Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3437-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-3437-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 1: Projected climate and meteorology
Ronald E. Stewart
CORRESPONDING AUTHOR
Department of Environment and Geography, University of Manitoba,
Winnipeg, Manitoba, Canada
Kit K. Szeto
Climate Research Division, Environment and Climate Change Canada,
Toronto, Ontario, Canada
Barrie R. Bonsal
Watershed Hydrology and Ecology Research Division, Environment and
Climate Change Canada, Saskatoon, Saskatchewan, Canada
John M. Hanesiak
Department of Environment and Geography, University of Manitoba,
Winnipeg, Manitoba, Canada
Bohdan Kochtubajda
Meteorological Service of Canada, Environment and Climate Change
Canada, Edmonton, Alberta, Canada
Yanping Li
Global Institute for Water Security, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada
Julie M. Thériault
Centre ESCER, Department of Earth and Atmospheric Sciences,
Université du Québec à Montréal, Montréal, Quebec,
Canada
Chris M. DeBeer
Centre for Hydrology and Global Institute for Water Security,
University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Benita Y. Tam
Climate Research Division, Environment and Climate Change Canada,
Toronto, Ontario, Canada
Zhenhua Li
Global Institute for Water Security, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada
Zhuo Liu
Department of Environment and Geography, University of Manitoba,
Winnipeg, Manitoba, Canada
Jennifer A. Bruneau
Department of Environment and Geography, University of Manitoba,
Winnipeg, Manitoba, Canada
Patrick Duplessis
Dalhousie University, Halifax, Nova Scotia, Canada
Sébastien Marinier
Centre ESCER, Department of Earth and Atmospheric Sciences,
Université du Québec à Montréal, Montréal, Quebec,
Canada
Dominic Matte
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Related authors
Hadleigh D. Thompson, Julie M. Thériault, Stephen J. Déry, Ronald E. Stewart, Dominique Boisvert, Lisa Rickard, Nicolas R. Leroux, Matteo Colli, and Vincent Vionnet
Earth Syst. Sci. Data, 15, 5785–5806, https://doi.org/10.5194/essd-15-5785-2023, https://doi.org/10.5194/essd-15-5785-2023, 2023
Short summary
Short summary
The Saint John River experiment on Cold Season Storms was conducted in northwest New Brunswick, Canada, to investigate the types of precipitation that can lead to ice jams and flooding along the river. We deployed meteorological instruments, took precipitation measurements and photographs of snowflakes, and launched weather balloons. These data will help us to better understand the atmospheric conditions that can affect local communities and townships downstream during the spring melt season.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Eva Mekis, Ronald E. Stewart, Julie M. Theriault, Bohdan Kochtubajda, Barrie R. Bonsal, and Zhuo Liu
Hydrol. Earth Syst. Sci., 24, 1741–1761, https://doi.org/10.5194/hess-24-1741-2020, https://doi.org/10.5194/hess-24-1741-2020, 2020
Short summary
Short summary
This article provides a Canada-wide analysis of near-0°C temperature conditions (±2°C) using hourly surface temperature and precipitation type observations from 92 locations for the 1981–2011 period. Higher annual occurrences were found in Atlantic Canada, although high values also occur in other regions. Trends of most indicators show little or no change despite a systematic warming over Canada. A higher than expected tendency for near-0°C conditions was also found at some stations.
Juris D. Almonte and Ronald E. Stewart
Hydrol. Earth Syst. Sci., 23, 3665–3682, https://doi.org/10.5194/hess-23-3665-2019, https://doi.org/10.5194/hess-23-3665-2019, 2019
Julie M. Thériault, Ida Hung, Paul Vaquer, Ronald E. Stewart, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 4491–4512, https://doi.org/10.5194/hess-22-4491-2018, https://doi.org/10.5194/hess-22-4491-2018, 2018
Short summary
Short summary
Precipitation events associated with rain and snow on the eastern slopes of the Rocky Mountains, Canada, are a critical aspect of the regional water cycle. The goal is to characterize the precipitation and weather conditions in the Kananaskis Valley, Alberta, during a field experiment. Mainly dense solid precipitation reached the surface and occurred during downslope and upslope conditions. The precipitation phase has critical implications on the severity of flooding events in the area.
Xiao Ma, Yanping Li, Zhenhua Li, and Fei Huo
Atmos. Chem. Phys., 24, 12013–12030, https://doi.org/10.5194/acp-24-12013-2024, https://doi.org/10.5194/acp-24-12013-2024, 2024
Short summary
Short summary
This study uses 4 km Weather Research and Forecasting simulations to investigate the features of low-level jets (LLJs) in North America. It identifies significant LLJ systems, such as the Great Plains LLJ. It also provides insight into LLJs poorly captured in coarser models, such as the northerly Quebec LLJ and the small-scale, low-level wind maxima around the Rocky Mountains. Furthermore, the study examines different physical mechanisms of forming three distinct types of LLJs.
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024, https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Short summary
Hazardous precipitation types such as ice pellets and freezing rain are difficult to predict because they are associated with complex microphysical processes. Using Predicted Particle Properties (P3), this work shows that secondary ice production processes increase the amount of ice pellets simulated while decreasing the amount of freezing rain. Moreover, the properties of the simulated precipitation compare well with those that were measured.
Gabriel Rondeau-Genesse, Louis-Philippe Caron, Kristelle Audet, Laurent Da Silva, Daniel Tarte, Rachel Parent, Élise Comeau, and Dominic Matte
EGUsphere, https://doi.org/10.5194/egusphere-2024-2595, https://doi.org/10.5194/egusphere-2024-2595, 2024
Short summary
Short summary
The 2021 drought in Quebec showcased the province’s potential vulnerability. This study uses a storyline approach to explore impacts of future extreme droughts under +2 °C and +3 °C warming scenarios. By combining regional climate and hydrological simulations, it highlights the potential for severe water deficits. Collaboration with water management experts helped project the impacts of those future extreme droughts and their consequences for ecosystems and human activities.
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-78, https://doi.org/10.5194/hess-2024-78, 2024
Preprint under review for HESS
Short summary
Short summary
Observations from a study site network in eastern Canada showed a temperature interval the overlapping probabilities for rain, snow or a mix of both. Models using random forest algorithms were developed to classify the precipitation phase using meteorological data to evaluate operational applications. They showed significantly improved phase classification compared to benchmarks, but misclassification led to costlier errors. However, accurate prediction of mixed phase remains a challenge.
