Articles | Volume 21, issue 7
Hydrol. Earth Syst. Sci., 21, 3839–3858, 2017
https://doi.org/10.5194/hess-21-3839-2017
Hydrol. Earth Syst. Sci., 21, 3839–3858, 2017
https://doi.org/10.5194/hess-21-3839-2017
Research article
27 Jul 2017
Research article | 27 Jul 2017

Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone

Matthias Sprenger et al.

Related authors

Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022,https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
Mechanisms of consistently disjunct soil water pools over (pore) space and time
Matthias Sprenger, Pilar Llorens, Carles Cayuela, Francesc Gallart, and Jérôme Latron
Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019,https://doi.org/10.5194/hess-23-2751-2019, 2019
Short summary
Water ages in the critical zone of long-term experimental sites in northern latitudes
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018,https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Form and function in hillslope hydrology: characterization of subsurface flow based on response observations
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017,https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017,https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Theory development
Compaction effects on evaporation and salt precipitation in drying porous media
Nurit Goldberg-Yehuda, Shmuel Assouline, Yair Mau, and Uri Nachshon
Hydrol. Earth Syst. Sci., 26, 2499–2517, https://doi.org/10.5194/hess-26-2499-2022,https://doi.org/10.5194/hess-26-2499-2022, 2022
Short summary
Evaporation front and its motion
Jiří Mls
Hydrol. Earth Syst. Sci., 26, 397–406, https://doi.org/10.5194/hess-26-397-2022,https://doi.org/10.5194/hess-26-397-2022, 2022
Short summary
Hysteresis in soil hydraulic conductivity as driven by salinity and sodicity – a modeling framework
Isaac Kramer, Yuval Bayer, Taiwo Adeyemo, and Yair Mau
Hydrol. Earth Syst. Sci., 25, 1993–2008, https://doi.org/10.5194/hess-25-1993-2021,https://doi.org/10.5194/hess-25-1993-2021, 2021
Short summary
HESS Opinions: Unsaturated infiltration – the need for a reconsideration of historical misconceptions
Peter F. Germann
Hydrol. Earth Syst. Sci., 25, 1097–1101, https://doi.org/10.5194/hess-25-1097-2021,https://doi.org/10.5194/hess-25-1097-2021, 2021
Short summary
Sigmoidal water retention function with improved behaviour in dry and wet soils
Gerrit Huibert de Rooij, Juliane Mai, and Raneem Madi
Hydrol. Earth Syst. Sci., 25, 983–1007, https://doi.org/10.5194/hess-25-983-2021,https://doi.org/10.5194/hess-25-983-2021, 2021
Short summary

Cited articles

Adomako, D., Maloszewski, P., Stumpp, C., Osae, S., and Akiti, T. T.: Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana, Hydrolog. Sci. J., 55, 1405–1416, https://doi.org/10.1080/02626667.2010.527847, 2010.
Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall-Runoff) model, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-106, in review, 2017.
Allison, G., Barnes, C., and Hughes, M.: The distribution of deuterium and 18O in dry soils 2. Experimental, J. Hydrol., 64, 377–397, https://doi.org/10.1016/0022-1694(83)90078-1, 1983.
Ball, D. F.: Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils, J. Soil Sci., 15, 84–92, https://doi.org/10.1111/j.1365-2389.1964.tb00247.x, 1964.
Barnes, C. and Allison, G.: The distribution of deuterium and 18O in dry soils: 1. Theory, J. Hydrol., 60, 141–156, https://doi.org/10.1016/0022-1694(83)90018-5, 1983.
Download
Short summary
We sampled the isotopic composition in the top 20 cm at four different sites in the Scottish Highlands at 5 cm intervals over 1 year. The relationship between the soil water isotopic fractionation and evapotranspiration showed a hysteresis pattern due to a lag response to onset and offset of the evaporative losses. The isotope data revealed that vegetation had a significant influence on the soil evaporation with evaporation being double from soils beneath Scots pine compared to heather.