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Introduction 

The supplement consists of 8 sections, 12 figures and 12 

tables. The individual sections contain a comparison of 

TTDs resulting from different dispersivity values (S1, Fig. 

S1, Table S1), a comparison of TTDs resulting from a 

looped and a continuous precipitation time series (S2, Fig. 

S2), an overview of the different modeling scenarios (Table 

S2), the precipitation time series created for testing the 

influence of the sequence of events (Fig. S3) and the table 

containing all distributions metrics for those 15 scenarios 

(Table S4), the tracer mass in storage, the cumulative tracer 

mass of the outflux and the cumulative mass balance errors 

for the 36 scenarios (Fig. S4), methods for the computation 

of TTD metrics (S3, Fig. S5), methods for and results from 

the determination of young water fractions (S4, Fig. S6, 

Table S3), a comparison of different theoretical probability 

density functions (Fig. S7), information on TTD smoothing 

(S5, Fig. S8), the derivation of TTDs from tracer 

breakthrough curves (Fig. S9), the analysis of spatial tracer 

distribution over the catchment and in its profile (S6, Fig. 

S10), outflow probability distributions plotted against 

cumulative outflow (Fig. S11), measures of how well the 

different theoretical probability distributions fit the modeled 

TTDs (Table S5), metrics of the TTDs derived from 

scenarios with other catchment and climate properties 

(Tables S6 to S12), a method to add power-law tails to 

gamma probability distributions (S7, Fig. S7) as well as an 

example of using TTDs for reactive solute transport 

applications (S8, Fig. S12). 

S1 

In order to rule out that a smaller model value for the 

longitudinal dispersivity αL would influence our results 

significantly, we set up two additional runs. In these runs we 

reduced αL by 1 order of magnitude from 5 m to 0.5 m. We 

chose to test the two scenarios THWB and TLDS since they 

result in the longest and shortest transit times of all model 

scenarios, respectively. We found only small deviations for 

TLDS in the early part of the TTD (with none of the transit 

time quartiles being more than five percent longer than in 

the reference case with larger αL) and virtually no difference 

for THWB (Fig. S1 and Table S1). 

S2 

We looped a 1-year-long time series of precipitation from 

the northeast of Germany and used it as a boundary 

condition throughout the 33-year-long model period in all of 

the scenarios. In order to check whether the looping would 

cause any unwanted artifacts in the resulting TTDs we 

additionally created a 32-year-long synthetic continuous 

precipitation time series with similar attributes: average 

yearly precipitation amount of 690 mm a–1, average event 

interarrival time of 2.64 days and Poisson distributed 

precipitation event amounts. This continuous (non-looped) 

time series was attached to the 1-year-long recorded time 

series to create a second 33-year-long time series. The 

comparison of the two resulting TTDs shows that the 

looping does not introduce any artifactual irregularities into 

the TTD shape (Fig. S2). 

S3 

1. The first quartile (Q1) was determined via the 

cumulative TTD. It is the transit time when 25 % of the 

applied tracer mass has left the system. 

2. The median (Q2) was derived similarly (when 50 % of 

the applied tracer mass has left the system). 

3. The mean transit time (mTT): 

𝑚𝑇𝑇 = ∑(𝐽𝑜𝑢𝑡
𝑛𝑜𝑟𝑚 ∗ 𝛥𝑡 ∗ 𝑡).       (S1) 

4. The third quartile (Q3) was again determined with the 

help of the cumulative TTD (when 75 % of the applied 

tracer mass has left the system). 

