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Abstract. Climate change is becoming one of the most
threatening issues for the world today in terms of its global
context and its response to environmental and socioeconomic
drivers. However, large uncertainties between different gen-
eral circulation models (GCMs) and coarse spatial resolu-
tions make it difficult to use the outputs of GCMs directly, es-
pecially for sustainable water management at regional scale,
which introduces the need for downscaling techniques us-
ing a multimodel approach. This study aims (i) to evalu-
ate the comparative performance of two widely used sta-
tistical downscaling techniques, namely the Long Ashton
Research Station Weather Generator (LARS-WG) and the
Statistical Downscaling Model (SDSM), and (ii) to down-
scale future climate scenarios of precipitation, maximum
temperature (Tiax) and minimum temperature (7inin) of the
Upper Blue Nile River basin at finer spatial and temporal
scales to suit further hydrological impact studies. The cali-
bration and validation result illustrates that both downscal-
ing techniques (LARS-WG and SDSM) have shown compa-
rable and good ability to simulate the current local climate
variables. Further quantitative and qualitative comparative
performance evaluation was done by equally weighted and
varying weights of statistical indexes for precipitation only.
The evaluation result showed that SDSM using the canESM?2
CMIP5 GCM was able to reproduce more accurate long-term
mean monthly precipitation but LARS-WG performed best
in capturing the extreme events and distribution of daily pre-
cipitation in the whole data range.

Six selected multimodel CMIP3 GCMs, namely HadCM3,
GFDL-CM2.1, ECHAMS5-OM, CCSM3, MRI-CGCM2.3.2
and CSIRO-MK3 GCMs, were used for downscaling climate

scenarios by the LARS-WG model. The result from the en-
semble mean of the six GCM showed an increasing trend for
precipitation, Tmax and Tpin. The relative change in precipi-
tation ranged from 1.0 to 14.4 % while the change for mean
annual T, may increase from 0.4 to 4.3 °C and the change
for mean annual T, may increase from 0.3 to 4.1 °C. The
individual result of the HadCM3 GCM has a good agreement
with the ensemble mean result. HadCM3 from CMIP3 using
A2a and B2a scenarios and canESM2 from CMIP5 GCMs
under RCP2.6, RCP4.5 and RCP8.5 scenarios were down-
scaled by SDSM. The result from the two GCMs under five
different scenarios agrees with the increasing direction of
three climate variables (precipitation, Tiax and Tmin). The
relative change of the downscaled mean annual precipitation
ranges from 2.1 to 43.8 % while the change for mean annual
Tmax and Tyin may increase in the range from 0.4 to 2.9 °C
and from 0.3 to 1.6 °C respectively.

1 Introduction

The impacts of climate change on the hydrological cycle in
general and on water resources in particular are of high sig-
nificance due to the fact that all natural and socioeconomic
systems critically depend on water. The direct impact of cli-
mate change can be variation and changing pattern of water
resources availability and hydrological extreme events such
as floods and droughts, with many indirect effects on agri-
culture, food and energy production and overall water infras-
tructure (Ebrahim et al., 2013). The impact may be worse on
transboundary rivers like the Upper Blue Nile River where
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competition for water is becoming high from different eco-
nomic, political and social interests of the riparian countries
and when runoff variability of upstream countries can greatly
affect the downstream countries (Kim, 2008; Semenov and
Barrow, 1997).

According to IPCC (2007), between 75 and 250 million
people are projected to be exposed to increased water stress
due to climate change in Africa by 2020. The increasing wa-
ter demand of upstream countries in the Nile Basin coupled
with climate change impacts can affect the availability of
water resources for downstream countries and in the basin,
which could result in resource conflicts and regional inse-
curities. Moreover, climate variability (i.e., the way climate
fluctuates yearly and seasonally above or below a long-term
average value, caused by changes in forcing factors such as
variation in seasonal extent of the intertropical convergence
zone like El Nifio and La Nifia events) is already imposing
a significant challenge to Ethiopia by affecting food security,
water and energy supply, poverty reduction, and sustainable
socioeconomic development efforts. To mitigate these chal-
lenges, the Ethiopian government therefore carried out a se-
ries of studies on Upper Blue Nile River basin (UBNRB),
which has been identified as an economic “growth corridor”,
focused on identifying irrigation and hydropower potential
of the basin (BCEOM, 1998; USBR, 1964; WAPCOS, 1990).
As aresult, large-scale irrigation and hydropower projects in-
cluding the Grand Ethiopian Renaissance Dam (GERD), the
largest hydroelectric power plant in Africa, have been identi-
fied and are being constructed as mitigation measures for the
impacts of climate change. However, most studies have put
less emphasis on climate change and its impact on the hy-
drology of the basin, and hence identifying local impacts of
climate change at basin level is quite important. This is espe-
cially important in the UBNRB for the sustainability of large-
scale water resource development projects, for proper water
resource management leading to regional security and for
finding possible mitigation measures to avoid catastrophic
consequences.

To this end, several individual studies have been done to
study the impacts of climate change on the water resources
of Upper Blue Nile River basin. Taye et al. (2011) reviewed
some of the research outputs and concluded that clear dis-
crepancies were observed, particularly on the projection of
precipitation. For instance, as the results obtained from Be-
wket and Conway (2007), Conway (2000) and Gebremicael
et al. (2013) showed, there is no significant trend observed in
the amount of seasonal and annual rainfall, while Mengistu
et al. (2014) reported statistically nonsignificant increasing
trends in annual and seasonal rainfall. For the future projec-
tion, expected changes in precipitation amount are unclear.
For instance, Kim (2008) used the outputs of six GCMs for
the projection of future precipitations and temperature, and
the result suggested that the changes in mean annual precip-
itation from the six GCMs range from —11 to 44 % with
a change of 11 % from the weighted average scenario in
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the 2050s. However, the changes in mean annual tempera-
ture range from 1.4 to 2.6 °C with a change of 2.3 °C from
the weighted average scenario. Likewise, Yates and Strzepek
(1998a) used three GCMs and the result revealed that the
changes in precipitation range from —5 to 30 % and the
changes in temperature range from 2.2 to 3.5 °C. Yates and
Strzepek (1998b) also used six GCMs and the result showed
in the range from —9 to 55 % for precipitation while temper-
ature increased from 2.2 to 3.7 °C. Another study done by
Elshamy et al. (2009), used 17 GCMs and the result showed
that changes in total annual precipitation range between —15
to 14 % but the ensemble mean of all models showed almost
no change in the annual total rainfall, while all models pre-
dict the temperature to increase between 2 and 5 °C. Gebre
and Ludwig (2015) used five bias-corrected 50 km x 50 km
spatial resolution GCMs for RCP4.5 and RCP8.5 scenarios
to downscale the future climate change of four watersheds
(Gilgel Abay, Gumara, Ribb and Megech) located in Tana
subbasin for the time period of 2030s and 2050s (the time pe-
riods of 2011-2040, 2041-2070 and 2071-2100 are referred
to throughout as the 2030s, 2050s and 2080s, respectively).
The result suggested that the selected five GCMs disagree on
the direction of future prediction of precipitation, but multi-
modal average monthly and seasonal precipitation may gen-
erally increase over the watersheds.

For the historical context, the discrepancies could be due
to the period and length of data analyzed and the failure to
consider stations which can represent the spatial variability
of the basin and also errors induced from observed data. For
the future context, besides the abovementioned reasons, dis-
crepancies could be due to the differences in GCMs and sce-
narios used for downscaling, the downscaling techniques ap-
plied (can be dynamical and statistical), selection of repre-
sentative predictors, the period of analysis, and spatial and
temporal resolution of observed and predictor data sets.