François Roberge, Alejandro Di Luca, René Laprise, Philippe Lucas-Picher, and Julie Thériault
Geosci. Model Dev., 17, 1497–1510, https://doi.org/10.5194/gmd-17-1497-2024, https://doi.org/10.5194/gmd-17-1497-2024, 2024
Short summary
Short summary
Our study addresses a challenge in dynamical downscaling using regional climate models, focusing on the lack of small-scale features near the boundaries. We introduce a method to identify this “spatial spin-up” in precipitation simulations. Results show spin-up distances up to 300 km, varying by season and driving variable. Double nesting with comprehensive variables (e.g. microphysical variables) offers advantages. Findings will help optimize simulations for better climate projections.
Hadleigh D. Thompson, Julie M. Thériault, Stephen J. Déry, Ronald E. Stewart, Dominique Boisvert, Lisa Rickard, Nicolas R. Leroux, Matteo Colli, and Vincent Vionnet
Earth Syst. Sci. Data, 15, 5785–5806, https://doi.org/10.5194/essd-15-5785-2023, https://doi.org/10.5194/essd-15-5785-2023, 2023
Short summary
Short summary
The Saint John River experiment on Cold Season Storms was conducted in northwest New Brunswick, Canada, to investigate the types of precipitation that can lead to ice jams and flooding along the river. We deployed meteorological instruments, took precipitation measurements and photographs of snowflakes, and launched weather balloons. These data will help us to better understand the atmospheric conditions that can affect local communities and townships downstream during the spring melt season.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, Hilary M. Smith, Juris Almonte, André Bertoncini, Robert W. Crawford, Aurélie Desroches-Lapointe, Mathieu Lachapelle, Zen Mariani, Selina Mitchell, Jeremy E. Morris, Charlie Hébert-Pinard, Peter Rodriguez, and Hadleigh D. Thompson
Earth Syst. Sci. Data, 13, 1233–1249, https://doi.org/10.5194/essd-13-1233-2021, https://doi.org/10.5194/essd-13-1233-2021, 2021
Short summary
Short summary
This article discusses the data that were collected during the Storms and Precipitation Across the continental Divide (SPADE) field campaign in spring 2019 in the Canadian Rockies, along the Alberta and British Columbia border. Various instruments were installed at five field sites to gather information about atmospheric conditions focussing on precipitation. Details about the field sites, the instrumentation used, the variables collected, and the collection methods and intervals are presented.
Laurent de Rham, Yonas Dibike, Spyros Beltaos, Daniel Peters, Barrie Bonsal, and Terry Prowse
Earth Syst. Sci. Data, 12, 1835–1860, https://doi.org/10.5194/essd-12-1835-2020, https://doi.org/10.5194/essd-12-1835-2020, 2020
Short summary
Short summary
This paper describes the Canadian River Ice Database. Water level recordings at a network of 196 National Hydrometric Program gauging sites over the period 1894–2015 were reviewed. This database, of nearly 73 000 recorded variables and over 460 000 data entries, includes the timing and magnitude of fall freeze-up, midwinter break-up, winter minimum, ice thickness, spring break-up and maximum open-water levels. These data cover the range of river types and climate regions for Canada.
Sopan Kurkute, Zhenhua Li, Yanping Li, and Fei Huo
Hydrol. Earth Syst. Sci., 24, 3677–3697, https://doi.org/10.5194/hess-24-3677-2020, https://doi.org/10.5194/hess-24-3677-2020, 2020
Short summary
Short summary
Our research has analyzed the surface water budget and atmospheric water vapour budget over western Canada from a set of convection-permitting regional climate simulations. The pseudo-global-warming simulation shows a great increase in evapotranspiration and an enhanced water cycle. We found that the orographic effect on the water vapour budget is significant over the Saskatchewan River basin, indicating the need for high-resolution regional climate modelling to reflect the effects.
Eva Mekis, Ronald E. Stewart, Julie M. Theriault, Bohdan Kochtubajda, Barrie R. Bonsal, and Zhuo Liu
Hydrol. Earth Syst. Sci., 24, 1741–1761, https://doi.org/10.5194/hess-24-1741-2020, https://doi.org/10.5194/hess-24-1741-2020, 2020
Short summary
Short summary
This article provides a Canada-wide analysis of near-0°C temperature conditions (±2°C) using hourly surface temperature and precipitation type observations from 92 locations for the 1981–2011 period. Higher annual occurrences were found in Atlantic Canada, although high values also occur in other regions. Trends of most indicators show little or no change despite a systematic warming over Canada. A higher than expected tendency for near-0°C conditions was also found at some stations.
Zhe Zhang, Yanping Li, Michael Barlage, Fei Chen, Gonzalo Miguez-Macho, Andrew Ireson, and Zhenhua Li
Hydrol. Earth Syst. Sci., 24, 655–672, https://doi.org/10.5194/hess-24-655-2020, https://doi.org/10.5194/hess-24-655-2020, 2020
Short summary
Short summary
The groundwater regime in cold regions is strongly impacted by the soil freeze–thaw processes and semiarid climatic conditions. In this paper, we incorporate groundwater dynamics in the Noah-MP land surface model to simulate the water exchange between the unsaturated soil zone and an unconfined aquifer in the Prairie Pothole Region. The water table dynamics are reasonably simulated. The water budget of groundwater aquifer under current and future climate are also investigated.
Yanping Li, Zhenhua Li, Zhe Zhang, Liang Chen, Sopan Kurkute, Lucia Scaff, and Xicai Pan
Hydrol. Earth Syst. Sci., 23, 4635–4659, https://doi.org/10.5194/hess-23-4635-2019, https://doi.org/10.5194/hess-23-4635-2019, 2019
Short summary
Short summary
High-resolution regional climate modeling that resolves convection was conducted over western Canada for the current climate and a high-end greenhouse gas emission scenario by 2100. The simulation demonstrates its good quality in capturing the temporal and spatial variation in the major hydrometeorological variables. The warming is stronger in the northeastern domain in the cold seasons. It also shows a larger increase in high-intensity precipitation events than moderate and light ones by 2100.
Émilie Poirier, Julie M. Thériault, and Maud Leriche
Hydrol. Earth Syst. Sci., 23, 4097–4111, https://doi.org/10.5194/hess-23-4097-2019, https://doi.org/10.5194/hess-23-4097-2019, 2019
Short summary
Short summary
The impact of phase changes aloft on the precipitation distribution in the Kananaskis Valley, Alberta, was studied. The model reproduces well the atmospheric conditions and precipitation pattern. In this region, sublimation has a greater impact on the evolution of the precipitation than melting. The trajectories of hydrometeors explain the precipitation distribution in the valley, which can impact snowpacks. The amount of snow at the surface also depends on the strength of the downslope flow.
