Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2391-2018
https://doi.org/10.5194/hess-22-2391-2018
Research article
 | 
20 Apr 2018
Research article |  | 20 Apr 2018

Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques

Dagnenet Fenta Mekonnen and Markus Disse

Related authors

Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile River basin's streamflow
Dagnenet Fenta Mekonnen, Zheng Duan, Tom Rientjes, and Markus Disse
Hydrol. Earth Syst. Sci., 22, 6187–6207, https://doi.org/10.5194/hess-22-6187-2018,https://doi.org/10.5194/hess-22-6187-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Himalaya
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025,https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary

Cited articles

Amirabadizadeh, M., Ghazali, A. H., Huang, Y. F., and Wayayok, A.: Downscaling daily precipitation and temperatures over the Langat River Basin in Malaysia: a comparison of two statistical downscaling approaches, International Journal of Water Resources and Environmental Engineering, 8, 120–136, 2016. 
Awulachew, S. B., Yilma, A. D., Loulseged, M., Loiskandl, W., Ayana, M., and Alamirew, T.: Water Resources and Irrigation Development in Ethiopia, Working Paper 123, International Water Management Institute, Colombo, Sri Lanka, 78 pp., 2007. 
BCEOM: Abbay River Basin Integrated Development Master Plan, section II, volume V – Water Resources Development, part 1 – Irrigation and Drainage, Ministry of Water Resources, Addis Ababa, Ethiopia, 1998. 
Bewket, W. and Conway, D.: A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia, Int. J. Climatol., 27, 1467–1477, 2007. 
Download
Short summary
In this study we used multimodel GCMs (because of recognized intervariable biases in host GCMs) and two widely used statistical downscaling techniques (LARS-WG and SDSM) to see comparative performances in the Upper Blue Nile River basin, where there is high climate variability. The result from the two downscaling models suggested that both SDSM and LARS-WG approximate the observed climate data reasonably well and project an increasing trend for precipitation and maximum and minimum temperature.
Share