To address uncertainty in projected climate changes, the
IPCC (2014) thus recommends using a large ensemble of cli-
mate change scenarios produced from various combinations
of atmospheric ocean general circulation models (AOGCMs)
and forcing scenarios. However, it can become prohibitively
time consuming to assess the climate change using many
climate change scenarios and many statistical downscaling
models simultaneously. As a result, researchers typically as-
sess climate change and its impacts under only one or a few
climate change scenarios, selected arbitrarily with no justi-
fication, for instance those that used only A1B and A2 sce-
narios. Yet there is no any hard rule to select an appropriate
subset of climate change scenarios among the wide range of
possibilities (Casajus et al., 2016).

GCMs perform reasonably well at larger spatial scales but
poorly at finer spatial and temporal scales, especially precip-
itation, which is of interest in hydrological impact analysis
(Goly et al., 2014). Hence, the processes of downscaling that
ensure that the scale discrepancy between the coarse-scale
GCMs and the required local-scale climate variables for hy-

www.hydrol-earth-syst-sci.net/22/2391/2018/



D. Fenta Mekonnen and M. Disse: Analyzing the future climate change of Upper Blue Nile River basin

2393

Legend
N
Mediterrans
A edite n Se \/
= \l v"\\\;an
{
l‘J}u?an \\7A
Libya e =

Chad

e
0 500 1000
N S km

— Nile River
| UpperBlue Nile basin DEM (m.a.s.l)
_Nile basin boundary

* Rainfall station
A Temperature station

Value
High : 4248

w7y B Low: 483
BE 38°E 40°E
> ]
4
K
*x
" L10° N
x
A 0 65 130 ZGEm
35°E 38°E 40°E

Figure 1. Location map of the study area.

drological models will be narrowed down should be investi-
gated for their contribution, which has often been overlooked
in previous studies on climate change analysis in the UB-
NRB. Many researchers have tried to compare the compar-
ative skill of downscaling methods in different study areas
(Dibike and Coulibaly, 2005; Ebrahim et al., 2013; Fiseha
et al., 2012; Goodarzi et al., 2015; Hashmi et al., 2011; Khan
et al., 2006; Qian et al., 2004; Wilby et al., 2004; Wilby and
Wigley, 1997; Xu, 1999). However, no single model has been
found to perform well over all the regions and timescales.
Thus, evaluations of different models is critical to under-
standing the applicability of the existing models.

Apart from the GCMs and downscaling techniques, most
of the previous studies (e.g., Beyene et al. (2010), Elshamy
et al. (2009) and Kim (2008)) used CRU, NFS and other
gridded data sets constructed based on the interpolation of
a few stations in Ethiopia, which are relatively less accu-
rate compared with the station-based data (Worqlul et al.,
2014). Therefore, the objective of this study is (i) to evaluate
the comparative performance of two widely used statistical
downscaling techniques, namely the Long Ashton Research
Station Weather Generator (LARS-WG) and the Statistical
Downscaling Model (SDSM) over the UBNRB, and (ii) to
downscale future climate scenarios of precipitation, maxi-
mum temperature (Tmax) and minimum temperature (Tpin)
at acceptable spatial and temporal resolution, which can be
used directly for further hydrological impact studies. This
can be achieved through applying a multimodel approach, to
minimize the uncertainty of GCMs and incorporate accept-
able number of weather stations which have long time se-
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ries and reliable observed climate data to minimize the errors
coming from the less accurate gridded data sets.

Generally, downscaling methods are classified into dy-
namic and statistical downscaling (Fowler et al., 2007;
Wilby et al., 2002). Dynamic downscaling nests higher-
resolution regional climate models (RCMs) into coarse-
resolution GCMs to produce complete set of meteorological
variables which are consistent with each other. The outputs
from this method are still not at the scale that the hydro-
logical model requires. Statistical downscaling overcomes
this challenge; moreover it is computationally undemanding,
simple to apply and provides the possibility of uncertainty
analysis (Dibike et al., 2005; Semenov et al., 1997; Wilby
et al., 2002). Extensive details on the strength and weakness
of the two methods can be found in Wilby et al. (2007, 1997).
Among the different possibilities, two well-recognized sta-
tistical downscaling tools, a regression-based SDSM (Wilby
et al., 2002) and a stochastic weather generator, LARS-WG
(Semenov et al., 1997, 2002) were chosen for this study.
They have been tested in various regions (e.g., Chen et al.,
2013; Dibike et al., 2005; Dile et al., 2013; Elshamy et al.,
2009; Fiseha et al., 2012; Hashmi et al., 2011; Hassan et al.,
2014; Maurer and Hidalgo, 2008; Yimer et al., 2009) under
different climatic conditions of the world.

2 Description of study area

The Upper Blue Nile River basin extends from 7°45' to 13° N
and 34°30" and 37°45'E; see Fig. 1. It is one of the most
important major basins of Ethiopia because it contributes to
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45 9% of the countries surface water resources, 20 % of the
population, 17 % of the landmass, 40 % of the nation’s agri-
cultural product and a large portion of the hydropower and
irrigation potential of the country (Elshamy et al., 2009).
The whole UBNRB has an area coverage of 199 812 km?
(BCEOM, 1998). For this study, Rahad, Gelegu and Dinder
subcatchments that do not flow through the main river stem
to the Republic of Sudan are excluded. Hence, the basin area
coverage is 176 000 km? which is about 15 % of total area
of 1.12 millionkm? (Awulachew et al., 2007) of Ethiopia.
The elevation ranges between 489 ma.s.l. downstream on the
western side to 4261 ma.s.l. upstream at Mount Ras Dashen
in the northeastern part.

The Upper Blue Nile River itself has an average annual
runoff of about 49 billion m?. In addition, the Dinder, Galegu
and Rahad rivers have a combined annual runoff of about
5billionm3. The rivers of the UBNRB contribute on aver-
age about 62 % of the Nile total at Aswan. Together with the
contributions of the Baro-Akobo and Tekeze rivers, Ethiopia
accounts for 86 % of runoff at Aswan (BCEOM, 1998). The
climate of Ethiopia is mainly controlled by the seasonal
migration of the intertropical convergence zone, following
the position of the sun relative to the earth and the asso-
ciated atmospheric circulation. It is also highly influenced
by the complex topography. The whole UBNRB has long-
term mean annual rainfall, minimum temperature and max-
imum temperature of 1452mmyr~!, 11.4 and 24.7°C re-
spectively, as calculated by this study from 15 rainfall and
26 temperature gauging stations from the period 1984-2011.
The mean seasonal rainfall based on the above data showed
that about 238, 1065 and 148 mm occurred in Belg (October—
January), Kiremit (June—September) and Bega (February—
May) respectively, in which about 74 % of rainfall is con-
centrated between June and September (Kiremit season).

3 Data sets
3.1 Local data sets

The historical precipitation, maximum temperature and mini-
mum temperature data for the study area were obtained from
the Ethiopian Meteorological Agency (EMA), which were
analyzed and checked for further quality control. A consid-
erable length of time series data were missed in almost all
available stations, and hence 15 rainfall and 25 temperature
stations which have long time series and relatively short time
missing records were selected. Filling missed or gap records
was the first task for further meteorological data analysis.
This task was done using the well-known methodology of
the inverse distance weighting method. To check the quality
of the data, the double mass curve (DMC) analysis was used.
DMC analysis is a cross correlation between the accumulated
totals of the gauge in question against the corresponding to-
tals for a representative group of nearby gauges.

