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Abstract. Commonly used bias correction methods such as
quantile mapping (QM) assume the function of error cor-
rection values between modeled and observed distributions
are stationary or time invariant. This article finds that this
function of the error correction values cannot be assumed
to be stationary. As a result, QM lacks justification to in-
flate/deflate various moments of the climate change signal.
Previous adaptations of QM, most notably quantile delta
mapping (QDM), have been developed that do not rely on
this assumption of stationarity. Here, we outline a method-
ology called scaled distribution mapping (SDM), which is
conceptually similar to QDM, but more explicitly accounts
for the frequency of rain days and the likelihood of individ-
ual events. The SDM method is found to outperform QM,
QDM, and detrended QM in its ability to better preserve raw
climate model projected changes to meteorological variables
such as temperature and precipitation.

1 Introduction

Bias correction of climate model projections is often per-
formed in order to properly assess the impacts of climate
change on human and environmental resources (Berg et al.,
2003; Ines and Hansen, 2006; Muerth et al., 2013; Teng et
al., 2015). Removing model bias is particularly useful for im-
pact studies involving hydrological models, where runoff is a
nonlinear function of precipitation (Christensen et al., 2008;
Mauer and Hidalgo, 2008; Hagemann et al., 2011). Global
climate models (GCMs) provide large-scale projections for

many climate variables (IPCC, 2013). However, many cli-
mate processes and landscape features are not resolved at the
coarse resolution of current GCMs. To bridge this gap, re-
gional climate models (RCMs) are commonly used to down-
scale GCM data to a higher resolution. Even though RCMs
can provide added value (Fowler et al., 2007; Feser et al.,
2011; Di Luca et al., 2013; Kotlarski, 2014), systematic er-
rors in the model output still exist (Mearns et al., 2012; Sill-
mann et al., 2013).

Numerous statistical bias correction methodologies have
been developed to remove systematic model errors (Schmidli
et al., 2006; Boé et al., 2007; Lenderink et al., 2007; Le-
ander et al., 2008; Gellens and Roulin, 2012; Chen et al.,
2013). The methods adjust the modeled mean, variance,
and/or higher moments of the distribution of climate vari-
ables, to more closely match the observations. Quantile map-
ping (QM) has been a widely used method due to its ability
to handle higher-order moments in addition to being com-
putationally efficient (Wood et al., 2004; Piani et al., 2010;
Themeßl et al., 2011; Gudmundsson et al., 2012; Teutschbein
and Seibert, 2013). Standard QM assumes that the function
of error correction values found in a calibration period can
be applied to any time period of interest. This is referred to
as the stationarity assumption or the time-invariant assump-
tion (Christensen et al., 2008; Maraun, 2012; Themeßl et al.,
2012; Brekke et al., 2013; Chen et al., 2013). The assump-
tion of stationarity, in QM, is responsible for inflating (or al-
tering) the raw model projections of climate change (Maurer
and Pierce, 2014).
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In this study, we focus specifically on the performance
of bias correction and not issues related to downscal-
ing/upscaling (Maraun, 2013). We have divided the study in
two main sections: Sects. 3 and 4. In Sect. 3, first we begin
by testing the stationarity assumption used in QM and the
implications of this assumption. Second, we use a synthetic
example to investigate the potential advantages of using a
parametric instead of a non-parametric approach. Third, we
illustrate the problems associated with validating bias correc-
tion methods using a split-sample or cross-validation test. In
Sect. 4, a new bias correction method called scaled distribu-
tion mapping (SDM) is outlined. Finally, Sect. 5 compares
and discusses the performances of SDM with other methods.

2 Data

Climate model data in this study use projections of
daily mean temperature and precipitation values from the
KNMI-RACMO22E regional climate model. The KNMI-
RACMO22E RCM was forced with the ICHEC-EC-
EARTH GCM, and it is one of the model projec-
tion runs in the EURO-CORDEX project. The data can
be found on any of the ESGF repositories containing
EURO-CORDEX (e.g., https://esgf-node.llnl.gov/projects/
esgf-llnl/). The model data for the years 1951–2005 and
2006–2100 correspond to the historical and RCP 8.5 (ESGF
naming: r1i1p1) scenarios, respectively. Observational data
for mean temperature and precipitation were obtained from
the E-OBS data set (Haylock et al., 2008). The KNMI-
RACMO22E climate data were upscaled from its original
0.11◦ resolution to the 0.5◦ E-OBS resolution.

