Articles | Volume 23, issue 3
https://doi.org/10.5194/hess-23-1593-2019
https://doi.org/10.5194/hess-23-1593-2019
Research article
 | 
19 Mar 2019
Research article |  | 19 Mar 2019

Evaluating seasonal hydrological extremes in mesoscale (pre-)Alpine basins at coarse 0.5° and fine hyperresolution

Joost Buitink, Remko Uijlenhoet, and Adriaan J. Teuling

Related authors

Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024,https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Seasonal discharge response to temperature-driven changes in evaporation and snow processes in the Rhine Basin
Joost Buitink, Lieke A. Melsen, and Adriaan J. Teuling
Earth Syst. Dynam., 12, 387–400, https://doi.org/10.5194/esd-12-387-2021,https://doi.org/10.5194/esd-12-387-2021, 2021
Short summary
Behind the scenes of streamflow model performance
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021,https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices
Joost Buitink, Anne M. Swank, Martine van der Ploeg, Naomi E. Smith, Harm-Jan F. Benninga, Frank van der Bolt, Coleen D. U. Carranza, Gerbrand Koren, Rogier van der Velde, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020,https://doi.org/10.5194/hess-24-6021-2020, 2020
Short summary
A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient hydrological modelling at high spatio-temporal resolution
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020,https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025,https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025,https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 903–924, https://doi.org/10.5194/hess-29-903-2025,https://doi.org/10.5194/hess-29-903-2025, 2025
Short summary
A diversity-centric strategy for the selection of spatio-temporal training data for LSTM-based streamflow forecasting
Everett Snieder and Usman T. Khan
Hydrol. Earth Syst. Sci., 29, 785–798, https://doi.org/10.5194/hess-29-785-2025,https://doi.org/10.5194/hess-29-785-2025, 2025
Short summary
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025,https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary

Cited articles

Adam, J. C., Hamlet, A. F., and Lettenmaier, D. P.: Implications of Global Climate Change for Snowmelt Hydrology in the Twenty-First Century, Hydrol. Process., 23, 962–972, https://doi.org/10.1002/hyp.7201, 2009. a
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. a
Bavay, M., Grünewald, T., and Lehning, M.: Response of Snow Cover and Runoff to Climate Change in High Alpine Catchments of Eastern Switzerland, Adv. Water Resour., 55, 4–16, https://doi.org/10.1016/j.advwatres.2012.12.009, 2013. a
Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., and Woth, K.: Future Extreme Events in European Climate: An Exploration of Regional Climate Model Projections, Climatic Change, 81, 71–95, https://doi.org/10.1007/s10584-006-9226-z, 2007. a
Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1–12, https://doi.org/10.5194/hess-5-1-2001, 2001. a
Download
Short summary
This study describes how the spatial resolution of hydrological models affects the model results. The high-resolution model allowed for more spatial variability than the low-resolution model. As a result, the low-resolution model failed to capture most variability that was simulated with the high-resolution model. This has implications for the interpretation of results carried out at coarse resolutions, as they may fail to represent the local small-scale variability.
Share