Hydrol. Earth Syst. Sci., 22, 2391-2408, 2018

D. Fenta Mekonnen and M. Disse: Analyzing the future climate change of Upper Blue Nile River basin

3.2 Large-scale data sets

A new version of the LARS-WGS5.5 was applied for this
study that incorporates predictions from 15 GCMs which
were used in the IPCC’s Fourth Assessment Report (AR4)
based on Special Emissions Scenarios SRES B1, A1B and
A2 for three time windows as listed in Table 1. However,
the fifth phase of Coupled Model Intercomparison Project
(CMIP5) climate models, based on the new radiative forc-
ing scenarios (Representative Concentration Pathway, RCP)
which were used for [PCC Fifth Assessment Report (ARS),
were not incorporated into LARS-WG at the time of the
study.

As it is difficult to process all the incorporated 15 CMIP3
GCMs and large differences in predictions of climate vari-
ables among the GCMs are expected, the performance of
GCMs in simulating the current climate variables of the
study area (UBNRB) should be evaluated, and the best-
performing GCMs were selected. The MAGICC/SCEGEN
computer program tool was used for the performance evalu-
ation of the 15 GCMs found in the LARS WG5.5 database,
as it is a standard method for selecting models on the ba-
sis of their ability to accurately represent current climate,
either for a particular region or for the globe. In this study,
we used a semiquantitative skill score that rewards rela-
tively good models and penalizes relatively bad models as
suggested by the Wigley (2008) user manual. The statistics
used for model selection are pattern correlation (R?), Root
mean square error (RMSE), bias (B), and a bias-corrected
RMSE (RMSE-corr). The analysis was done separately for
precipitation and temperature and finally an average score
value was taken for model selection. The six best-performing
GCMs have been selected for this study, namely HadCM3,
GFDL-CM2.1, ECHAMS5-OM, CCSM3, MRI-CGCM2.3.2
and CSIRO-MK3 in the order of their performance to con-
struct future precipitation, maximum temperature and mini-
mum temperature in the UBNRB for the time periods of the
2030s, 2050s and 2080s under A1B, A2 and B1 scenarios;
see Table 1.

Moreover, atmospheric large-scale predictor variables
used for representing the present condition were obtained
from the National Centre for Environmental Prediction
(NCEP) reanalysis data set. CanESM?2, a second-generation
Canadian earth system model (ESM) developed by Canadian
Centre for Climate Modelling and Analysis (CCCma) of En-
vironment Canada that represents CMIP5 and HadCM3 out-
puts from the Hadley Centre, United Kingdom (UK) repre-
senting CMIP3 were used in SDSM for the construction of
daily local meteorological variables corresponding to their
future climate scenario.

The reason for selecting these two GCMs was that they are
models that made daily predictor variables freely available to
be directly fed into the SDSM, covering the study area with
a better resolution. Additionally, HadCM3 is the most-used
GCM in previous studies such as Dibike et al. (2005), Dile
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Table 1. Selected global climate models from IPCC AR4 incorporated into LARS-WG.

Research center Country GCM Model acronym  Grid resolution ~ Emission scenarios ~ Time periods
Common Wealth Scientific and Industrial Research Organization — Australia ~CSIRO-MK3 CSMK3 1.9° x 1.9° AlB, Bl B, T1, T2, T3
Max-Plank Institute for Meteorology Germany ECHAMS5-OM MPEH5 1.9° x 1.9° AlB, A2, B1 B, T1, T2, T3
National Institute for Environmental Studies Japan MRI-CGCM2.3. MIHR 2.8° x2.8° AlB, Bl B, T1, T2, T3
UK Meteorological Office UK HadCM3 HADCM3 2.5° x 3.75° AlB, A2,B1 B, T1, T2, T3
Geophysical Fluid Dynamics Lab USA GFDL-CM2.1 GFCM21 2° x 2.5° AlB, A2, Bl B, T1, T2, T3
National Centre for Atmospheric Research USA CCSM3 NCCCS 1.4° x 1.4° AlB, Bl B,T1,T2, T3
B: baseline; T1: 2011-2030; T2: 2046-2065; T3: 2081-2100
Table 2. Name and description of all NCEP predictors on HadCM3 and canESM2 grid.

Variables  Descriptions Variables  Descriptions

temp Mean temperature at 2 m $500+ Specific humidity at 500 hPa height

mslp Mean sea level pressure s850+ Specific humidity at 850 hPa height

p500 500 hPa geopotential height bt Geostrophic air flow velocity

p850 850 hPa geopotential height z Vorticity

rhum? Near-surface relative humidity _u Zonal velocity component

r5002 Relative humidity at 500 hPa Y Meridional velocity component

8502 Relative humidity at 850 hPa bzh Divergence

shum Near-surface specific humidity bthas Wind direction

Prec+ Total precipitation

4 Refers to predictors only found from HadCM3. b Refers to different atmospheric levels: the surface (p_), 850 hPa height
(p8) and 500 hPa height (p5). + Refers predictors only for canESM2.

et al. (2013), Hassan et al. (2014) and Yimer et al. (2009),
and HadCM3 ranked first in performance evaluation done by
MAGICC/SCEGEN computer program tools and its down-
scaled results match with the ensemble mean of the six
GCMs used in the LARS-WG model. Furthermore, they can
represent two different scenario generations describing the
amount of greenhouse gases (GHGs) in the atmosphere in
the future. HadCM3 GCM used emission scenarios of A2
(separated world scenario), in which the CO;, concentration
was projected to be 414, 545 and 754 ppm, and B2 (the world
of technological inequalities), where the CO; concentration
was expected to be 406, 486 and 581 ppm at the time peri-
ods of the 2020s, 2050s and 2080s respectively (Semenov
and Stratonovitch, 2010) that were used in the CMIP3 for
the IPCC’s AR4 (IPCC, 2007). The canESM2 GCM repre-
sents the latest plausible radiative forcing scenarios, a wide
range which includes a very low forcing level (RCP2.6),
where radiative forcing peaks at approximately 3 Wm™2,
peaks approximately 490 ppm CO, equivalent before 2100,
and then declines to 2.6 Wm™2; two medium stabilization
scenarios were used for the [IPCC’s AR5, RCP6 and RCP 4.5,
in which radiative forcing is stabilized at 6 Wm™2 (approx-
imately 850 ppmCO, equivalent) and 4.5 Wm~2 (approx-
imately 650 ppmCO, equivalent) after 2100 respectively,
and one very high baseline emission scenario (RCP8.5)
was used for which radiative forcing reaches > 8.5 Wm™2
(1370 ppm CO;, equivalent) by 2100 and continues to rise for
some time (IPCC, 2014).
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The NCEP data set was normalized over the complete
1961-1990 period data, and interpolated to the same grid
as HadCM3 (2.5° latitude x 3.75° longitude) and canESM2
(2.8125° latitude x 2.8125° longitude) from its horizontal
resolution of (2.5° latitude x 2.5° longitude), to represent the
current climate conditions. NCEP reanalysis data were nor-
malized and interpolated as follows (Hassan et al., 2014):

(ur — ua)
Uy = ———,
ou

ey

in which u,, is the normalized atmospheric variable at time 7,
u; is the original data at time 7, u, is the multiyear average
during the period, and o u is the standard deviation.

