Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2391-2018
https://doi.org/10.5194/hess-22-2391-2018
Research article
 | 
20 Apr 2018
Research article |  | 20 Apr 2018

Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques

Dagnenet Fenta Mekonnen and Markus Disse

Related authors

Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile River basin's streamflow
Dagnenet Fenta Mekonnen, Zheng Duan, Tom Rientjes, and Markus Disse
Hydrol. Earth Syst. Sci., 22, 6187–6207, https://doi.org/10.5194/hess-22-6187-2018,https://doi.org/10.5194/hess-22-6187-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Downscaling the probability of heavy rainfall over the Nordic countries
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025,https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Modelling convective cell life cycles with a copula-based approach
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
Hydrol. Earth Syst. Sci., 29, 1–25, https://doi.org/10.5194/hess-29-1-2025,https://doi.org/10.5194/hess-29-1-2025, 2025
Short summary
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024,https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024,https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Assessing rainfall radar errors with an inverse stochastic modelling framework
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024,https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary

Cited articles

Amirabadizadeh, M., Ghazali, A. H., Huang, Y. F., and Wayayok, A.: Downscaling daily precipitation and temperatures over the Langat River Basin in Malaysia: a comparison of two statistical downscaling approaches, International Journal of Water Resources and Environmental Engineering, 8, 120–136, 2016. 
Awulachew, S. B., Yilma, A. D., Loulseged, M., Loiskandl, W., Ayana, M., and Alamirew, T.: Water Resources and Irrigation Development in Ethiopia, Working Paper 123, International Water Management Institute, Colombo, Sri Lanka, 78 pp., 2007. 
BCEOM: Abbay River Basin Integrated Development Master Plan, section II, volume V – Water Resources Development, part 1 – Irrigation and Drainage, Ministry of Water Resources, Addis Ababa, Ethiopia, 1998. 
Bewket, W. and Conway, D.: A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia, Int. J. Climatol., 27, 1467–1477, 2007. 
Download
Short summary
In this study we used multimodel GCMs (because of recognized intervariable biases in host GCMs) and two widely used statistical downscaling techniques (LARS-WG and SDSM) to see comparative performances in the Upper Blue Nile River basin, where there is high climate variability. The result from the two downscaling models suggested that both SDSM and LARS-WG approximate the observed climate data reasonably well and project an increasing trend for precipitation and maximum and minimum temperature.