Juris D. Almonte and Ronald E. Stewart
Hydrol. Earth Syst. Sci., 23, 3665–3682, https://doi.org/10.5194/hess-23-3665-2019, https://doi.org/10.5194/hess-23-3665-2019, 2019
Xing Fang, John W. Pomeroy, Chris M. DeBeer, Phillip Harder, and Evan Siemens
Earth Syst. Sci. Data, 11, 455–471, https://doi.org/10.5194/essd-11-455-2019, https://doi.org/10.5194/essd-11-455-2019, 2019
Short summary
Short summary
Meteorological, snow survey, streamflow, and groundwater data are presented from Marmot Creek Research Basin, a small alpine-montane forest headwater catchment in the Alberta Rockies. It was heavily instrumented, experimented upon, and operated by several federal government agencies between 1962 and 1986 and was re-established starting in 2004 by the University of Saskatchewan Centre for Hydrology. These long-term legacy data serve to advance our knowledge of hydrology of the Canadian Rockies.
Matteo Colli, Mattia Stagnaro, Luca Lanza, Roy Rasmussen, and Julie M. Thériault
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-447, https://doi.org/10.5194/hess-2018-447, 2018
Preprint withdrawn
Short summary
Short summary
Our results provide geoscience scientists, meteorological and hydrological services with an improved method to correct the snow measurements from its main source of uncertainty (the wind-induced undercatch of snow particles). The correction builds upon existing approaches developed during the WMO SPICE program and proposes the use of the snowfall intensity variable. The analysis takes advantage of both field datasets provided by SPICE and results of computational fluid-dynamics simulations.
Zhenhua Li, Yanping Li, Barrie Bonsal, Alan H. Manson, and Lucia Scaff
Hydrol. Earth Syst. Sci., 22, 5057–5067, https://doi.org/10.5194/hess-22-5057-2018, https://doi.org/10.5194/hess-22-5057-2018, 2018
Short summary
Short summary
The research started by investigating the 2015 growing season drought over the Canadian Prairies and evolved into investigating the connection between growing season rain deficit in the Prairies and MJO (20–90 days tropical oscillation in convective storms). With warm central Pacific sea surface temperature, strong MJOs in the western Pacific cause Rossby wave trains that propagate downstream and favour upper-level ridges and rain deficits over the Canadian Prairies during the growing season.
Julie M. Thériault, Ida Hung, Paul Vaquer, Ronald E. Stewart, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 4491–4512, https://doi.org/10.5194/hess-22-4491-2018, https://doi.org/10.5194/hess-22-4491-2018, 2018
Short summary
Short summary
Precipitation events associated with rain and snow on the eastern slopes of the Rocky Mountains, Canada, are a critical aspect of the regional water cycle. The goal is to characterize the precipitation and weather conditions in the Kananaskis Valley, Alberta, during a field experiment. Mainly dense solid precipitation reached the surface and occurred during downslope and upslope conditions. The precipitation phase has critical implications on the severity of flooding events in the area.
Zilefac Elvis Asong, Howard Simon Wheater, Barrie Bonsal, Saman Razavi, and Sopan Kurkute
Hydrol. Earth Syst. Sci., 22, 3105–3124, https://doi.org/10.5194/hess-22-3105-2018, https://doi.org/10.5194/hess-22-3105-2018, 2018
Short summary
Short summary
Canada is very susceptible to recurrent droughts, which have damaging impacts on regional water resources and agriculture. However, nationwide drought assessments are currently lacking and impacted by limited ground-based observations. We delineate two major drought regions (Prairies and northern central) over Canada and link drought characteristics to external factors of climate variability. This study helps to determine when the drought events occur, their duration, and how often they occur.
Jefferson S. Wong, Saman Razavi, Barrie R. Bonsal, Howard S. Wheater, and Zilefac E. Asong
Hydrol. Earth Syst. Sci., 21, 2163–2185, https://doi.org/10.5194/hess-21-2163-2017, https://doi.org/10.5194/hess-21-2163-2017, 2017
Short summary
Short summary
This study was conducted to quantify the spatial and temporal variability of the errors associated with various gridded precipitation products in Canada. Overall, WFDEI [GPCC] and CaPA performed best with respect to different performance measures, followed by ANUSPLIN and WEDEI [CRU]. Princeton and NARR demonstrated the lowest quality. Comparing the climate model-simulated products, PCIC ensembles generally performed better than NA-CORDEX ensembles in terms of reliability in four seasons.
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Short summary
This study demonstrates a robust procedure for accumulating precipitation gauge measurements and provides an analysis of bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. It highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.
Xicai Pan, Yanping Li, Qihao Yu, Xiaogang Shi, Daqing Yang, and Kurt Roth
The Cryosphere, 10, 1591–1603, https://doi.org/10.5194/tc-10-1591-2016, https://doi.org/10.5194/tc-10-1591-2016, 2016
Short summary
Short summary
Using a 9-year dataset in conjunction with a process-based model, we verify that the common assumption of a considerably smaller thermal conductivity in the thawed season than the frozen season is not valid at a site with a stratified active layer on the Qinghai–Tibet Plateau (QTP). The unique hydraulic and thermal mechanism in the active layer challenges the concept of thermal offset used in conceptual permafrost models and hints at the reason for rapid permafrost warming on the QTP.
Liang Chen, Yanping Li, Fei Chen, Alan Barr, Michael Barlage, and Bingcheng Wan
Atmos. Chem. Phys., 16, 8375–8387, https://doi.org/10.5194/acp-16-8375-2016, https://doi.org/10.5194/acp-16-8375-2016, 2016
Short summary
Short summary
This work is the first time that Noah-MP is used to investigate the impact of parameterizing organic soil at a boreal forest site. Including an organic soil parameterization significantly improved performance of the model in surface energy and hydrology simulations due to the lower thermal conductivity and greater porosity of the organic soil. It substantially modified the partition between direct soil evaporation and vegetation transpiration in the simulation.
Chris M. DeBeer, Howard S. Wheater, Sean K. Carey, and Kwok P. Chun
Hydrol. Earth Syst. Sci., 20, 1573–1598, https://doi.org/10.5194/hess-20-1573-2016, https://doi.org/10.5194/hess-20-1573-2016, 2016
Short summary
Short summary
This paper provides a comprehensive review and up-to-date synthesis of the observed changes in air temperature, precipitation, seasonal snow cover, mountain glaciers, permafrost, freshwater ice cover, and river discharge over the interior of western Canada since the mid- or late 20th century. Important long-term observational networks and data sets are described, and qualitative linkages among the changing Earth system components are highlighted.
