Articles | Volume 21, issue 7
https://doi.org/10.5194/hess-21-3463-2017
https://doi.org/10.5194/hess-21-3463-2017
Research article
 | 
12 Jul 2017
Research article |  | 12 Jul 2017

Variations in the correlation between teleconnections and Taiwan's streamflow

Chia-Jeng Chen and Tsung-Yu Lee

Related authors

On the Relationship between Teleconnections and Taiwan's Streamflow: Evidence of Climate Regime Shift and Implications for Seasonal Forecasting
Chia-Jeng Chen and Tsung-Yu Lee
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-216,https://doi.org/10.5194/hess-2016-216, 2016
Revised manuscript not accepted
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Theory development
Variation and attribution of probable maximum precipitation of China using a high-resolution dataset in a changing climate
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024,https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Drought cascades across multiple systems in Central Asia identified based on the dynamic space–time motion approach
Lu Tian, Markus Disse, and Jingshui Huang
Hydrol. Earth Syst. Sci., 27, 4115–4133, https://doi.org/10.5194/hess-27-4115-2023,https://doi.org/10.5194/hess-27-4115-2023, 2023
Short summary
What is the Priestley–Taylor wet-surface evaporation parameter? Testing four hypotheses
Richard D. Crago, Jozsef Szilagyi, and Russell J. Qualls
Hydrol. Earth Syst. Sci., 27, 3205–3220, https://doi.org/10.5194/hess-27-3205-2023,https://doi.org/10.5194/hess-27-3205-2023, 2023
Short summary
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022,https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary
Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022,https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and Arkin, P.: The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–Present), J. Hydrometeor., 4, 1147–1167, 2003.
Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N. C., and Scott, J. D.: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans, J. Climate, 15, 2205–2231, 2002.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño Modoki and its possible teleconnection, J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798, 2007.
Barnston, A. G. and Livezey, R. E.: Classification, seasonal and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083–1126, 1987.
Download
Short summary
Regional hydro-climatic variables are modulated by large-scale, reoccurring climate oscillations. In this article, the authors provide both statistical and physical evidence of how Taiwan’s summertime streamflow is strongly correlated with specific teleconnection patterns dominating cyclonic activity in the western North Pacific. However, such correlation can be strengthened or weakened by notable climate regime shifts, illustrating the pitfall of empirical seasonal forecasting.