3 Bias correction: methods, limitations, and evaluation

Over the years, numerous bias correction methods have
been developed using univariate and multivariate approaches
(Gellens and Roulin, 1998; Wood et al., 2004; Schmidli et
al., 2006; Boé et al., 2007; Leander and Buishand, 2007;
Lenderink et al., 2007; Li et al., 2010; Maraun et al., 2010;
Piani et al., 2010; Themeßl et al., 2011; Piani and Haerter,
2012). In this study, we focus our study on univariate bias
correction methods.

Many popular existing bias correction methods have been
reviewed and compared and QM was found to outperform
other methods (Gudmundsson et al., 2012; Teutschbein and
Seibert, 2012, 2013; Chen et al., 2013). At the same time,
studies have pointed out serious problems that arise when
using QM for bias correction (Hagemann et al., 2011; The-
meßl et al., 2012). In particular, the method can alter the raw
model projected changes (Themeßl et al., 2012; Maurer and
Pierce, 2014). This inflation or deflation of the raw simulated
climate change signal exists as an artifact of the stationar-
ity assumption. The impact that the stationarity assumption

has on QM bias corrected data is discussed in more detail in
Sect. 3.1.

More recently, the standard non-parametric QM method
has been adapted to more explicitly preserve the raw modeled
climate change signals (Michelangeli et al., 2009; Olsson et
al., 2009; Willems and Vrac, 2011; Sunyer et al., 2015; Wang
and Chen, 2014; Cannon et al., 2015). Hempel et al. (2013)
and Bürger et al. (2013) both used a form of detrended QM
(DETQM) that better preserved monthly trends, but the daily
values still are subject to the stationarity assumption, which
can ultimately result in altering the raw modeled projected
change. Extending previous work (e.g., Olsson et al., 2009;
Bürger et al., 2013), Cannon et al. (2015) modified the QM
method and outlined an approach called quantile delta map-
ping (QDM). QDM is a break from other typical QM meth-
ods insofar as that it is not constrained by the stationarity
assumption. An example of QM versus QDM is shown in
Fig. 1. In the traditional QM method, a raw modeled value
is always corrected by the same value of bias or error that
is determined by its respective quantile in the calibration pe-
riod. On the other hand, QDM multiplies observed values
by the ratio of the modeled values (period of interest di-
vided by calibration period) at the same quantiles. Our pro-
posed bias correction methodology, SDM, share some sim-
ilarities with QDM; however, there are three important dis-
tinctions: (1) SDM uses a parametric model instead of a non-
parametric one, (2) SDM and QDM handle days with zero
rainfall very differently, and (3) SDM more accurately ac-
counts for the differences in the modeled variances, for tem-
perature, between the period of interest and the calibration
period.

3.1 Stationarity and quantile mapping

Independent of downscaling, bias correction with QM is well
known to alter the raw modeled climate change signal (Hage-
mann et al., 2011; Themeßl et al., 2012; Brekke et al., 2013;
Maurer et al., 2013; Pierce et al., 2013; Maurer and Pierce,
2014). This alteration of the raw modeled climate change sig-
nal can be attributed to the stationarity assumption, which
implies that the error correction values established in a cal-
ibration period can be applied to any time period within or
outside the calibration time period. These error correction
values can differ, in both magnitude and sign, as a func-
tion of quantile. In the context of a warming climate, raw
model projected temperature values will result in QM dis-
proportionately sampling error correction values from higher
quantiles that were established in the calibration period. De-
pending on whether the error correction values at the higher
quantiles are greater or lesser than those at lower quantiles,
this will inflate or deflate the raw model projected climate
change. For example, consider a model (in the calibration
period) has an uncorrected (raw) value of 10 ◦C that corre-
sponds to the quantile where the empirical cumulative distri-
bution function (ECDF) equals 0.8, and a value of 0 ◦C corre-
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Figure 1. Schematic of the quantile mapping versus quantile delta mapping methodologies. The red lines are the bias corrected values for
the future model. The arrows in each panel illustrate the bias correction of a future modeled value at ECDF= 0.8.

sponds to the quantile where ECDF equals 0.2, while at these
same quantiles (ECDFs of 0.8 and 0.2), observations are 12
and 3 ◦C, respectively. Furthermore, the model is projecting
more future values at 10 ◦C. As a result, QM will deflate or
under-represent the raw model projected change. This is due
to the fact that QM is more often using a 2 ◦C error correction
value (12–10 ◦C, at ECDF of 0.8) instead of the 3 ◦C (3–0 ◦C,
at ECDF of 0.2) correction.