L. Scaff, D. Yang, Y. Li, and E. Mekis
The Cryosphere, 9, 2417–2428, https://doi.org/10.5194/tc-9-2417-2015, https://doi.org/10.5194/tc-9-2417-2015, 2015
Short summary
Short summary
The bias corrections show significant errors in the gauge precipitation measurements over the northern regions. Monthly precipitation is closely correlated between the stations across the Alaska--Yukon border, particularly for the warm months. Double mass curves indicate changes in the cumulative precipitation due to bias corrections over the study period. Overall the bias corrections lead to a smaller and inverted precipitation gradient across the border, especially for snowfall.
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Assessing rainfall radar errors with an inverse stochastic modelling framework
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
An increase in the spatial extent of European floods over the last 70 years
140-year daily ensemble streamflow reconstructions over 661 catchments in France
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Improving runoff simulation in the Western United States with Noah-MP and variable infiltration capacity
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Downscaling the probability of heavy rainfall over the Nordic countries
Modelling convective cell lifecycles with a copula-based approach
What Are the Key Soil Hydrological Processes to Control Soil Moisture Memory?
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Global total precipitable water variations and trends over the period 1958–2021
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Identification of compound drought and heatwave events on a daily scale and across four seasons
Leveraging a Disdrometer Network to Develop a Probabilistic Precipitation Phase Model in Eastern Canada
Observation-driven model for calculating water harvesting potential from advective fog in (semi-)arid coastal regions
Potential for historically unprecedented Australian droughts from natural variability and climate change
Review of Gridded Climate Products and Their Use in Hydrological Analyses Reveals Overlaps, Gaps, and Need for More Objective Approach to Model Forcings
Flood risk assessment for Indian sub-continental river basins
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Divergent future drought projections in UK river flows and groundwater levels
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Accounting for hydroclimatic properties in flood frequency analysis procedures
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
A semi-parametric hourly space–time weather generator
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Investigating the response of land–atmosphere interactions and feedbacks to spatial representation of irrigation in a coupled modeling framework
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Hybrid forecasting: blending climate predictions with AI models
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Local moisture recycling across the globe
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024, https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Short summary
This work aims to improve the understanding of precipitation patterns in High-mountain Asia, a crucial water source for around 1.9 billion people. Through a novel machine learning method, we generate high-resolution precipitation predictions, including the likelihoods of floods and droughts. Compared to state-of-the-art methods, our method is simpler to implement and more suitable for small datasets. The method also shows accuracy comparable to or better than existing benchmark datasets.
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024, https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Short summary
Having accurate up-to-date maps of soil moisture is important for many purposes. However, current modelled and remotely sensed maps are rather coarse and not very accurate. Here, we demonstrate a simple but accurate approach that is closely linked to direct measurements of soil moisture at a network sites across the UK, to the water balance (precipitation minus drainage and evaporation) measured at a large number of catchments (1212) and to remotely sensed satellite estimates.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024, https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
Short summary
The accurate estimation of precipitation and its spatial variability within a watershed is crucial for reliable discharge simulations. The study is the first detailed analysis of the potential usage of the cellular automata technique to merge different rainfall data inputs to hydrological models. This work shows an improvement in the performance of hydrological simulations when satellite and rain gauge data are merged.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024, https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Short summary
The Gran Chaco is a large, dry forest in South America that has been heavily deforested, particularly in the dry Chaco subregion. This deforestation, mainly driven by the expansion of the agricultural frontier, has changed the land's characteristics, affecting the local and regional climate. The study reveals that deforestation has resulted in reduced precipitation, soil moisture, and runoff, and if intensive agriculture continues, it could make summers in this arid region even drier and hotter.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Lu Su, Dennis P. Lettenmaier, Ming Pan, and Benjamin Bass
Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024, https://doi.org/10.5194/hess-28-3079-2024, 2024
Short summary
Short summary
We fine-tuned the variable infiltration capacity (VIC) and Noah-MP models across 263 river basins in the Western US. We developed transfer relationships to similar basins and extended the fine-tuned parameters to ungauged basins. Both models performed best in humid areas, and the skills improved post-calibration. VIC outperforms Noah-MP in all but interior dry basins following regionalization. VIC simulates annual mean streamflow and high flow well, while Noah-MP performs better for low flows.
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024, https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Short summary
The increase in precipitation as a function of elevation is poorly understood in areas with complex topography. In this article, the reproduction of these orographic gradients is assessed with several precipitation products. The best product is a simulation from a convection-permitting regional climate model. The corresponding seasonal gradients vary significantly in space, with higher values for the first topographical barriers exposed to the dominant air mass circulations.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1463, https://doi.org/10.5194/egusphere-2024-1463, 2024
Short summary
Short summary
The paper presents a method for deriving the chance of heavy downpour, the maximum amount expected at various intervals, and explain how the rainfall changes. It suggests that increases are more due to increased amounts on wet days rather than more wet days, and the rainfall intensity is found to be sensitive to future greenhouse gas emissions while the number of wet days appears to be less affected.
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
EGUsphere, https://doi.org/10.5194/egusphere-2024-1540, https://doi.org/10.5194/egusphere-2024-1540, 2024
Short summary
Short summary
This study presents a new algorithm to better model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and to reconstruct storm cell lifecycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential model for realistic rainfall patterns, enhancing its hydrological applicability.
Mohammad Ali Farmani, Ali Behrangi, Aniket Gupta, Ahmad Tavakoly, Matthew Geheran, and Guo-Yue Niu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1256, https://doi.org/10.5194/egusphere-2024-1256, 2024
Short summary
Short summary
This study investigates how key hydrological processes enhance soil water retention and release in land surface models, crucial for accurate weather and climate forecasting. Experiments show that soil hydraulics effectively sustain soil moisture. Additionally, allowing surface water ponding and improving soil permeability through macropores both enhance soil moisture persistency in the models.
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024, https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Short summary
Climate change is expected to increase flood hazard worldwide. The evolution is typically estimated from multi-model chains, where regional hydrological scenarios are simulated from weather scenarios derived from coarse-resolution atmospheric outputs of climate models. We show that two such chains are able to reproduce, from an atmospheric reanalysis, the 1902–2009 discharge variations and floods of the upper Rhône alpine river, provided that the weather scenarios are bias-corrected.
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024, https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Short summary
Global warming occurs at a rate of 0.21 K per decade, resulting in about 9.5 % K−1 of water vapor response to temperature from 1993 to 2021. Terrestrial areas experienced greater warming than the ocean, with a ratio of 2 : 1. The total precipitable water change in response to surface temperature changes showed a variation around 6 % K−1–8 % K−1 in the 15–55° N latitude band. Further studies are needed to identify the mechanisms leading to different water vapor responses.