5. The standard deviation (σ) is a measure describing the 

dispersion of a distribution, with a small standard 

deviation pointing towards the data point cloud being 

clustered closely around the mean: 

𝜎 = √∑(𝐽𝑜𝑢𝑡
𝑛𝑜𝑟𝑚 ∗ 𝛥𝑡 ∗ 𝑡2) − 𝑚𝑇𝑇2 .      (S2) 

6. The skewness (ν) is a measure that informs about how 

much a distribution leans to one side of its mean. A 

negative skew means that the distribution leans towards 

the right (the highest concentration follows after the 

mean), a positive skew indicates that the distribution 

leans towards the left (the highest concentration is 

reached before the mean): 

𝜈 =
∑(𝐽𝑜𝑢𝑡

𝑛𝑜𝑟𝑚∗𝛥𝑡∗𝑡3)−(3∗𝑚𝑇𝑇∗𝜎2)−𝑚𝑇𝑇3

𝜎3
.      (S3) 

7. The excess kurtosis (γ): 

𝛾 =
∑(𝐽𝑜𝑢𝑡

𝑛𝑜𝑟𝑚∗𝛥𝑡∗(𝑡−𝑚𝑇𝑇)4)

𝜎4
− 3.       (S4) 

A positive excess kurtosis means that a distribution 

produces more extreme outliers than the Gaussian 

normal distribution, so this measure is related 

predominantly to the tail of the distribution – and only 

to a lesser extent to its peak. For positive values of the 

excess kurtosis, the tail of the distribution approaches 

zero more slowly than a normal distribution while the 

peak is higher (leptokurtic). For negative values of the 

excess kurtosis, the tail approaches zero faster than a 
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normal distribution while the peak is lower 

(platykurtic). There is no unanimous consent on the 

mathematical definition of what constitutes a “heavy” 

or “light” tail. According to some sources heavy tails 

are those tails that have more weight than an 

exponential tail – a definition which corresponds to 

heavy-tailed distributions being defined as possessing 

an increasing hazard (rate) function (Kellison and 

London, 2011). This definition would place gamma 

distributions with shape parameters α < 1 clearly in the 

category of heavy-tailed distributions and gamma 

distributions with shape parameters α > 1 in the 

category of light-tailed distributions. Other sources, 

however, attribute heavy tails only to distributions with 

infinite moment generating functions (Rolski et al, 

2009). Therefore we are not using the (absolute) terms 

heavy-tailed or light-tailed to describe the TTDs but 

rather just refer to “heavier” and “lighter” tails in the 

manuscript. 

S4 

We calculated young water fractions for the best-fit gamma 

distributions to see how they are influenced by catchment 

and event properties. The young water fraction (Fyw) 

constitutes the fraction of water in discharge with an age 

below 2.3 months (Jasechko et al., 2016; Kirchner, 2016). 

Modeled Fyw from the best-fit gamma distributions ranged 

from 4 % to 100 % (Table S3). We also determined Fyw 

directly from the modeled TTDs. They ranged from 0 % to 

61 %. The Fyw derived from the best-fit gamma distributions 

and directly from the modeled TTDs differed considerably, 

in particular for the scenarios with larger Fyw. The Fyw 

derived directly from the modeled TTDs were almost 

always smaller than the ones derived from the best-fit 

gamma distributions. This overestimation resulted from the 

fact that most of the best-fit gamma distributions were found 

to have shape parameters α larger than 1, which led to TTDs 

with initial values of 0 and a ‘humped’ shape causing less 

outflow at short transit times. 

In general, Fyw increases with increasing Psub, θant, KS and 

with decreasing Dsoil (Fig. S6). The highest Fyw was 

observed for scenarios with shallow Dsoil, wet θant and large 

Psub. The increase with increasing θant is found because 

catchment soil storage is already filled and hydraulic 

conductivity of the soil is already high (close to saturation) 

so that the incoming event water can immediately flow 

laterally towards the outlet while only a smaller fraction 

stays in the soil storage or enters the low-conductivity 

bedrock. In catchments with higher KS, Fyw also increases 

since the conductivity contrast between the bedrock and the 

soil increases and more of the incoming event water flows 

laterally towards the outlet with a higher velocity. Shallow 

soils increase Fyw too due to the fact that less soil storage is 

available where event water can be stored before lateral 

flow is initiated. Finally, larger Psub increases Fyw as well, 

which can be associated with the “flushing effect” where 

more flow in the more fully saturated soil layer equals a 

larger flux through the soil layer and hence a larger fraction 

of young water in the discharge. 