Altering of the raw model’s climate change signal could be
justified with QM if one finds that the stationarity assumption
is justified. We tested the stationarity assumption by investi-
gating whether the error correction values are independent of
the calibration period. To do this, the same daily data in the
future time period (2071–2100) were bias corrected via stan-
dard QM, separately for each month, using two different cali-
bration periods (1951–1980 and 1976–2005). Figure 2 shows
how sensitive QM is to using two different calibration peri-
ods to bias correct these same future values. Figure 2a and
b show the sensitivity for temperature and precipitation, re-
spectively. There are instances where this sensitivity to the
calibration period is nearly as large as the raw model pro-
jected mean changes. This illustrates how unstable the error
correction values in QM can be. If stationarity was a valid as-
sumption, all the map colors in Fig. 2 would be much closer
to gray. The calibration period largely influences the error
correction values and, as a result, the stationarity assumption
is invalid. As an additional test, we performed the bias cor-
rection using a parametric implementation of QM and found
the error correction values to be equally sensitive to the cho-
sen calibration period.

The results shown in Fig. 2 have broad implications for
QM. First, it shows that one cannot confidently correct a spe-
cific modeled value with a specific error correction value. As
an example, a raw modeled value of 50 mm can be corrected
by −15 mm using one calibration period and +5 mm in an-
other, leading to two very different bias corrected values of

35 and 55 mm, respectively. The effect that the calibration
period has on QM can be mitigated to some extent by cali-
brating on longer historical records (Teng et al., 2015). How-
ever, one can never be sure that these error correction values
have converged to be completely independent of time. Sec-
ond, due to the fact that the error correction values in QM are
not stationary, the altering of the climate change signal that
results from this assumption is unjustified. Therefore, until
some bias correction method provides proper justification to
manipulate and alter the raw model projected climate change
signal, a better performing method should strive to preserve
the original projected changes.

3.2 Parametric versus non-parametric methodological
approaches

In a non-parametric method such as QM, there is an implicit
assumption that each respective quantile is equally probable.
In other words, the largest observed and modeled quantiles
both correspond to the same ECDF value. Therefore, is it safe
to assume that events that share the same ECDF value are
equally probable? To test this assumption, synthetic precipi-
tation data were used to evaluate if events of equal quantiles
can be treated as being equally probable. Figure 3 shows two
distributions (referred to as Obs and Mod), each consisting of
200 values randomly sampled from the same gamma distri-
bution with shape parameter equal to 0.8 and scale parameter
equal to 12.0. Figure 3a shows the empirical distributions,
whereas Fig. 3b shows the fitted distributions of the same
data. In this example, the largest quantiles from Obs and Mod
are 32.8 and 57.3. In a non-parametric method like standard
QM, the correction applied to the largest Mod quantile (to
bias correct this quantile) is simply the difference between
the largest quantile from Mod and Obs (depicted by the blue
line with arrows). The absolute value of this difference is
24.5. When gamma distributions are fit to the empirical Obs
and Mod data, it is found that the largest quantile of Obs
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Figure 2. The sensitivity of quantile mapping (QM) to the calibration period. The same daily data in the future time period (2071–2100) was
bias corrected, separately for each month, using two different calibration periods (1951–1980 and 1976–2005). Panels (a) and (b) show the
sensitivity for temperature and precipitation, respectively. Gray reflects no sensitivity of QM to calibration period, while increased saturation
of warmer and cooler colors depict non-stationary error correction values used by QM.

Figure 3. Synthetic data of observations (Obs) and modeled (Mod) data. Each data set consist of 200 values randomly sampled from the
same gamma distribution with shape parameter equal to 0.8 and scale parameter equal to 12.0. Panel (a) shows the empirical distance (blue
arrow) between the largest quantile of each distribution. Panel (b) shows the difference after fitting distributions and evaluating the largest
events at the same cumulative distribution function (CDF) value (in this case the fitted CDF value of the observations).