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024, https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Short summary
This study examines centuries of nonstationary trends in meteorological drought and pluvial climatology. A novel approach merges tree-ring proxy data (North American Seasonal Precipitation Atlas – NASPA) with instrumental precipitation datasets by temporally downscaling proxy data, correcting biases, and analyzing shared trends in normal and extreme precipitation anomalies. We identify regions experiencing recent unprecedented shifts towards drier or wetter conditions and shifts in seasonality.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-78, https://doi.org/10.5194/hess-2024-78, 2024
Preprint under review for HESS
Short summary
Short summary
Observations from a study site network in eastern Canada showed a temperature interval the overlapping probabilities for rain, snow or a mix of both. Models using random forest algorithms were developed to classify the precipitation phase using meteorological data to evaluate operational applications. They showed significantly improved phase classification compared to benchmarks, but misclassification led to costlier errors. However, accurate prediction of mixed phase remains a challenge.
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo de Rio
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-110, https://doi.org/10.5194/hess-2024-110, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water resources are fundamental for social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligates us to find new water resources. Fog harvesting emerges as a complementary one in regions where it is abundant but untapped. This research proposes a model to estimate fog harvesting potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where fog harvesting could be a viable water source.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-58, https://doi.org/10.5194/hess-2024-58, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We assess 60 gridded climate datasets [ground- (G), satellite- (S), reanalysis-based (R)]. Higher-density station data and less-hilly terrain improved climate data. In mountainous and humid regions, dataset types performed similarly; but R outperformed G when underlying data had low station density. G outperformed S or R datasets, though better streamflow modeling did not always follow. Hydrologic analyses need datasets that better represent climate variable dependencies and complex topography.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024, https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Joeri B. Reinders and Samuel E. Munoz
Hydrol. Earth Syst. Sci., 28, 217–227, https://doi.org/10.5194/hess-28-217-2024, https://doi.org/10.5194/hess-28-217-2024, 2024
Short summary
Short summary
Flooding presents a major hazard for people and infrastructure along waterways; however, it is challenging to study the likelihood of a flood magnitude occurring regionally due to a lack of long discharge records. We show that hydroclimatic variables like Köppen climate regions and precipitation intensity explain part of the variance in flood frequency distributions and thus reduce the uncertainty of flood probability estimates. This gives water managers a tool to locally improve flood analysis.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023, https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station-based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperature) the model is then coupled to a simple resampling approach.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023, https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Short summary
Intensity–duration–frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, for example, for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations, which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023, https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Short summary
High-resolution precipitation data, needed for many applications in hydrology, are typically rare. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, multiplicative random cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023, https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
Hydrol. Earth Syst. Sci., 27, 2787–2805, https://doi.org/10.5194/hess-27-2787-2023, https://doi.org/10.5194/hess-27-2787-2023, 2023
Short summary
Short summary
Irrigation has been shown to impact weather and climate, but it has only recently been considered in prediction models. Prescribing where (globally) irrigation takes place is important to accurately simulate its impacts on temperature, humidity, and precipitation. Here, we evaluated three different irrigation maps in a weather model and found that the extent and intensity of irrigated areas and their boundaries are important drivers of weather impacts resulting from human practices.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023, https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023, https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Short summary
We use circulation classifications and spatiotemporal deep neural networks to correct raw daily forecast precipitation by combining large-scale circulation patterns with local spatiotemporal information. We find that the method not only captures the westward and northward movement of the western Pacific subtropical high but also shows substantially higher bias-correction capabilities than existing standard methods in terms of spatial scale, timescale, and intensity.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Short summary
Rainfall volumes at varying duration and frequencies are required for many engineering water works. These design volumes have been provided by KOSTRA-DWD in Germany. However, a revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. For this purpose, in our study, we investigate different methods and data available to achieve the best procedure that will serve as a basis for the development of the new KOSTRA-DWD product.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Cited articles
Bonsal, B., Zhang, X., and Hogg, W.: Canadian Prairie growing season
precipitation variability and associated atmospheric circulation, Clim.
Res., 11, 191–208, https://doi.org/10.3354/cr011191, 1999.
Bonsal, B. R. and Cuell, C.: Hydro-climatic variability and extremes over
the Athabasca River basin: Historical trends and projected future
occurrence, Can. Water Resour. J., 42, 315–335,
https://doi.org/10.1080/07011784.2017.1328288, 2017.
Bonsal, B. R. and Shabbar, A.: Impacts of large-scale circulation variability
on low streamflows over Canada: a review, Can. Water Resour. J.,
33, 137–154, 2008.
Bonsal, B. R., Shabbar, A., and Higuchi, K.: Impacts of low frequency
variability modes on Canadian winter temperature, Int. J.
Climatol., 21, 95–108, 2001.
Bonsal, B. R., Cuell, C., Wheaton, E., Sauchyn, D. J., and Barrow, E.: An
assessment of historical and projected future hydro-climatic variability and
extremes over southern watersheds in the Canadian Prairies, Int.
J. Climatol., 37, 3934–3948, https://doi.org/10.1002/joc.4967, 2017.
Bourgouin, P.: A method to determine precipitation types, Weather
Forecast., 15, 583–592, https://doi.org/10.1175/1520-0434(2000)015<0583:amtdpt>2.0.co;2, 2000.
Brimelow, J. C., Burrows, W. R., and Hanesiak, J. M.: The changing hail
threat over North America in response to anthropogenic climate change,
Nat. Clim. Change, 7, 516–522, https://doi.org/10.1038/nclimate3321, 2017.
Brimelow, J. C., Reuter, G. W., and Poolman, E. R.: Modeling maximum hail
size in Alberta thunderstorms, Weather Forecast., 17, 1048–1062,
https://doi.org/10.1175/1520-0434(2002)017<1048:mmhsia>2.0.co;2,
2002.
Brimelow, J., Stewart, R., Hanesiak, J., Kochtubajda, B., Szeto, K., and
Bonsal, B.: Characterization and assessment of the devastating natural
hazards across the Canadian Prairie Provinces from 2009 to 2011, Nat.
Hazards, 73, 761–785, https://doi.org/10.1007/s11069-014-1107-6, 2014.
Brimelow, J., Szeto, K., Bonsal, B., Hanesiak, J., Kochtubajda, B., Evans,
F., and Stewart, R.: Hydroclimatic aspects of the 2011 Assiniboine River
Basin flood, J. Hydrometeorol., 16, 1250–1272,
https://doi.org/10.1175/jhm-d-14-0033.1, 2015.