The canESM2 outputs for three different climate scenar-
ios are RCP 2.6, RCP 4.5 and RCP 8.5 for the period 2006—
2100, while the outputs of HadCM3 for A2a (medium-high)
and B2a (medium-low) emission scenarios for the period
1961-2099 were obtained on a grid-by-grid-box basis for
the study area from the Environment Canada website http:
/lceds-dsce.ec.ge.ca/index.php?page=dst-sdi (the “a” in A2a
and B2a refers the ensemble member in the HadCM3 A2
and B2 experiments). The archive of canESM2 and HadCM3
GCM output contains 26 daily predictor variables, each listed
in Table 2.
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Figure 2. Schematic diagram of (a) LARS WG analysis and (b) SDSM analysis. Source: Wilby et al. (2002).

4 Methodology
4.1 Description of LARS-WG model

LARS-WG is a stochastic weather generator which can be
used for the simulation of weather data at a single station
under both current and future climate conditions. These data
are in the form of daily time series for a group of climate
variables, namely precipitation, maximum temperature and
minimum temperature, and solar radiation (Chen et al., 2013;
Semenov et al., 1997). LARS-WG uses a semiempirical dis-
tribution (SED) that is defined as the cumulative probability
distribution function (CDF) to approximate probability dis-
tributions of dry and wet series, daily precipitation, minimum
temperatures and maximum temperatures.

EPM = {ag,a;, hi,i =0, ...,23) 2)

EPM is a histogram of the distribution of 23 different inter-
vals (a;_1, a;) where a;_1 < a; (Semenov et al., 2002), which
offers a more accurate representation of the observed distri-
bution compared with the 10 used in the previous version.
By perturbing parameters of distributions for a site with the
predicted changes of climate derived from global or regional
climate models, a daily climate scenario for this site could
be generated and used in conjunction with a process-based
impact model for assessment of impacts. In general, the pro-
cess of generating synthetic weather data can be categorized
into three distinct steps: model calibration, model validation
and scenario generation as represented in Fig. 2a, which are
briefly described by (Semenov et al., 2002) as follows.

Hydrol. Earth Syst. Sci., 22, 2391-2408, 2018

The inputs to LARS-WG are the series of daily observed
data (precipitation, minimum temperature and maximum
temperature) of the base period (1984-2011) and site infor-
mation (latitude, longitude and altitude). After the input data
preparation and quality control, the observed daily weather
data at a given site were used to determine a set of parame-
ters for probability distributions of weather variables. These
parameters are used to generate a synthetic weather time se-
ries of arbitrary length by randomly selecting values from the
appropriate distributions, with the same statistical character-
istics as the original observed data but differing on a day-
to-day basis. The LARS-WG distinguishes wet days from
dry days based on whether the precipitation is greater than
zero. The occurrence of precipitation is modeled by alternat-
ing wet and dry series approximated by semiempirical prob-
ability distributions. The statistical characteristics of the ob-
served and synthetic weather data during calibration of the
model are analyzed to determine if there are any statistically
significant differences using a chi-square goodness-of-fit test
(Kolmogorov—Smirnov, KS) and the means and standard de-
viation using ¢ and F test respectively. This can be done by
changing the parameters of LARS-WG (number of years and
seed number).

To generate climate scenarios at a site for a certain fu-
ture period with a selected emission scenario, the LARS-
WG baseline parameters, which are calculated from observed
weather for a baseline period (1984-2011), are adjusted by
the A-changes for the future period and the emissions pre-
dicted by a GCM for each climatic variable for the grid cov-
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ering the site. In this study, the local-scale climate scenarios
based on the SRES A2, A1B and B1 scenarios simulated by
the selected six GCMs are generated for the time periods of
2011-2030, 20462065 and 2080-2099 to predict the future
change of precipitation and temperature in UBNRB.

A-changes were calculated as relative changes for precipi-
tation and absolute changes for minimum and maximum tem-
peratures (Eqgs. 3 and 4) respectively. No adjustments for dis-
tributions of dry and wet series and temperature variability
were made, because this would require daily output from the
GCMs which is not readily available from the LARS-WG
data set (Semenov et al., 2010).

AT; = (TGCM, FUT,i — Tsynt, Base,i) €)

AP = (M) (@)
Psynt,Base,i

In the above equations, AT; and A P; are climate change sce-
narios of the temperature and precipitation, respectively, for
long-term averages for each month (1 <i < 12); TGCM, FUT.i
and FGCM, FUT,i are the long-term average temperature
and precipitation respectively, simulated by the GCM in
the future periods per month for three time periods, and
Tsymh, Base, iandﬁsymh,gase,i are the long-term average tem-
perature and precipitation respectively, simulated by the
model in the period similar to observation period (in this
study 1984-2011) for each month. For obtaining time se-
ries of future climate scenarios, climate change scenarios are
added to the observed values by employing the change factor
(CF) method (Egs. 5 and 6) (in this study 1984-2011).

T =Tops + AT )
P =Pyps+ AP ©6)

T and P are time series of the future climate scenar-
ios of temperature and precipitation (2011-2100), and Tops
and Pgps are observed temperature and precipitation. So, in
LARS-WG downscaling, unlike in SDSM, large-scale atmo-
spheric variables are not directly used in the model, but rather
are based on the relative mean monthly changes between cur-
rent and future periods predicted by a GCM. Local station
climate variables are adjusted proportionately to represent
climate change (Dibike et al., 2005).

4.2 Description of SDSM

The SDSM is best described as a hybrid of the stochas-
tic weather generator and regression based on the family of
transfer function methods, due to the fact that a multiple lin-
ear regression model is developed between a few selected
large-scale predictor variables (Table 2) and local-scale pre-
dictands such as temperature and precipitation in order to
condition local-scale weather parameters from large-scale
circulation patterns. The stochastic component of SDSM en-
ables the generation of multiple simulations with slightly dif-
ferent time series attributes, but the same overall statistical
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properties (Wilby et al., 2002). It requires two types of daily
data: the first type corresponds to local predictands of in-
terest (e.g., temperature, precipitation) and the second type
corresponds to the data of large-scale predictors (NCEP and
GCM) of a grid box closest to the station.

The SDSM model categorizes the task of downscaling into
a series of discrete processes such as quality control and data
transformation, screening of predictor variables, model cal-
ibration, and weather and scenario generation as shown in
Fig. 2b. Detail procedures and steps can be found in Wilby
et al. (2002) for further reading. Screening potentially useful
predictor—predictand relationships for model calibration is
one of the most challenging but very crucial stages in the de-
velopment of any statistical downscaling model. It is because
of the fact that the selection of appropriate predictor variables
largely determines the success of SDSM and also the charac-
ter of the downscaled climate scenario (Wilby et al., 2007).
After routine screening procedures, the predictor variables
that provide physically sensible meaning in terms of their
high explained variance, correlation coefficient () and the
magnitude of their probability (p value) were selected.

The model calibration process in SDSM was used to con-
struct downscaled data based on multiple regression equa-
tions given daily weather data (predictand) and the selected
predictor variables at each station. The model was structured
as a monthly model for both daily precipitation and temper-
ature using the same set of the selected NCEP predictors for
the calibration period. Hence, 12 regression equations were
developed for 12 months. Bias correction and variance in-
flation factor were adjusted until the model replicated the
observed data. Model validation was carried out by testing
the model using an independent data set. To compare the ob-
served and simulated data, SDSM has provided a summary
statistics function that summarizes the result of both the ob-
served and simulated data. Time series of station data and
large-scale predictor variables (NCEP reanalysis data) were
divided into two groups: for the periods 1984-1995 (1984—
2000) and 1996-2001 (2001-2005) for model calibration and
validation of HadCM3 (canESM2) GCMs.

