
J. H.: Exploring the dynamics of transit times and subsurface mixing in a
small agricultural catchment, Water Resour. Res., 54, 2317–2335, https://doi.org/10.1002/2017WR021896, 2018.
Zech, A., Attinger, S., Cvetkovic, V., Dagan, G., Dietrich, P., Fiori, A.,
Rubin, J., and Teutsch, G.: Is unique scaling of aquifer macrodispersivity
supported by field data?, Water Resour. Res., 51, 7662–7679, https://doi.org/10.1002/2015WR017220, 2015.
Zhang, Y., Benson, D. A., and Baeumer, B.: Predicting the tails of
breakthrough curves in regional-scale alluvial systems, Groundwater, 45,
473–484, https://doi.org/10.1111/j.1745-6584.2007.00320.x, 2007.
Short summary
With the help of a 3-D computer model we examined how long the water of different rain events stays inside small catchments before it is discharged and how the nature of this discharge is controlled by different catchment and climate properties. We found that one can only predict the discharge dynamics when taking into account a combination of catchment and climate properties (i.e., there was not one single most important predictor). Our results can help to manage water pollution events.
With the help of a 3-D computer model we examined how long the water of different rain events...