Bush, E. and Lemmen, D. S. (Eds.): Canada's changing climate report,
Government of Canada, Ottawa, Ontario, 444 pp., 2019.
Changnon, S. A. and Changnon, D.: Long term fluctuations in thunderstorm
activity in the United States, Climatic Change, 50, 489-503, 2001.
DeBeer, C. M., Wheater, H. S., Quinton, W. L., Carey, S. K., Stewart, R. E.,
Mackay, M. D., and Marsh, P.: The Changing Cold Regions Network: Observation,
diagnosis and prediction of environmental change in the Saskatchewan and
Mackenzie River Basins, Canada, Science China Earth Sciences, 58, 46–60,
https://doi.org/10.1007/s11430-014-5001-6, 2015.
DeBeer, C. M., Wheater, H. S., Carey, S. K., and Chun, K. P.: Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis, Hydrol. Earth Syst. Sci., 20, 1573–1598, https://doi.org/10.5194/hess-20-1573-2016, 2016.
Dibike, Y., Eum, H.-I., and Prowse, T.: Modelling the Athabasca watershed
snow response to a changing climate, J. Hydrol.,
15, 134–148, https://doi.org/10.1016/j.ejrh.2018.01.003, 2018.
Duplessis, P., Thériault, J. M., Stewart, R. E., and Pomeroy, J.:
Microphysical processes associated with the formation and evolution of
precipitation types during the Alberta flooding event of June 2013, Canadian
Meteorological and Oceanographic Society Congress, Fredericton, New
Brunswick, 2016.
Environment and Climate Change Canada: Standardized Precipitation Evapotranspiration Index data, available at: http://climate-scenarios.canada.ca/?page=spei, last access: 9 August 2019.
Evans, E., Stewart, R. E., Henson, W., and Saunders, K.: On precipitation and
virga over three locations during the 1999–2004 Canadian Prairie drought,
Atmos. Ocean, 49, 366–379, https://doi.org/10.1080/07055900.2011.608343, 2011.
Finney, D. L., Doherty, R. M., Wild, O., Stevenson, D. S., Mackenzie, I. A.,
and Blyth, A. M.: A projected decrease in lightning under climate change,
Nat. Clim. Change, 8, 210–213, https://doi.org/10.1038/s41558-018-0072-6, 2018.
Flannigan, M. D. and Wotton, B. M.: Climate, weather and area burned. In Forest Fires: Behavior & Ecological Effects, edited by: Johnson, E. A. and Miyanishi, K., Academic Press, New York, 351–373, 2001.
Flannigan, M. D., Krawchuk, M. A., Groot, W. J. D., Wotton, B. M., and
Gowman, L. M.: Implications of changing climate for global wildland fire,
Int. J. Wildland Fire, 18, 483–507, https://doi.org/10.1071/wf08187,
2009.
Flannigan, M. D., Wotton, B. M., Marshall, G. A., Groot, W. J. D., Johnston,
J., Jurko, N., and Cantin, A. S.: Fuel moisture sensitivity to temperature
and precipitation: climate change implications, Climatic Change, 134,
59–71, https://doi.org/10.1007/s10584-015-1521-0, 2015.
Gutowski, W. J., Arritt, R. W., Kawazoe, S., Flory, D. M., Takle, E. S.,
Biner, S., Caya, D., Jones, R. G., Laprise, R., Leung, L. R., Mearns, L. O.,
Moufouma-Okia, W., Nunes, A. M. B., Qian, Y., Roads, J. O., Sloan, L. C., and
Snyder, M. A.: Regional Extreme Monthly Precipitation Simulated by NARCCAP
RCMs, J. Hydrometeorol., 11, 1373–1379,
https://doi.org/10.1175/2010jhm1297.1, 2010.
Hanesiak, J. M., Stewart, R. E., Bonsal, B. R., Harder, P., Lawford, R.,
Aider, R., Amiro, B. D., Atallah, E., Barr, A. G., Black, T. A., Bullock,
P., Brimelow, J. C., Brown, R., Carmichael, H., Derksen, C., Flanagan, L.
B., Gachon, P., Greene, H., Gyakum, J., Henson, W., Hogg, E. H.,
Kochtubajda, B., Leighton, H., Lin, C., Luo, Y., Mccaughey, J. H., Meinert,
A., Shabbar, A., Snelgrove, K., Szeto, K., Trishchenko, A., Kamp, G. V. D.,
Wang, S., Wen, L., Wheaton, E., Wielki, C., Yang, Y., Yirdaw, S., and Zha,
T.: Characterization and summary of the 1999–2005 Canadian Prairie drought,
Atmos. Ocean, 49, 421–452, https://doi.org/10.1080/07055900.2011.626757, 2011.
Holton, J. R.: An introduction to dynamic meteorology, 2nd edn.,
Academic Press, ISBN: 0-12-354360-6, 391 pp., 1979.
Huryn, S. M., Gough, W. A., and Butler, K.: A review of thunderstorm trends
across southern Ontario, Canada, Atmos. Ocean, 54, 519–528,
https://doi.org/10.1080/07055900.2016.1211085, 2016.
Intergovernmental Panel on Climate Change (IPCC): Climate Change 2013: The Physical
Science Basis, Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels,
A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 1535 pp.,
https://doi.org/10.1017/CBO9781107415324, 2013.
Jennings, K. S., Winchell, T. S., Livneh, B., and Molotch, N. P.: Spatial
variation of the rain–snow temperature threshold across the Northern
Hemisphere, Nat. Commun., 9, 1–9, https://doi.org/10.1038/s41467-018-03629-7,
2018.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-year reanalysis project, B. Am. Meteorol. Soc.,
77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2, 1996.
Kawazoe, S. and Gutowski, W. J.: Regional, very heavy daily precipitation in
NARCCAP simulations, J. Hydrometeorol., 14, 1212–1227,
https://doi.org/10.1175/jhm-d-12-068.1, 2013.
Kendall, M. B.: Rank Correlation Methods. Hafner Publishing Company, New York, 1955.
Kochtubajda, B., Mooney, C., and Stewart, R.: Characteristics, atmospheric
drivers and occurrence patterns of freezing precipitation and ice pellets
over the Prairie Provinces and Arctic Territories of Canada: 1964–2005,
Atmos. Res., 191, 115–127, https://doi.org/10.1016/j.atmosres.2017.03.005,
2017a.
Kochtubajda, B., Brimelow, J., Flannigan, M., Morrow, B., and Greenhough, M. D.: The extreme 2016 wildfire in Fort McMurray, Alberta, Canada [in “State of the Climate in 2016”], B. Am. Meteorol. Soc., 98, S176–177, https://doi.org/10.1175/2017BAMSStateoftheClimate.1, 2017b.