(with the value of 32.8) corresponds to a fitted cumulative
distribution function (CDF) of 0.993, while the largest quan-
tile of Mod (with the value of 57.3) corresponds to a fitted
CDF of 0.998. Using the fitted distributions, one can find the
corresponding Mod value at the same expected Obs CDF of
0.993. In this example, that value is 44.8. Then our expected
difference between events of the same expected probability
has been reduced from 24.5 to 12.0 (where 24.5= 57.3–32.8
and 12.0= 44.8–32.8), depicted again as the blue line with
arrows in Fig. 2b. With this one example case, it is impossi-
ble to know if we are truly gaining information by accounting
for differences in event likelihood.

Figure 4 shows the results of a 1000 randomly gener-
ated Obs and Mods values for distribution sizes of 100 and

10 000. Again, the values are randomly sampled from the
same gamma distribution with shape parameter equal to 0.8
and scale parameter equal to 12.0. Figure 4a and d show
the possible scenarios of ECDFs for the different distribution
sizes. Figure 4b and e show the counts of the absolute differ-
ences between the extreme values using the non-parametric
method (blue line) and the parametric method (green line).
Similarly, Fig. 4c and f show the counts of the absolute dif-
ferences, averaged over the entire distribution, between the
values using the non-parametric and the parametric method.
One can clearly see the usefulness of a parametric method
over a non-parametric method as the sample size increases.
With a sample size of 10 000 values, there can still be large
differences between the most extreme quantiles of each dis-
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Figure 4. Observed (Obs) and modeled (Mods) values for distribution sizes of 100 and 10 000. As in Fig. 3, the values are randomly sampled
from the same gamma distribution with shape parameter equal to 0.8 and scale parameter equal to 12.0. Panels (a) and (d) show the possible
scenarios of ECDFs for the different distribution sizes. Panels (b) and (e) show the counts of the absolute differences between the extreme
values using the non-parametric method (blue line) and the parametric method (green line). Similarly, panels (c) and (f) show the counts of
the absolute differences, averaged over the entire distribution, between the values using the non-parametric and the parametric method.

tribution. However, with larger sample sizes, we are converg-
ing on identical distributions for Obs and Mod. Therefore,
the magnitude of the differences between extreme quantiles
is simply due to sampling noise. On the other hand, if a dis-
tribution is fit to the data first, then one gains information
regarding the expected probabilities of specific events taking
place with respect to the underlying distribution. This allows
for the parametric method to reduce the error associated with
sampling noise over that of the non-parametric method.

3.3 Validating bias correction methods

Split-sample or cross-validation tests are commonly used
to validate how well bias correction methods perform un-
der changing conditions (Maurer and Pierce, 2014; Klemeš,
1986; Wang and Chen, 2014; Piani et al., 2010). Typically,
a period is chosen for calibrating the bias correction pa-
rameters and then different bias correction methods’ perfor-
mances are compared in a validation period. For example,
bias correction parameters might be fit in a calibration pe-
riod such as 1951–1980. Then, the performances of different
methods are evaluated by comparing the bias corrected data
to observations for the period 1981–2010. Unfortunately,
split-sample tests that directly compare observations to bias
corrected model data, for a time period outside of calibra-

tion, cannot distinguish between bias correction methodolog-
ical performance and the performance of the underlying raw
model. In this study. we define model performance by how
well the raw model simulates changes to the statistical distri-
bution of a climate variable with respect to observed changes
to the distribution.

