Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3437-2019
https://doi.org/10.5194/hess-23-3437-2019
Research article
 | Highlight paper
 | 
23 Aug 2019
Research article | Highlight paper |  | 23 Aug 2019

Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 1: Projected climate and meteorology

Ronald E. Stewart, Kit K. Szeto, Barrie R. Bonsal, John M. Hanesiak, Bohdan Kochtubajda, Yanping Li, Julie M. Thériault, Chris M. DeBeer, Benita Y. Tam, Zhenhua Li, Zhuo Liu, Jennifer A. Bruneau, Patrick Duplessis, Sébastien Marinier, and Dominic Matte

Related authors

Atmospheric and surface observations during the Saint John River Experiment on Cold Season Storms (SAJESS)
Hadleigh D. Thompson, Julie M. Thériault, Stephen J. Déry, Ronald E. Stewart, Dominique Boisvert, Lisa Rickard, Nicolas R. Leroux, Matteo Colli, and Vincent Vionnet
Earth Syst. Sci. Data, 15, 5785–5806, https://doi.org/10.5194/essd-15-5785-2023,https://doi.org/10.5194/essd-15-5785-2023, 2023
Short summary
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021,https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Near-0 °C surface temperature and precipitation type patterns across Canada
Eva Mekis, Ronald E. Stewart, Julie M. Theriault, Bohdan Kochtubajda, Barrie R. Bonsal, and Zhuo Liu
Hydrol. Earth Syst. Sci., 24, 1741–1761, https://doi.org/10.5194/hess-24-1741-2020,https://doi.org/10.5194/hess-24-1741-2020, 2020
Short summary
Precipitation transition regions over the southern Canadian Cordillera during January–April 2010 and under a pseudo-global-warming assumption
Juris D. Almonte and Ronald E. Stewart
Hydrol. Earth Syst. Sci., 23, 3665–3682, https://doi.org/10.5194/hess-23-3665-2019,https://doi.org/10.5194/hess-23-3665-2019, 2019
Precipitation characteristics and associated weather conditions on the eastern slopes of the Canadian Rockies during March–April 2015
Julie M. Thériault, Ida Hung, Paul Vaquer, Ronald E. Stewart, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 4491–4512, https://doi.org/10.5194/hess-22-4491-2018,https://doi.org/10.5194/hess-22-4491-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Deep-learning-based sub-seasonal precipitation and streamflow ensemble forecasting over the source region of the Yangtze River
Ningpeng Dong, Haoran Hao, Mingxiang Yang, Jianhui Wei, Shiqin Xu, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 29, 2023–2042, https://doi.org/10.5194/hess-29-2023-2025,https://doi.org/10.5194/hess-29-2023-2025, 2025
Short summary

Cited articles

Bonsal, B., Zhang, X., and Hogg, W.: Canadian Prairie growing season precipitation variability and associated atmospheric circulation, Clim. Res., 11, 191–208, https://doi.org/10.3354/cr011191, 1999. 
Bonsal, B. R. and Cuell, C.: Hydro-climatic variability and extremes over the Athabasca River basin: Historical trends and projected future occurrence, Can. Water Resour. J., 42, 315–335, https://doi.org/10.1080/07011784.2017.1328288, 2017. 
Bonsal, B. R. and Shabbar, A.: Impacts of large-scale circulation variability on low streamflows over Canada: a review, Can. Water Resour. J., 33, 137–154, 2008. 
Bonsal, B. R., Shabbar, A., and Higuchi, K.: Impacts of low frequency variability modes on Canadian winter temperature, Int. J. Climatol., 21, 95–108, 2001. 
Bonsal, B. R., Cuell, C., Wheaton, E., Sauchyn, D. J., and Barrow, E.: An assessment of historical and projected future hydro-climatic variability and extremes over southern watersheds in the Canadian Prairies, Int. J. Climatol., 37, 3934–3948, https://doi.org/10.1002/joc.4967, 2017. 
Short summary
This article examines future atmospheric-related phenomena across the interior of western Canada associated with a business-as-usual climate scenario. Changes in large-scale atmospheric circulation and extent of warming vary with season, and these generally lead to increases, especially after mid-century, in factors associated with winter snowstorms, freezing rain, drought, forest fires, as well as atmospheric forcing of spring floods, although not necessarily summer convection.
Share