Articles | Volume 21, issue 6
https://doi.org/10.5194/hess-21-2649-2017
https://doi.org/10.5194/hess-21-2649-2017
Research article
 | 
06 Jun 2017
Research article |  | 06 Jun 2017

Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes

Matthew B. Switanek, Peter A. Troch, Christopher L. Castro, Armin Leuprecht, Hsin-I Chang, Rajarshi Mukherjee, and Eleonora M. C. Demaria

Related authors

Convection-permitting regional climate simulations for representing floods in small- and medium-sized catchments in the Eastern Alps
Christian Reszler, Matthew Blaise Switanek, and Heimo Truhetz
Nat. Hazards Earth Syst. Sci., 18, 2653–2674, https://doi.org/10.5194/nhess-18-2653-2018,https://doi.org/10.5194/nhess-18-2653-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Mathematical applications
Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations
Magdalena Uber, Michael Haller, Christoph Brendel, Gudrun Hillebrand, and Thomas Hoffmann
Hydrol. Earth Syst. Sci., 28, 87–102, https://doi.org/10.5194/hess-28-87-2024,https://doi.org/10.5194/hess-28-87-2024, 2024
Short summary
The most extreme rainfall erosivity event ever recorded in China up to 2022: the 7.20 storm in Henan Province
Yuanyuan Xiao, Shuiqing Yin, Bofu Yu, Conghui Fan, Wenting Wang, and Yun Xie
Hydrol. Earth Syst. Sci., 27, 4563–4577, https://doi.org/10.5194/hess-27-4563-2023,https://doi.org/10.5194/hess-27-4563-2023, 2023
Short summary
The role of atmospheric rivers in the distribution of heavy precipitation events over North America
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023,https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Study on a mother wavelet optimization framework based on change-point detection of hydrological time series
Jiqing Li, Jing Huang, Lei Zheng, and Wei Zheng
Hydrol. Earth Syst. Sci., 27, 2325–2339, https://doi.org/10.5194/hess-27-2325-2023,https://doi.org/10.5194/hess-27-2325-2023, 2023
Short summary
Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023,https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary

Cited articles

Bárdossy, A. and Pegram, G.: Multiscale spatial recorrelation of RCM precipitation to produce unbiased climate change scenarios over large areas and small, Water Resour. Res., 48, W09502, https://doi.org/10.1029/2011WR011524, 2012.
Berg, A. A., Famiglietti, J. S., Walker, J. P., and Houser, P. R.: Impact of bias correction to reanalysis products on simulations of north american soil moisture and hydrological fluxes, J. Geophys. Res., 108, 4490, https://doi.org/10.1029/2002JD003334, 2003.
Boé, J., Terray, L., Habets, F. and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007.
Brekke, L., Thrasher, B., Maurer, E. P., and Pruitt, T.: Downscaling CMIP3 and CMIP5 climate projections: Release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs, US Dept. of Interior, Bureau of Reclamation, Denver, CO, 104 pp., 2013.
Bürger, G., Sobie, R., Cannon, A. J., Werner, A. T., and Murdock, T. Q.: Downscaling extremes: An intercomparison of multiple methods for future climate, J. Climate, 26, 3429–3449, https://doi.org/10.1175/JCLI-D-12-00249.1, 2013.
Download
Short summary
The commonly used bias correction method called quantile mapping assumes a constant function of error correction values between modeled and observed distributions. Our article finds that this function cannot be assumed to be constant. We propose a new bias correction method, called scaled distribution mapping, that does not rely on this assumption. Furthermore, the proposed method more explicitly accounts for the frequency of rain days and the likelihood of individual events.