The following example is used to illustrate how split-
sample tests are not suitable to validate bias correction meth-
ods. Standard QM was used to bias correct daily values of
June temperature for the period 1981–2010 (validation pe-
riod) after calibrating on the period 1951–1980. In this ex-
ample, evaluation of performance was measured by the mean
absolute error (MAE) between observed and bias corrected
quantiles. Lower values of MAE indicate better performance
and reflect better distributional agreement between the bias
corrected and observed values, averaged across all quantiles.
Figure 5a shows a Q−Q plot corresponding to the grid cell
marked by the black X in Fig. 5b and c. These are the temper-
ature quantiles, in the validation period, of the bias corrected
modeled data and the observed data for that specific grid cell.
One can observe that the bias corrected modeled data are
overestimating the temperature in this grid cell with respect
to observations. The MAE for this grid cell is 1.5 ◦C (av-
erage absolute difference between all quantiles). Figure 5b
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Figure 5. Conflation of apparent bias correction skill (using QM) and model performance. The data are daily temperature values for the
month of June for the period 1981–2010 after calibrating on the period 1951–1980. Panel (a) shows a Q−Q plot of an example grid cell
delineated by the black X in the map panels and fuchsia scatter point in (d), (h), and (l). Panel (b) shows the mean absolute error (MAE) of
the Q−Q plots from each grid cell, while (c) shows the raw model performance error of the mean. CCS refers to the climate change signal.
Panel (d) shows the scatter and correlation between (b) and (c). The color maps of the second and third columns can be inferred from the
scatter in the fourth column. After removing the raw model performance error of the mean, the Q−Q plot becomes the copper scatter in
(e). The QM MAE in (f) is the result of all the raw model mean performance errors being removed from each grid cell, (g) is the raw model
performance error of the standard deviation, and (h) shows the scatter and correlation between (f), and (g). The raw model performance
errors of the mean and the standard deviation are then removed, and the Q−Q plot becomes the green scatter in (i). After removing these
errors for all grid cells, panels (j), (k) and (l) show the relationship between QM MAE and raw model performance error of the skewness.

shows the MAE values across all grid cells in the European
domain. Figure 5c shows the model performance error of the
mean, which is the difference between the raw model pro-
jected mean temperature changes (1981–2010 with respect
to 1951–1980) and the observed mean temperature changes
(1981–2010 with respect to 1951–1980). It should be noted
that the values in Fig. 5c are completely independent of any
bias correction method being implemented; the values are
solely dependent on observed and raw model values. Fig-
ure 5d shows a scatter plot of the values corresponding to
the grid cells in Fig. 5b and c. There is clearly a strong rela-
tionship between the apparent performance of the QM, as it
varies spatially, and how similar the raw modeled projected
mean change is to the observed change. Most of the vari-
ability pertaining to methodological performance (in a split-
sample test) can be explained by the model performance er-

ror of the mean. If the raw modeled projected mean change
in some grid cell is close to the observed change that took
place (whether due to long-term forcing or internal climate
variability), then it will appear that QM performs better in
this grid cell, and vice versa.

Next, the differences between the raw modeled changes
and the observed changes (depicted by Fig. 5c) are removed
from each grid cell. The copper scatter in Fig. 5e shows
the QM bias corrected data after removing the temperature
model performance error of the mean (1.4 ◦C, fuchsia X on
the x axis of Fig. 5d). The model performance error of the
mean was similarly removed for all grid cells. After remov-
ing the mean temperature model performance error, the MAE
of the QM bias corrected data can be seen in Fig. 5f. The ap-
parent performance of the QM method can now be attributed
to the model performance error of the standard deviation

Hydrol. Earth Syst. Sci., 21, 2649–2666, 2017 www.hydrol-earth-syst-sci.net/21/2649/2017/



M. B. Switanek et al.: Scaled distribution mapping 2655

(Fig. 5g). Again, much of the perceived method performance
is simply due to how well the raw model simulated changes
to the standard deviation (Fig. 5h). Fig. 5i–l further adjusts
the QM bias corrected data by removing both the model per-
formance errors from the mean and standard deviation. Still,
there is a statistically significant relationship (p < 0.01) be-
tween method performance and the model performance error
of the skewness.

Figure 5 illustrates how a split-sample or cross-validation
test does not distinguish between methodological perfor-
mance and raw model performance. Using pseudo-realities
(Maraun et al., 2010) could tell us something more about
the robustness of methods in different scenarios, but the per-
formance of the bias correction method still cannot be sep-
arated from how well individual models simulate raw pro-
jected changes relative to the other models. In our example,
we only looked at QM method performance and how this
relates to model performance. Obviously, there will be dif-
ferences from one bias correction method to another. How-
ever, in a split-sample test, method and model performance
are conflated. Consider a case, where a raw model projects
changes across Europe that are 1 ◦C less than what was ob-
served. Additionally, a particular bias correction method in-
flates these projected changes by 1 ◦C, thereby canceling out
the model performance error of the mean. It would appear
that this particular method is performing better simply due to
influence of model performance on validation.