S5 

The modeled TTDs where smoothed just for the purpose of 

better visual comparison – all the calculations and the fitting 

were performed on the unsmoothed data (see Fig. S8 for an 

example of a smoothed TTD). We smoothed the TTDs by 

using moving window averaging with increasing window 

size towards longer transit times: 

𝑁𝑙𝑒𝑓𝑡(𝑡) = {
𝑁,   𝑖𝑓  (ln 𝑡)3 ≤ 0

⌈𝑁(𝑡) − 0.5(ln 𝑡)3⌉,   𝑖𝑓  (ln 𝑡)3 > 0
,     (S5) 

𝑁𝑟𝑖𝑔ℎ𝑡(𝑡) = {
𝑁,       𝑖𝑓  (ln 𝑡)3 ≤ 0

⌊𝑁(𝑡) + (ln 𝑡)3⌋,       𝑖𝑓  (ln 𝑡)3 > 0
,     (S6) 

with Nleft being the model time step number at the left corner 

of the window, Nright the model time step number at the right 

corner of the window and N the model time step number at a 

given transit time t. We increased the window size with 

increasing transit time since we plotted the TTDs on a 

double–log scale so that the older parts of the TTDs were 

compressed and also because the variation in the initial 

shape of the TTD is higher and influenced more by the 

series of subsequent precipitation events. 

S6 

Comparing the evolution of tracer concentrations throughout 

the model domain can explain the differences of the 

resulting TTDs for the various model scenarios. Figure S10 

demonstrates this by showing tracer concentrations at the 

soil surface and in a depth profile close to the center of the 

catchment for two very different scenarios (FHWB with the 

shortest median and mean transit time and TLDS with the 

longest median and mean transit time). The fast arrival of 

the tracer in the FHWB scenario is possible since the tracer 

quickly infiltrates the entire soil column and is transported 

laterally towards the outlet. In the TLDS scenario it takes 

much longer for the entire soil column to act as a pathway 

for lateral flow which is partly due to the fact that θant is low 

(more pore space can be filled up until saturated hydraulic 

conductivity is reached and more pore space is available to 

be filled up before water will be diverted downslope at the 

bedrock–soil interface). Both TTDs peak after the entire soil 

column is filled with tracer and starts acting as a lateral flow 

path and some tracer has entered the bedrock. This happens 

almost instantly in the FHWB scenario and only after 

approximately 100 days in the TLDS scenario. The amount 

of tracer infiltrating into the bedrock is higher for the TLDS 

scenario. This is due to the fact that the contact time 

between tracer in the soil and the bedrock surface is longer. 

In the FHWB scenario the tracer is flushed out of the soil a 

lot faster (higher KS and more Psub), therefore less tracer can 

infiltrate into the bedrock. The soil in the FHWB scenario is 

virtually free of tracer much sooner than the soil in the 

TLDS scenario, therefore the break in the tail of the TTD 

(deriving from the switch from predominantly soil to 

predominantly bedrock tracer outflux) happens earlier than 

for the TLDS scenario (around 1000 days vs. around 5000 
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days). The tail is heavier for TLDS since more tracer had the 

chance to infiltrate into the bedrock at later times. 

S7 

Adding power-law tails to gamma distributions can be done 

via a simple approach that replaces the tail of the respective 

distribution with a power-law tail as soon as the probability 

density of the model distribution falls below that one of a 

power law with a constant a of 0.2 and an exponent k of 1.6 

(Fig. S7): 

𝑓(𝑡) =

{
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.     (S7) 

In order to preserve the mass balance, the combined 

distribution has to be re-normalized (accounting for the 

added mass from the power-law tail): 

𝑤 = ∫ 𝑓(𝑡)
∞

𝑡=0
.         (S8) 

𝑇𝑇𝐷(𝑡) =
𝑓(𝑡)

𝑤
.         (S9) 

From a mass balance perspective, however, generally it is 

not necessary to add these power-law tails since they only 

account for a very small fraction of the total injected mass. 