The scenario generator operation produces ensembles of
synthetic daily weather series given observed daily atmo-
spheric predictor variables supplied by a GCM for either cur-
rent or future climates (Wilby et al., 2002). The scenario gen-
eration produced 20 ensemble members of synthetic weather
data for 139 years (1961-2099) from HadCM3 A2a and B2a
scenarios and for 95 years (2006-2100) from canESM2 for
RCP2.6, 4.5 and 8.5 scenarios, and the mean of the ensemble
members was calculated and used for further climate change
analysis. The generated scenario was divided into three time
windows of 30 years of data: 2011-2040, 2041-2070 and
2071-2100.
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4.3 Downscaling model performance
evaluation criteria

A number of statistical tests were carried out to compare the
skills of the two downscaling models categorized into two
main classes. First, quantitative statistical tests using met-
rics, such as mean absolute error (MAE), root mean square
error and bias. These metrics are by far the most widely
used and accepted of the many possible numerical metrics
(Amirabadizadeh et al., 2016; Bennett et al., 2013) to eval-
uate the comparative performance of the models to simulate
the current climate variable of precipitation on the basis of
long-term monthly averages defined by using Eqs. (7)—(9). In
this study correlation and correlation-based measures such as
coefficient of determination (R?) and coefficient of efficiency
(Nash—Sutcliffe efficiency, NSE) are not included due to the
fact that these measures are oversensitive to extreme values
and are insensitive to additive and proportional differences
between model simulations and observations (Legates and
McCabe, 1999). Evaluation was done in two steps as sug-
gested by Goly et al. (2014): (i) equally weighing the met-
rics and (ii) varying the weights of metrics. For the case of
equally weighted the following steps were applied. (a) Com-
parison of the values of the performance metrics among the
models and ranking (obtaining individual model rankings for
each performance metrics) at station level. Here, score 1 will
be given to the model that has smaller metrics value and
score 3 to the one having larger value and 2 for the model
having the value in between. (b) Summing up the score per-
taining to each model across all the stations. (c) Once the
final scores are obtained for each evaluation metric, the mod-
els are ranked again based on the totals by summing up the
metrics score value for each models.

n
21X =Y

MAE ==L (7
n

RMSE =

1< 5
-2 (Xi— Yy ®)
i=1

YT iy

n n

Bias =

©))

In the above equations X; and Y; are the ith observation and
simulated data by the model, respectively, ux and py are the
average of all data of X; and Y; in the study population, and n
is the number of all samples to be tested.

Additionally, the varying weights technique was applied
to the performance metrics as given in Eq. (10) to rank the
models according to their skills. To avoid the discrepancy in
weighing the performance measures because of differences
in the order of their magnitudes, each performance measure
is normalized (divided by the maximum value) and then the
cumulative weighted performance measure for each down-

Hydrol. Earth Syst. Sci., 22, 2391-2408, 2018

D. Fenta Mekonnen and M. Disse: Analyzing the future climate change of Upper Blue Nile River basin

scaling model is calculated (Goly et al., 2014). The weights
of metrics are arranged in such a way that more emphasis is
given to MAE and RMSE, followed by bias (0.5, 0.35 and
0.15 respectively).

Wi W MAE; W RMSE;
i = WMAE MAE, . RMSE RMSE;ax
BiaS,'
+ WBias0—, (10)
Biasmax

where the index i refers to a downscaling model, W; refers
to overall performance measure, and 0 < W; < 1.

Secondly, qualitative tests, comparing the skill of mod-
els in regard to capturing the distribution of the observed
data to the whole range and in capturing the extreme pre-
cipitation events. For this purpose, statistical metrics such as
IRF, ABC, 99p, 95p, 1daymax, R1, R10, R20 and SDII and
graphical representations of box—whisker plots and KS cu-
mulative distribution test were applied. KS is used to com-
pare the probability distribution function (PDF) of the ob-
servations to the PDF of the simulated precipitation (Simard
and L’Ecuyer, 2011). These plots provide a convenient visual
summary of several statistical properties of the data set as
they vary over time. A scoring technique is applied to com-
pare the accuracy of the models. In this scoring technique, the
bias of an evaluation metric for each station is used: score 1
will be given to the model that has smaller bias, score 3 to
the one with a larger bias and 2 for the model with a value
in between. Afterwards, evaluation was carried out using an
equally weighted method only due to the assumption that the
metrics have equal weights, as discussed above for model
ranking. For the Kolmogorov—Smirnov cumulative distribu-
tion test, the observed and the simulated precipitation data
from each model were compared using a p value at the sig-
nificance level of 5 % for each station. The computed p value
is lower than the significance level « = 0.05, which indicates
the simulated fail to follow the same distribution as the ob-
served. Furthermore, the F test and ¢ test are applied to test
the equality of monthly variances of precipitation and equal-
ity of monthly mean respectively.

IRF and ABC are recommended by Campozano
et al. (2016), while 95p, 99p, lday max, R1, R10, R20
and SDII are recommended by Expert on Climate Change
Detection and Indices (ETCCDI). The interquartile rel-
ative fraction (IRF): to evaluate the modeled variability
representation relative to the observed is defined by Eq. (11):

m m
IRF = M, (11)
03— 0%
where QF' and Qf are the 75th modeled and observed per-
centile, and Q7' and Qf are the 25th modeled and observed
percentile respectively. A value of IRF > 1 represents overes-
timation of the variability, IRF =1 is a perfect representation
of the variability, and IRF < 1 is an underestimation of the
variability. To evaluate the bias of the 25th, 50th and 75th
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Table 3. Calibration results of the average statistical tests comparing the observed data from 26 stations with synthetic data generated through
LARS-WG. The numbers in the table show the average numbers of tests gave a p value of less than 5 % significance level.

Tests KS test ttest Ftest KS test t test KS test t test
Parameters WDseries RainD | RMM RMV  ThinD  TpinM TmaxD TmaxM
Average 0.04 0.00 0.27 2.08 0 0.12 0 0.12
Total 8 12 12 12 12 12 12 12
% failed 0.48 0.00 224  17.31 0 1 0 1
(a)
350
=300
£.250
S 200 I
=150 |
o T
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Figure 3. Observed and simulated (a) mean monthly precipitation, Tmax and Tpjn; (b) standard deviation of precipitation, Tmax and T

using LARS-WG.

percentiles, the absolute cumulative bias (ACB) is defined as
Eq. (12):

ACB = abs(QT" — 09) +abs(05' — 09)
+abs(QF — 09, (12)

where Q3! and Qf are the 75th modeled and observed per-
centile, Q5" and Q7 are the 50th modeled and observed per-
centile Q", and O are the 25th modeled and observed per-
centile respectively. A value of ACB =0 is a perfect repre-
sentation of the modeled and observed distributions, while
under- or overestimation indicates a divergence of ACB
from zero to positive values. The terms 95p and 99p denote
the 95th and 99th percentiles of daily precipitation amount
respectively; 1 daymax is the highest 1-day precipitation
amount; R1, R10 and R20 are number of precipitation days
(> 1 mm), heavy precipitation days (> 10 mm) and extreme
heavy precipitation days > 20 mm respectively; and SDII is
the simple daily intensity index calculated as the ratio of to-
tal precipitation to the number of wet days (> 1 mm).