Kochtubajda, B., Stewart, R. E., Boodoo, S., Thériault, J. M., Li, Y.,
Liu, A., Mooney, C., Goodson, R., and Szeto, K.: The June 2013 Alberta
catastrophic flooding event – part 2: fine-scale precipitation and
associated features, Hydrol. Process., 30, 4917–4933,
https://doi.org/10.1002/hyp.10855, 2016.
Kochtubajda, B., Stewart, R. E., Flannigan, M. D., Bonsal, B. R., Cuell, C., and Mooney, C. J.: An assessment of surface and atmospheric conditions associated with the extreme 2014 wildfire season in Canada’s Northwest Territories, Atmos. Ocean, 57, 73–90, https://doi.org/10.1080/07055900.2019.1576023, 2019.
Lawrence Livermore National Laboratory: Coupled Model Intercomparison Project Phase 5 data access, available at: https://esgf-node.llnl.gov/projects/esgf-llnl/, last access: 9 August 2019 (registration required).
Li, Y., Szeto, K., Stewart, R. E., Thériault, J. M., Chen, L.,
Kochtubajda, B., Liu, A., Boodoo, S., Goodson, R., Mooney, C., and Kurkute,
S.: A numerical study of the June 2013 flood-producing extreme rainstorm
over southern Alberta, J. Hydrometeorol., 18, 2057–2078,
https://doi.org/10.1175/jhm-d-15-0176.1, 2017.
Li, Z., Li, Y., Bonsal, B., Manson, A. H., and Scaff, L.: Combined impacts of ENSO and MJO on the 2015 growing season drought on the Canadian Prairies, Hydrol. Earth Syst. Sci., 22, 5057–5067, https://doi.org/10.5194/hess-22-5057-2018, 2018.
Liu, A. Q., Mooney, C., Szeto, K., Thériault, J. M., Kochtubajda, B.,
Stewart, R. E., Boodoo, S., Goodson, R., Li, Y., and Pomeroy, J.: The June
2013 Alberta catastrophic flooding event: Part 1 – Climatological aspects and
hydrometeorological features, Hydrol. Process., 30, 4899–4916,
https://doi.org/10.1002/hyp.10906, 2016.
Mailhot, A., Beauregard, I., Talbot, G., Caya, D., and Biner, S.: Future
changes in intense precipitation over Canada assessed from multi-model
NARCCAP ensemble simulations, Int. J. Climatol., 32,
1151–1163, https://doi.org/10.1002/joc.2343, 2011.
Mann, M. E., Rahmstorf, S., Kornhuber, K., Steinman, B. A., Miller, S. K.,
and Coumou, D.: Influence of anthropogenic climate change on planetary wave
resonance and extreme weather events, Sci. Rep.-UK, 7, 45242,
https://doi.org/10.1038/srep45242, 2017.
Martynov, A., Laprise, R., Sushama, L., Winger, K., Šeparović, L.,
and Dugas, B.: Reanalysis-driven climate simulation over CORDEX North
America domain using the Canadian Regional Climate Model, version 5: model
performance evaluation, Clim. Dynam., 41, 2973–3005,
https://doi.org/10.1007/s00382-013-1778-9, 2013.
Mearns, L. O., Arritt, R., Biner, S., Bukovsky, M. S., Mcginnis, S., Sain,
S., Caya, D., Correia, J., Flory, D., Gutowski, W., Takle, E. S., Jones, R.,
Leung, R., Moufouma-Okia, W., McDaniel, L., Nunes, A. M. B., Qian, Y.,
Roads, J., Sloan, L. and Snyder, M.: The North American Regional Climate
Change Assessment Program: Overview of phase I results, B.
Am. Meteorol. Soc., 93, 1337–1362,
https://doi.org/10.1175/bams-d-11-00223.1, 2012.
Mearns, L. O., Sain, S., Leung, L. R., Bukovsky, M. S., Mcginnis, S., Biner,
S., Caya, D., Arritt, R. W., Gutowski, W., Takle, E., Snyder, M., Jones, R.
G., Nunes, A. M. B., Tucker, S., Herzmann, D., Mcdaniel, L., and Sloan, L.:
Climate change projections of the North American Regional Climate Change
Assessment Program (NARCCAP), Climatic Change, 120, 965–975,
https://doi.org/10.1007/s10584-013-0831-3, 2013.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K.,
Vuuren, D. P. V., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G.
A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer,
R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next
generation of scenarios for climate change research and assessment, Nature,
463, 747–756, https://doi.org/10.1038/nature08823, 2010.
NOAA ESRL PSD: NCEP/NCAR Reanalysis 1, available at: https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html, last access: 9 August 2019.
North American Regional Climate Change Assessment Program: Data access, available at: https://www.narccap.ucar.edu/data/access.html, last access: 15 May 2017.
Pinto, O., Pinto, I. R. C. A., and Ferro, M. A. S.: A study of the long-term
variability of thunderstorm days in southeast Brazil, J. Geophys.
Res.-Atmos., 118, 5231–5246, https://doi.org/10.1002/jgrd.50282, 2013.
Pomeroy, J. W., Stewart, R. E., and Whitfield, P. H.: The 2013 flood event in
the South Saskatchewan and Elk River basins: Causes, assessment and damages,
Can. Water Resour. J., 41, 105–117,
https://doi.org/10.1080/07011784.2015.1089190, 2015.
Price, C. and Rind, D.: Modeling global lightning distributions in a general
circulation model, Mon. Weather Rev., 122, 1930–1939,
https://doi.org/10.1175/1520-0493(1994)122<1930:mgldia>2.0.co;2,
1994a.
Price, C. and Rind, D.: Possible implications of global climate change on
global lightning distributions and frequencies, J. Geophys.
Res., 99, 10823, https://doi.org/10.1029/94jd00019, 1994b.
Romps, D. M., Seeley, J. T., Vollaro, D., and Molinari, J.: Projected
increase in lightning strikes in the United States due to global warming,
Science, 346, 851–854, https://doi.org/10.1126/science.1259100, 2014.
Sandford, R., Smakhtin, V., Mayfield, C., Mehmood, H., Pomeroy, J., DeBeer, C., Adapa, P., Freek, K., Pilkington, E., Seraj, R., Boals, R., O’Grady, C., MacAlister, C., Phare, M.-A., Miltenberger, M., Goodday, V., Levesque, A., Curry, A., Kun, K., Gouett, M., and Fisher, M.: Canada in the Global Water World: Analysis of Capabilities. UNU-INWEH Report Series, Issue 03. United Nations University Institute for Water, Environment and Health, Hamilton, Canada, available at: https://inweh.unu.edu/canada-in-the-global-water-world-analysis-of-capabilities/ (last access: 19 August 2019), 2018.