Yet they can alter the mTT significantly (while the median 

remains largely unaffected). 

S8 

Modification of TTDs to incorporate reactive solute 

transport into the concept can be achieved, for example, by 

multiplication of the TTD with a decay function. In this 

example an exponential decay function is used: 

𝑇𝑇𝐷𝑟𝑥(𝑡) = 𝑇𝑇𝐷(𝑡) ∗ 𝑒
−𝑡/𝑡1/2,     (S10) 

where TTD(t) is the probability density at transit time t and 

t1/2 is the half-life of the solute. Note that the cumulative 

TTDrx does not add up to a value of 1 anymore. It rather 

reflects the fraction of solute that will eventually be 

discharged out of the catchment (Fig. S12). 

Other functions that can modify TTDs to make them 

suitable predictors of reactive solute transport include 

specific retardation or removal functions for certain transit 

time ranges associated with flow paths through different 

catchment compartments (for example, groundwater flow, 

soil matrix flow, macropore flow). 
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Figure S1. Comparison of TTDs derived from scenarios with 

large and small longitudinal dispersivity αL. Differences are 

small, in particular for the scenario with high hydraulic soil 

conductivity (THWB). 

 

 
Figure S2. Comparison of TTDs derived from a continuous and 

from a looped 1-year-long precipitation time series. Looping 

does not cause artifacts and there is no significant difference 

between the two TTD shapes. 

 
Figure S3. 15 different precipitation time series with similar 

exponential distributions of precipitation event amounts and 

interarrival times. The y axes all range from 0 to 40 mm. The 

time series were created to test the influence of event sequence 

on the shape of TTDs. 

 

 

 

 

 

 

 

 

 

 
Figure S4. (a) Total tracer mass in storage, (b) cumulative tracer mass outflux, (c) cumulative mass balance error for all 36 scenarios. Note 

that most scenarios plot on top of each other in (c). 
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Figure S5. Distribution metrics of three different gamma 

distributions with varying shape parameter α and equal mean 

(300 h). (a) Black dashed line: mean (300 h), dotted black line 

and filled areas under the curves: standard deviation. (b) Black 

dashed line: mean (300 h), colored dashed lines: medians, filled 

areas under the curves range from the first to the third quartile 

(Q1–Q3). 

 

 
Figure S6. Change of young water fractions (Fyw) with the flow path number (F) for four different catchment and climate properties. Yellow 

colors indicate dry, green intermediate and blue wet θant. Thick marker lines indicate big, mid-sized lines medium and thin lines small 

amounts of Psub. Solid lines indicate low, dashed lines high KS, lighter shades of a color indicate shallow, darker shades deep Dsoil. 

  



6 

 
Figure S7. A set of ten different common theoretical probability 

distributions (all but the power law having a mean value of 300 

h, grey line). The black dotted line is a distribution that is a 

combination of a gamma distribution with the tail of a power-law 

distribution. The inset has a log–log scale. 

 

 
Figure S8. Unsmoothed (orange) and smoothed (black) version 

of the same TTD. 

 
Figure S9. Precipitation input (cyan), total outflow (blue) and 

tracer mass outflux (red) for the first 3 years of the model run for 

scenario THDM. The normalized tracer breakthrough curve 

constitutes the TTD of the injected tracer impulse. 

 

 

 
Figure S10. Time series of tracer concentration distribution in the subsurface across the entire catchment, in a depth profile in the center of 

the catchment for two scenarios (top: FHWB; bottom: TLDS) with very different resulting TTDs shapes. The dotted black line in the profiles 

represents the soil–bedrock interface; the white dashed line is the water table. 
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Figure S11. Similar to Fig. 7 except for the fact that outflow probability is plotted against cumulative outflow instead of transit time. 

Distributions are grouped by soil depth (a and b = deep (thick); c and d = shallow (flat)) and saturated hydraulic conductivity (a and c = 

high; b and d = low). Yellow colors indicate dry, green intermediate and blue wet θant. Thick lines indicate big, mid-sized lines medium and 

thin lines small Psub. Dashed black lines divide TTDs into four parts, each part controlled by different properties. Note the log–log axes. 