5 Results and analysis

5.1 Calibration and validation of LARS-WG

To verify the performance of LARS-WG, in addition to the
graphic comparison, some statistical tests were performed.
The KS test is performed to test equality of the seasonal dis-
tributions of wet and dry series (WDSeries), distributions of
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daily rainfall (RainD), and distributions of daily maximum
(Tmax D) and minimum (Tpin D) temperature. The F test is
performed to test equality of monthly variances of precipi-
tation (RMV) while the ¢ test is performed to verify equal-
ity of monthly mean rainfall (RMM), monthly mean of daily
maximum temperature (7pax M), and monthly mean of daily
minimum temperature (TminM). All of the tests calculate
a p value, which is used to accept or reject the hypothe-
ses that the two sets of data (observed and generated) could
have come from the same distribution at the 5 % significance
level. Therefore, the average number of p values less than
5 % recorded from 26 stations and the percentage that failed
from the total of 8 seasons or 12 months have been presented
in Table 3. The result revealed that LARS-WG performs very
well for all parameters except RMM and RMV. However, an
average of 2.2 and 17.3 % of the months of a year obtained
a p value < 5 % for the monthly mean and variance of precip-
itation respectively. From these numbers, it can be noted that
the model is less capable of simulating the monthly variances
than the other parameters.

For illustrative purposes, a graphical representation of
monthly mean and standard deviation of the simulated and
observed precipitation, Tiax and Tnin, was constructed (see
Fig. 3) for the randomly chosen Gondar station as it has been
difficult to present the result of all stations. It can be seen
from the result that observed and simulated monthly mean
precipitation, Ti,x and Tiin, match very well. However, as
it is known to be difficult to simulate the standard deviations
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in most statistical downscaling studies, the performance of
the standard deviation is less accurate compared to the mean
(Fig. 3b).

5.2 Screening variable, model calibration and
validation of SDSM

Initially, offline correlation analysis was performed using
SPSS software between predictands and NCEP reanalysis
predictors to identify an optimal lag and physically sensi-
ble predictors for climate variables of precipitation, Tpyax and
Tin- Analysis of the offline correlation revealed that an opti-
mal lag or time shift does not improve the correlation of pre-
dictands and predictors for this particular study. Average par-
tial correlation of observed precipitation with predictors as
shown in Fig. 5 indicates all stations followed the same cor-
relation pattern (both in magnitude and direction) that illus-
trates all stations can have identical physically sensible pre-
dictors, with a few exceptions. Furthermore, there are a num-
ber of predictors that have correlation coefficient values in
the range of 20 to 45 % for precipitation across all stations.
This range is considered to be acceptable when dealing with
precipitation downscaling (Wilby et al., 2002) because of
its complexity and high spatial and temporal variability to
downscale.

The predictor variables identified for each downscaling
GCM and for the corresponding local climate variables
showed that different large-scale atmospheric variables con-
trol different local variables. For instance, the set of temp,
mslp, s500, s850, p8_v, p500, shum comprises the most po-
tential or meaningful predictors for temperature, and the set
of $500, s850, p8_u, p_z, pzh, p500 performs best for pre-
dicting precipitation of the study area, which is consistent
with the result of offline correlation analysis. After care-
fully screening predictor variables, model calibration and
validation was carried out. The graphical comparison be-
tween the observed and generated rainfall, Ty, and Tiin,
was run to enhance the confidence of the model performance,
as shown in Figs. 6 and 7 for Gondar station only. Examina-
tion of Fig. 6 shows that the calibrated model reproduces the
monthly mean precipitation and mean standard deviation of
daily Tmax and Tmin values quite well. However, the model is
less accurate in reproducing variance of observed precipita-
tion. As Wilby et al. (2004) point out, downscaling models
are often regarded as less able to model the variance of the
observed precipitation with great accuracy.

The statistical performance metrics of MAE and RMSE
values for the monthly precipitation modeled from canESM?2
range from 3.5 to 14.8 mm and 4.9 to 22.4 mm, which shows
that canESM2 performs better than HadCM3, with the MAE
and RMSE values ranging from 6.2 to 48.6 mm and 7.6 to
73.4mm respectively. The result of statistical analysis re-
vealed that the model is much better in simulating Ty and
Tmin than precipitation, because the high dynamical proper-
ties of precipitation make it difficult to simulate. After ac-
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complishing a satisfactory calibration, the multiple regres-
sion model is validated using an independent set of data out-
side the period for which the model is calibrated. The val-
idation result revealed that the model is successfully vali-
dated but with less accuracy compared to calibration for both
GCMs as shown in Fig. 7. In general, the result analysis
of performance measure and graphical representation of ob-
served and simulated scenarios, both for calibration and val-
idation, revealed that the model performs very well in simu-
lating the climate variables.

5.3 Downscaling with LARS-WG

Since the performance of LARS-WG during calibration and
validation was very good, downscaling of the climate sce-
nario can be done from six selected multimodel CMIP3
GCMs under three scenarios (A1B, B1 and A2) for three time
periods. After downscaling the future climate scenarios at all
stations from the selected six GCMs, the projected precipita-
tion analysis for the areal UBNRB was calculated from the
point rainfall stations using the Thiessen polygon method.
The result analysis (Fig. 4a) revealed that GCMs disagree on
the direction of precipitation change: two GCMs (CSMK3
and GFCM21) showed decreasing trends, and a majority,
or four, GCMs (NCCSM, Hadcm3, MPEH5 and MIHR)
showed increasing trends from the reference period in all
three time periods. By the 2030s, the relative change in mean
annual precipitation is projected in the range between —2.3
and 6.5 % for A1B, —2.3 and 7.8 % for B1, and —3.7 and
6.4 % for A2 emission scenarios. In the 2050s, the relative
changes in precipitation range between —8 and 22.7 % for
Al1B, —2.7 and 22 % for B1, and —7.4 and 8.7 % for A2 sce-
narios. In the time of 2080s, the relative changes in precipita-
tion projected may vary between —7.5 and 29.9 % for A1B,
—5.3 and 13.7 % for B1, and —5.9 and 43.8 % for A2 emis-
sion scenarios. The multimodel average result showed that
in the future precipitation may generally increase over the
basin in the range of 1 to 14.4 %, which is in line with the
result from the HadCM3 GCM (0.8 to 16.6 %).

In a different way from precipitation, the projections of
mean annual Ty,x and Tinin have showed coherent increas-
ing trends from the six GCMs under all scenarios in all three
future time periods (Fig. 4b). The result calculated from the
ensemble mean showed that mean annual Ty,x may increase
up to 0.5, 1.8 and 3.6 °C by 2030s, 2050s and 2080s respec-
tively under the A2 scenario, which is in line with the results
from both GFCM21 and HadCM3 GCMs. Likewise, the UB-
NRB may experience an increase in mean annual Tiyip up to
0.6, 1.8 and 3.6 °C by the 2030s, 2050s and 2080s respec-
tively from the multimodel average.
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5.4 Downscaling with SDSM

Here, as it is difficult to process all the selected six CMIP3
GCM3 using SDSM, we choose the HadCM3 GCM as the
best due to the fact that the downscaling result of HadCM3
using LARS-WG fits with the downscaling result of the
ensemble mean model. Also, canESM2 from the CMIP5
GCMs was selected to test the improvements of CMIPS5 over
CMIP3. Results of downscaling future climate scenario of
areal UBNRB using SDSM calculated from all stations us-
ing Thiessen polygon methods are summarized in Fig. 8. The
overall analysis of the result indicates a general increase in
mean annual precipitation for three time windows (2030s,
2050s and 2080s) for all five scenarios (A2a and B2a for
HadCM3 and RCP2.6, RCP4.5 and RCP8.5 for canESM2) in
the range of 2.1 to 43.8 %. The maximum (minimum) relative
change of mean annual precipitation is projected to be 43.8 %
(6.2 %),29.5 % (3.5 %) and 19 % (2.1 %) in the 2080s, 2050s
and 2030s under the RCP8.5 scenario of canESM2 (B2a)
scenario of HadCM3. In general, the RCP8.5 scenario of
canESM2GCM resulted in pronounced increases in all three
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time periods, whereas scenario B2a of the HadCM3 GCM
reported minimum change over the study area.

