Articles | Volume 23, issue 8
https://doi.org/10.5194/hess-23-3353-2019
https://doi.org/10.5194/hess-23-3353-2019
Research article
 | 
14 Aug 2019
Research article |  | 14 Aug 2019

Modeling the high-resolution dynamic exposure to flooding in a city region

Xuehong Zhu, Qiang Dai, Dawei Han, Lu Zhuo, Shaonan Zhu, and Shuliang Zhang

Related authors

Preface: Advances in pluvial and fluvial flood forecasting and assessment and flood risk management
Cristina Prieto, Dhruvesh Patel, Dawei Han, Benjamin Dewals, Michaela Bray, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 24, 3381–3386, https://doi.org/10.5194/nhess-24-3381-2024,https://doi.org/10.5194/nhess-24-3381-2024, 2024
Evaluating Yangtze River Delta Urban Agglomeration flood risk using hybrid method of AutoML and AHP
Yu Gao, Haipeng Lu, Yaru Zhang, Hengxu Jin, Shuai Wu, Yixuan Gao, and Shuliang Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-144,https://doi.org/10.5194/nhess-2024-144, 2024
Preprint under review for NHESS
Short summary
A METHOD FOR RECOGNIZING RAINFALL-SENSITIVE URBAN ROADS BASED ON TRAJECTORY DATA
S. Zhu, H. Zhang, Y. Jiang, and X. Yang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 217–222, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-217-2022,https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-217-2022, 2022
The impact of wind on the rainfall–runoff relationship in urban high-rise building areas
Xichao Gao, Zhiyong Yang, Dawei Han, Kai Gao, and Qian Zhu
Hydrol. Earth Syst. Sci., 25, 6023–6039, https://doi.org/10.5194/hess-25-6023-2021,https://doi.org/10.5194/hess-25-6023-2021, 2021
Short summary
Estimation of rainfall erosivity based on WRF-derived raindrop size distributions
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020,https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Simulation of spatially distributed sources, transport, and transformation of nitrogen from fertilization and septic systems in a suburban watershed
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Laurence Lin, Amanda K. Suchy, Jonathan M. Duncan, and Arthur J. Gold
Hydrol. Earth Syst. Sci., 28, 4599–4621, https://doi.org/10.5194/hess-28-4599-2024,https://doi.org/10.5194/hess-28-4599-2024, 2024
Short summary
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Exploring the driving factors of compound flood severity in coastal cities: a comprehensive analytical approach
Yan Liu, Ting Zhang, Yi Ding, Aiqing Kang, Xiaohui Lei, and Jianzhu Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-100,https://doi.org/10.5194/hess-2024-100, 2024
Revised manuscript under review for HESS
Short summary
An optimized long short-term memory (LSTM)-based approach applied to early warning and forecasting of ponding in the urban drainage system
Wen Zhu, Tao Tao, Hexiang Yan, Jieru Yan, Jiaying Wang, Shuping Li, and Kunlun Xin
Hydrol. Earth Syst. Sci., 27, 2035–2050, https://doi.org/10.5194/hess-27-2035-2023,https://doi.org/10.5194/hess-27-2035-2023, 2023
Short summary
A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
Qianqian Zhou, Shuai Teng, Zuxiang Situ, Xiaoting Liao, Junman Feng, Gongfa Chen, Jianliang Zhang, and Zonglei Lu
Hydrol. Earth Syst. Sci., 27, 1791–1808, https://doi.org/10.5194/hess-27-1791-2023,https://doi.org/10.5194/hess-27-1791-2023, 2023
Short summary

Cited articles

Abt, S., Wittier, R., Taylor, A., and Love, D.: Human Stability In A High Flood Hazard Zone, J. Am. Water Resour. Assoc., 25, 881–890, https://doi.org/10.1111/j.1752-1688.1989.tb05404.x, 1989. 
Bates, P. D. and De Roo, A. P. J.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54–77, https://doi.org/10.1016/S0022-1694(00)00278-X, 2000. 
Bates, P., Trigg, M., Neal, J., and Dabrowa, A.: LISFLOOD-FP User manual, Code release 5.9.6, School of Geographical Sciences, University of Bristol, Bristol, UK, available at: https://www.bristol.ac.uk/media-library/sites/geography/migrated/documents/lisflood-manual-v5.9.6.pdf (last access: March 2019), 2013. 
Bekhor, S., Ben-Akiva, M. E., and Ramming, M. S.: Evaluation of choice set generation algorithms for route choice models, Ann. Operat. Res., 144, 235–247, https://doi.org/10.1007/s10479-006-0009-8, 2006. 
Brunner, G. W.: HEC-RAS River Analysis System User's Manual Version 4.0, Report CPD-68,, US Army Corps of Engineers, Hydrologic Engineering Center, USA, 2008. 
Download
Short summary
Urban flooding exposure is generally investigated with the assumption of stationary disasters and disaster-hit bodies during an event, and thus it cannot satisfy the increasingly elaborate modeling and management of urban floods. In this study, a comprehensive method was proposed to simulate dynamic exposure to urban flooding considering human mobility. Several scenarios, including diverse flooding types and various responses of residents to flooding, were considered.