Insets show cumulative outflow probability distributions. 

 

 
Figure S12. Two TTDs from the FHWB (blue) and TLDS 

(yellow) scenarios. Each one modified by three functions of 

exponential decay (with half-lives t1/2 of 10, 100 and 1000 days). 

The fraction of mass eventually leaving the system (%M) can 

differ greatly: for a half-life of 100 days, the FHWB TTD still 

delivers 59 % of the original input to discharge while the TLDS 

TTD only delivers 2 %. 
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Table S1. Metrics of the TTDs for the simulations with larger (5 m) and smaller (0.5 m) values of the longitudinal dispersivity αL. All times 

are given in days. 

 

 
Table S2. Information on which of the base-case scenarios (upper table) the other scenarios are based upon (dispersivity – italic; porosity – 

blue; bedrock conductivity – orange; decay in hydraulic conductivity – red; precipitation frequency – green; catchment shape – bold; soil 

water retention curve – purple; extreme precipitation after full saturation – yellow). 

 

 
Table S3. Young water fractions (Fyw) for the 36 different base-case scenarios. The young water fractions are determined from the best-fit 

gamma distributions (Fyw Gam) and from the modeled TTDs themselves (Fyw Mod). 

 

 

Table S4. Distribution metrics for the 15 TTDs resulting from different precipitation event sequences. For comparison we also show the 

metrics for the THDM scenario which uses an actually measured time series of precipitation and has a slightly different distribution of 

precipitation event amounts and interarrival times but otherwise similar catchment and climate properties. The means (μ) and standard 

deviations (σ) of the metrics of the 15 scenarios are also shown. All times are given in days. 
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Table S5. Deviations of mean (green) and median (blue) transit times between the best-fit theoretical probability distributions and the 

modeled TTDs. Sum of the squared residuals (yellow) indicating goodness of fit between theoretical probability distributions and modeled 

TTDs. All times are given in days. 

 

 
Table S6. Metrics of the TTDs derived from simulations with different soil porosities: small = 0.24 m3 m–3, normal = 0.39 m3 m–3 and large 

= 0.54 m3 m–3. All times are given in days. 

 

 
Table S7. Metrics of the TTDs derived from simulations with different saturated bedrock hydraulic conductivity KBr. Very low = 10–7, low = 

10–5, medium low = 10–3, medium high = 10–2, high = 10–1, very high = 1, and equal = 2 m day–1. The “low” scenario corresponds to THDB. 

All times are given in days. 

 

 

Table S8. Metrics of the TTDs derived from simulations with a decay in saturated soil hydraulic conductivity KS. Mean values of scenarios 

with and without decay are presented in the two columns on the right (μ). All times are given in days. 
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Table S9. Metrics of the TTDs derived from simulations with different precipitation frequencies (arid: low-frequency, 15 days interarrival 

time; humid: high-frequency, 3 days interarrival time). For comparison, the THDM scenario has a precipitation frequency (derived from a 

natural precipitation time series) which is quite similar to the humid case. Means (μ) and standard deviations (σ) of the arid and humid 

scenarios. All times are given in days. 

 

 
Table S10. Metrics of the TTDs derived from simulations with silt-type and sand-type soil water retention curves (WRCs). The mean values 

for the silt μSilt and sand μSand scenarios are given on the right side. All times are given in days. 

 

 
Table S11. Metrics of the TTDs derived from simulations with different catchment shapes (top-heavy, bottom-heavy). ‘Mid’ refers to the 

basic oval shape. All times are given in days. 

 

 
Table S12. Metrics of the TTDs derived from simulations with wet (W) or fully saturated (S) antecedent moisture conditions and very large 

(+; 10 mm h–1) or extreme (+++; 100 mm h–1) event precipitation. The percentage of overland outflow during the first 10 days (% SOF10) is 

also listed. All times are given in days. 
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