Regarding temperature, the downscaling result of Tj,.x and
Tmin showed an increasing trend consistently in all months
and seasons in three time periods under all scenarios with
mean annual value ranging from 0.5 to 2.6°C and 0.3 to
1.6 °C under scenario RCP8.5 and B2a respectively. The
RCP 8.5 scenario reported maximum change while B2a sce-
nario reported minimum change both for Tax and Tiyip in all
three time periods compared to other scenarios. The analysis
of the downscaling result illustrates maximum temperature
may become much hotter compared to minimum tempera-
ture in all scenarios and time periods in the future across the
UBNRB.

5.5 Comparative performance evaluation of
LARS-WG and SDSM models

Chen et al. (2013) argued that though major sources of un-

certainty are linked to GCMs and emission scenarios, un-
certainty related to the choice of downscaling methods give
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less attention to climate change analysis. Therefore, in this
study, comparative performance evaluation of the downscal-
ing methods has been given due emphasis and carried out in
a number of statistical and graphical tests both quantitatively
and qualitatively. The model skill was evaluated and ranked
at each site for each metric as shown in Table 4 for metrics of
RMSE. The overall rank obtained by summing up the score
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of each model for each metric is presented in Tables 5 and 6,
for quantitative and qualitative measures respectively.

The result revealed that SDSM/canESM2 narrowly per-
formed best in simulating the long-term average values in
both equally weighted and varying weights of the quantita-
tive metrics. However, LARS-WG performed best in quali-
tative measures in reproducing the distribution and extreme
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Table 4. Performance measure and ranking of models during the baseline period (1984-2011) for evaluation metric RMSE.

RMSE value ‘ Equally weighted score ‘ Varying weights score
Stations SDSM/canESM2  SDSM/HadCM3 LARS-WG ‘ SDSM/canESM2  SDSM/HadCM3 LARS-WG ‘ SDSM/canESM2  SDSM/HadCM3 LARS-WG
Abaysheleko 7.4 15.7 18.9 1 2 3 0.14 0.29 0.35
Alemketema 19.4 7.6 10.5 3 1 2 0.35 0.14 0.19
Anger 11.1 13.1 10.0 2 3 1 0.29 0.35 0.27
Angerguten 8.2 16.1 9.8 1 3 2 0.18 0.35 0.21
Bahirdar 8.5 21.7 11.5 1 3 2 0.14 0.35 0.19
Bedele 6.4 46.1 14.7 1 3 2 0.05 0.35 0.11
Dangila 13.2 53.8 9.0 2 3 1 0.09 0.35 0.06
Dedesa 8.2 18.0 13.8 1 3 2 0.16 0.35 0.27
Dmarkos 5.0 19.1 12.5 1 3 2 0.09 0.35 0.23
Dtabor 224 39.4 10.7 2 3 1 0.20 0.35 0.10
Fitche 17.8 11.2 10.8 3 2 1 0.35 0.22 0.21
Gimijabet 14.5 324 114 2 3 1 0.16 0.35 0.12
Gondar 5.0 18.2 3.6 2 3 1 0.10 0.35 0.07
Nedjo 8.4 154 11.7 1 3 2 0.19 0.35 0.27
Shambu 8.6 15.7 10.7 1 3 2 0.19 0.35 0.24
Overall score ‘ 24 41 25 2.67 4.85 2.88

events of daily precipitation. For instance, absolute bias for
the 95th percentile of daily precipitation (95p) ranges from
4.35 to 12.4 mm for SDSM/canESM2, from 3.2 to 12.2 mm
for SDSM/HadCM3 and from 0.07 to 3.7 mm for LARS-
WG; for the mean of daily precipitation amount (SDII), ab-
solute bias ranges from 1.3 to 6.3 mm for SDSM/canESM2,
from 2.1 to 5.6 mm for SDSM/HadCM3 and from 0.01 to
3 mm for LARS-WG.

Furthermore, as the Kolmogorov—Smirnov test from Ta-
ble 7 shows, LARS-WG captures the distribution of the ob-
served precipitation of 93.3 % from all stations while SDSM
captures only 20% of the 15 stations equally both from
canESM2 and HadCM3 GCMs at 5 % significance level. The
t test result revealed that 86.7 % of the simulated precipita-
tion by LARS-WG and SDSM/HadCM3 models are captur-
ing their perspective mean values from all stations while the
SDSM and hadCM3 models capture only 66.7 %. The F test
showed 93.3 % of the simulated and the observed precipita-
tion are normally distributed around their respective variance
value in all three models. In general, the comparative per-
formance test revealed that the LARS-WG model performed
best in qualitative measures while SDSM/canESM2 is best in
quantitative measures in UBNRB. In addition, Figs. 9 and 10
confirmed graphically the ability of the LARS-WG model
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in capturing the distribution and extreme events of the pre-
cipitation in representative stations (randomly chosen) by a
whisker box plot and Kolmogorov—Smirnov test respectively.

For future simulation, the HadCM3 GCM A2 scenario was
used in common for two (LARS-WG and SDSM) down-
scaling methods to test whether the downscaling methods
may affect the GCM result under the same forcing sce-
nario. The results obtained from the two downscaling mod-
els were found reasonably comparable and both approaches
showed increasing trends for precipitation, Tmax and Tpipn.
However, the magnitude of the downscaled climate data from
the two methods as presented in Fig. 11 indicates that LARS-
WG overpredicts precipitation and temperature compared to
SDSM. The relative change of mean annual precipitation us-
ing LARS-WG is about 16.1 % and an average increase in
mean annual T,k and Ty is about 3.7 and 3.6 °C respec-
tively in the 2080s. SDSM predicts the relative change of
mean annual precipitation of only about 9.7 % and an average
increase in Tmax and Ty of about 2 and 1.3 °C respectively
in the same period. The differences in the future predictions
are the result of the differences in the basic concepts behind
the two downscaling techniques. The SDSM uses large-scale
predictor variables from GCM outputs which can be con-
sidered as more reliable for climate change prediction using

Hydrol. Earth Syst. Sci., 22, 2391-2408, 2018
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Table 5. Statistical downscaling models ranking during the baseline period (1984-2011) for quantitative measures. The numbers in the table

show the total ranking scores summed up from 15 stations.

Equally weighted overall score

‘ Varying weights overall score

Evaluation metrics  SDSM/canESM2  SDSM/HadCM3 LARS-WG ‘ Weight SDSM/canESM2 SDSM/HadCM3 LARS-WG
RMSE 24 41 25 0.35 2.67 4.85 2.88
MAE 24 41 25 0.50 3.99 7.47 4.64
Bias 23 39 28 0.15 1.29 1.83 0.70
Total 71 121 78 ‘ 1.0 7.94 14.15 8.22
Rank 1 3 2 | 1 3 2
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Figure 9. Kolmogorov—Smirnov test to compare the skill of the models for the observed precipitation distribution (upper three Alemketema

stations, lower three Debre Markos stations).

multiple linear regression. However, the LARS WG uses the
relative change factors (RCFs) derived from the direct GCM
output of only those variables which directly correspond to
the predictands. Hence, because of the well-known fact that
GCMs are not very reliable in simulating precipitation, the
error induced from the GCM output for precipitation will
propagate the error of downscaling that makes the perfor-
mance of LARS-WG to downscale precipitation needs more
caution (Dibike et al., 2005).