Sankaré, H. and Thériault, J. M.: On the relationship between the
snowflake type aloft and the surface precipitation types at temperatures
near 0 ∘C, Atmos. Res., 180, 287–296,
https://doi.org/10.1016/j.atmosres.2016.06.003, 2016.
Schubert, S. D., Stewart, R. E., Wang, H., Barlow, M., Berbery, E. H., Cai,
W., Hoerling, M. P., Kanikicharla, K. K., Koster, R. D., Lyon, B., Mariotti,
A., Mechoso, C. R., Müller, O. V., Rodriguez-Fonseca, B., Seager, R.,
Seneviratne, S. I., Zhang, L., and Zhou, T.: Global meteorological drought: A
synthesis of current understanding with a focus on SST drivers of
precipitation deficits, J. Climate, 29, 3989–4019,
https://doi.org/10.1175/jcli-d-15-0452.1, 2016.
Šeparović, L., Alexandru, A., Laprise, R., Martynov, A., Sushama,
L., Winger, K., Tete, K., and Valin, M.: Present climate and climate change
over North America as simulated by the fifth-generation Canadian regional
climate model, Clim. Dynam., 41, 3167–3201,
https://doi.org/10.1007/s00382-013-1737-5, 2013.
Shabbar, A., Bonsal, B. R., and Szeto, K.: Atmospheric and oceanic
variability associated with growing season droughts and pluvials on the
Canadian Prairies, Atmos. Ocean, 49, 339–355, https://doi.org/10.3137/ao1202.2010,
2011.
Stewart, R., Pomeroy, J., and Lawford, R.: The Drought Research Initiative: A
Comprehensive Examination of Drought over the Canadian Prairies,
Atmos. Ocean, 49, 298–302, https://doi.org/10.1080/07055900.2011.622574, 2011.
Stewart, R. E., Crawford, R. W., Leighton, H. G., Marsh, P., Strong, G. S.,
Moore, G. W. K., Ritchie, H., Rouse, W. R., Soulis, E. D., and Kochtubajda,
B.: The Mackenzie GEWEX Study: The water and energy cycles of a major North
American river basin, B. Am. Meteorol. Soc.,
79, 2665–2683,
https://doi.org/10.1175/1520-0477(1998)079<2665:tmgstw>2.0.co;2,
1998.
Stewart, R. E., Bonsal, B. R., Harder, P., Henson, W., and Kochtubajda, B.:
Cold and hot periods associated with dry conditions over the Canadian
Prairies, Atmos. Ocean, 50, 364–372,
https://doi.org/10.1080/07055900.2012.673164, 2012.
Szeto, K., Henson, W., Stewart, R., and Gascon, G.: The catastrophic June
2002 Prairie rainstorm, Atmos. Ocean, 49, 380–395,
https://doi.org/10.1080/07055900.2011.623079, 2011.
Szeto, K., Gysbers, P., Brimelow, J., and Stewart, R.: The 2014 extreme flood
on the southeastern Canadian Prairies, B. Am.
Meteorol. Soc., 96, S20–S24, https://doi.org/10.1175/bams-eee_2014_ch5.1, 2015.
Szeto, K., Zhang, X., White, R. E., and Brimelow, J.: The 2015 extreme
drought in western Canada, B. Am. Meteorol. Soc.,
97, S42–S46, https://doi.org/10.1175/bams-d-16-0147.1, 2016.
Szeto, K. K.: Assessing water and energy budgets for the Saskatchewan River
Basin, J. Meteorol. Soc. Jpn., 85, 167–186,
https://doi.org/10.2151/jmsj.85a.167, 2007.
Szeto, K. K.: On the extreme variability and change of cold-season
temperatures in Northwest Canada, J. Climate, 21, 94–113,
https://doi.org/10.1175/2007jcli1583.1, 2008.
Szeto, K. K., Stewart, R. E., Yau, M. K., and Gyakum, J.: Northern Tales: A
synthesis of MAGS atmospheric and hydrometeorological research, B.
Am. Meteorol. Soc., 88, 1411–1426,
https://doi.org/10.1175/bams-88-9-1411, 2007.
Tam, B. Y., Szeto, K., Bonsal, B., Flato, G., Cannon, A., and Rong, R.: CMIP5
drought projections in Canada based on the Standardized Precipitation
Evapotranspiration Index, Can. Water Resour. J., 44, 90–107, https://doi.org/10.1080/07011784.2018.1537812, 2018.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc.,
93, 485–498, https://doi.org/10.1175/bams-d-11-00094.1, 2012.
Thériault, J. M., Hung, I., Vaquer, P., Stewart, R. E., and Pomeroy, J. W.: Precipitation characteristics and associated weather conditions on the eastern slopes of the Canadian Rockies during March–April 2015, Hydrol. Earth Syst. Sci., 22, 4491–4512, https://doi.org/10.5194/hess-22-4491-2018, 2018.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
multiscalar drought index sensitive to global warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23,
1696–1718, https://doi.org/10.1175/2009jcli2909.1, 2010.
Wallace, J. M. and Gutzler, D. S.: Teleconnections in the geopotential
height field during the northern hemisphere winter, Mon. Weather Rev.,
109, 784–812, https://doi.org/10.1175/1520-0493(1981)109<0784:titghf>2.0.co;2, 1981.
Woo, M.-K., Rouse, W. R., Stewart, R. E., and Stone, J. M. R.: The Mackenzie
GEWEX Study: A Contribution to Cold Region Atmospheric and Hydrologic
Sciences, Cold Region Atmospheric and Hydrologic Studies, The Mackenzie
GEWEX Experience, 1, 1–22, https://doi.org/10.1007/978-3-540-73936-4_1,
2008.
Zhou, Z.-Q., Xie, S.-P., Zheng, X.-T., Liu, Q., and Wang, H.: Global
warming–induced changes in El Niño teleconnections over the North
Pacific and North America, J. Climate, 27, 9050–9064,
https://doi.org/10.1175/jcli-d-14-00254.1, 2014.
Short summary
This article examines future atmospheric-related phenomena across the interior of western Canada associated with a
business-as-usualclimate scenario. Changes in large-scale atmospheric circulation and extent of warming vary with season, and these generally lead to increases, especially after mid-century, in factors associated with winter snowstorms, freezing rain, drought, forest fires, as well as atmospheric forcing of spring floods, although not necessarily summer convection.
This article examines future atmospheric-related phenomena across the interior of western Canada...