6 Discussions and conclusions

The uncertainty related to climate change analysis can be
due to climate models and downscaling methods among
many other factors. In this study, we employed a multimodel
approach to see that the uncertainties came from different
GCMs. In total, 21 systematically selected future climate sce-

Hydrol. Earth Syst. Sci., 22, 2391-2408, 2018

narios were produced for each time period, which we might
think representative to understand fully and to project plau-
sibly the future climate change in the study area and to retain
information about the full variability of GCMs. Moreover,
we applied two widely used statistical downscaling methods,
namely the regression downscaling technique (SDSM) and
the stochastic weather generation method (LARS WG) for
this particular study.

The performance of the three models (HadCM3/SDSM,
canESM2/SDSM and LARS-WG) were tested for the base-
line period of 1984-2011 in representing the current situa-
tion, particularly for precipitation, as it is the most difficult
climate variable to model. The result suggested that SDSM
using canESM2 GCM captures the long-term monthly aver-
age very well at most of the stations and it ranked first from
others. This could be attributed to the increasing performance
of GCMs from time to time (i.e., CMIP5 GCMs performs
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Figure 11. Comparison of climate change scenarios (a) downscaled using LARS-WG and SDSM from HadCM3 GCM for the a2 scenario
and (b) downscaled from different scenarios (LARS-WG using hadCM3 a2 scenario).

Table 6. Ranking of statistical downscaling models during the base-
line period (1984-2011) for qualitative measures (distribution and
extreme events of daily precipitation). The numbers in the table
show the total ranking scores obtained from 15 stations.

Evaluation SDSM/ SDSM/ LARS-WG
metrics canESM2 HadCM3

95p 42 33 15
99p 41 34 15
1 day max 39 36 15
SDII 36 38 16
R20 42 33 16
R10 37 34 19
R1 40 35 15
1-IRF 32 29 29
ACB 33 33 24
Total score 342 305 164
Rank 3 2 1

better than CMIP3 GCMs) due to the fact that modeling was
based on the new set of radiative forcing scenarios that re-
placed SRES emission scenarios, constructed for IPCC ARS
where the impacts of land use and land cover change on the
environment and climate are explicitly included. However,
LARS-WG performed best in qualitative measures in captur-
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ing the distribution and extreme events of the daily precipi-
tation than SDSM. The better performance of LARS-WG in
capturing the distribution and extreme events of the daily pre-
cipitation may be associated with the use of 23 interval his-
tograms for the construction of semiempirical distribution,
which offers a more accurate representation of the observed
distribution compared with the 10 intervals used in the previ-
ous version (Semenov et al., 2010). The poor performance of
SDSM would indicate the difficulty in finding climate vari-
ables from the NCEP data that could explain the variability
of daily precipitation well. Therefore, LARS-WG would be
more preferred in areas of the UBNRB where there is high
climatic variability to correctly simulate the distribution and
extreme events of the precipitation, which is crucial for a re-
alistic assessment of flood events and agricultural produc-
tion.

The downscaling result reported from the six GCMs used
in LARS-WG showed large intermodel differences: two
GCMs reported that precipitation may decrease while four
GCMs reported that precipitation may increase in the fu-
ture. The large intermodel differences in the GCMs showed
the uncertainties of GCMs associated with their differences
of resolution and assumptions of physical atmospheric pro-
cesses to represent local-scale climate variables, which are
typical characteristics for Africa and because of low conver-
gence in climate model projections in the area of UBNRB

Hydrol. Earth Syst. Sci., 22, 2391-2408, 2018
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Table 7. Kolmogorov—Smirnov, ¢ and F tests during the baseline period (1984-2011) for qualitative measures.

Kolmogorov—Smirnov test ‘ t test ‘ F test
Station HadCM3 canESM2 LARS-WG ‘ HadCM3 canESM2 LARS-WG ‘ HadCM3 canESM2 LARS-WG
Total stations 15 15 15 15 15 15 15 15 15
Passed (p > 5 %)* 3 3 14 14 14 14 10 1013 13
% passed 20 20 93.3 93.3 93.3 93.3 66.7 86.7 86.7

* Number of stations with p value > 5 % (pass to simulate the distribution of precipitation).

(Gebre and Ludwig, 2015). These results further reinforce
multimodel strategies for conducting climate change stud-
ies. The multimodel average result showed that in the fu-
ture precipitation may generally increase over the basin in
the range of 1 to 14.4 % which is in line with the result from
HadCM3 GCM (0.8 to 16.6 %); this indicates that HadCM3
from CMIP3 GCMs has a better representation of local-scale
climate variables in the study area, consistent with the pre-
vious study result by Kim and Kaluarachchi (2009) and Dile
et al. (2013) in the same study area.

LARS-WG produces synthetic climate data of any length
with the same characteristics as the input record, and it sim-
ulates weather separately for a single site. Therefore, the re-
sulting weather series for different sites are independent of
each other, which can cause loss of a very strong spatial
correlation that exists in real weather data during simula-
tion. However, a few stochastic models have been developed
to produce weather series simultaneously at multiple sites,
preserving the spatial correlation, mainly for daily precipi-
tation, such as space—time models, nonhomogeneous hidden
Markov models and nonparametric models that typically use
a K nearest-neighbor (K-NN) procedure (King et al., 2015).
They are complicated in both calibration and implementation
and are unable to adequately reproduce the observed correla-
tions (Khalili et al., 2007). In this study, the simple Pearson’s
correlation coefficient (R?) value was checked in two stations
before and after simulation of the observed data to test the ca-
pability of LARS-WG in preserving the spatial correlation of
stations. The result revealed that the spatial correlation of the
stations distorted or decreased from the original is insignifi-
cant.

In conclusion, a multimodel average from LARS-WG and
individual model result from SDSM showed a general in-
creasing trend for all three climatic variables (precipitation,
Tmax and Tryip) in all three time periods. The positive change
in precipitation in future can be a good opportunity for the
farmers who are engaged in rainfed agriculture to maximize
their agricultural production and to change their livelihoods.
However, this information cannot be a guarantee for irriga-
tion farming because precipitation is not the only factor af-
fecting the flow of the river, which is the main source for irri-
gation. Evapotranspiration, dynamics of land use land cover,
proper water resource management and other climatic factors
which are not yet assessed by this study can influence the
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flow of the river directly and indirectly. Furthermore, the re-
sult from this study revealed that maximum positive precipi-
tation change may occur in Autumn (September—November),
when most agricultural crops mature and harvesting begins,
while minimum precipitation change may occur during sum-
mer (June—August), when about 80 % of the annual rainfall
occurs; this climate variability can be a potential threat to the
farmers, who have limited ability to cope with the negative
impacts of climate variability and overall ongoing economic
development efforts in the basin.

In general, this study has shown that climate change will
likely occur that may affect the water resources and hydrol-
ogy of the UBNRB. On the basis of the results obtained
in this study, both SDSM and LARS-WG models can be
adopted with reasonable confidence as downscaling tools to
undertake climate change impact assessment studies for the
future. However, LARS-WG is more suitable for extreme
precipitation impact assessment studies, such as those deal-
ing with floods and droughts. Moreover, the paper provides
substantial information that the choice of downscaling meth-
ods has a contribution in the uncertainty of future climate
prediction. The authors would also like to suggest further as-
sessment of the study area using a large ensemble of CMIPS5
GCMs. Further relative performance of downscaling tech-
niques for other climatic variables such as Tiax, Tmin, dry
spell length, wet spell length, inter-annual and seasonal cy-
cle of precipitation using additional PDF-based metrics such
as the Brier score and the skill score might counteract the
limitations of this paper.
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