Part of the validation procedure must ensure that the ob-
served and modeled distributions in the calibration or his-
torical period are statistically similar (Maraun et al., 2015).
However, as shown here, validating bias corrected data in an-
other period outside of the calibration period against obser-
vations will not isolate bias correction methodological per-
formance. Model performance will obscure the performance
of the bias correction method. Instead, validation (or evalu-
ation) should measure how well the raw modeled projected
changes to the entire distribution are captured or preserved
by the bias correction method between any two periods.

4 Scaled distribution mapping: method description
and performance

Previous sections have shown that QM lacks justification for
introducing inflation/deflation to the climate change signal
(Sect. 3.1). This section introduces a bias correction method
named SDM and its performance is compared to standard
QM in addition to more recent and similar methods such as
DETQM and QDM. Methodological performance is evalu-
ated using raw model projected changes to the leading mo-
ments (mean, standard deviation, and skewness) instead of
individual quantiles because of our findings concerning the
sampling noise associated with extreme values in the distri-
butions (Sect. 3.2).

4.1 Scaled distribution mapping

A new bias correction methodology, called SDM, is pro-
posed in this study. The conceptual framework of the method
is quite similar to QDM (Fig. 1). However, as previously
mentioned, our method has important differences that will
be discussed in more detail in the “Performance” section
(Sect. 4.2). The SDM method makes no assumption of sta-
tionarity. It scales the observed distribution by raw model
projected changes in magnitude, rain-day frequency (for pre-
cipitation), and likelihood of events. The scaling changes as
a function of the bias correction period. The next two sub-
sections outline the SDM methodology for precipitation and
temperature. Similar to other bias correction methods, a pre-
screening of appropriate GCMs/RCMs is advised. Bias cor-
rection will not, and should not, be expected to fix serious
model deficiencies (garbage in – garbage out; e.g., Noguer et
al., 1998). There are a few important differences between the
implementation of SDM for precipitation and temperature.
First, SDM scales the distribution of precipitation by a mul-
tiplicative or relative amount and temperature is scaled by an
absolute amount. Second, only values of positive precipita-
tion exceeding a specified threshold (e.g., 0.1 mm) are used
to build the distributions, while with temperature all values
are used. Third, temperature data is first detrended, then bias
corrected, and finally, the trends are added back in. As a re-
sult, the variance is not inflated by temporal trends.

Bárdossy and Pegram (2012) showed that bias corrected
data can still have systematic biases at different spatial scales.
They illustrated that when raw modeled precipitation is less
correlated across grid cells (lower average of its correlation
matrix) than observations, the modeled extremes will be sys-
tematically underestimated for larger spatial scales (averag-
ing across tens to hundreds of grid cells) with respect to ob-
servations. Similarly, an RCM with a higher average corre-
lation matrix, with respect to observations, will overestimate
extremes. We agree that this can be problematic for impact
studies that rely on spatially distributed data across multiple
grid cells (e.g., modeling hydrological extremes). In an ef-
fort to properly reflect the statistical properties of the obser-
vations in the calibration period at a variety of scales, we ad-
vocate re-correlating the data (Bárdossy and Pegram, 2012)
prior to implementing SDM.

4.1.1 Precipitation

The SDM methodology for bias correcting daily precipita-
tion is illustrated by the example in Fig. 6. The observed and
modeled data are from the same grid cell in the European
domain for the month of April. The observed and historical
model periods correspond to 1971–2000. The future model
period is 2071–2100. The future period can more generally
be thought of as any time period one desires to bias correct,
and it can be the same period as the raw historical model pe-
riod. To illustrate the SDM methodology, we have chosen to
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fit a gamma distribution to the observed and modeled data for
all grid cells. However, the gamma distribution will likely not
be suitable for all studies involving precipitation, especially
with respect to extremes (Papalexiou et al., 2013). Depend-
ing on the type of analysis involved (e.g., changes to extreme
precipitation, projected changes to the number of days with
precipitation above 0.1 mm), the data should be fit with the
distribution deemed most appropriate by the user. If a user
does choose to fit a different distribution, that distribution
can simply take the place of the gamma distribution outlined
in the methodology. The SDM methodology for precipitation
is now outlined in the following steps.

Step (1): set a raw modeled minimum precipitation thresh-
old. In this study, we have used 0.1 mm as a threshold (which
is the minimum amount of observed precipitation). When
presenting the results, we additionally look at the impact of
using a larger threshold of 1.0 mm. Any values below the
threshold are set to 0.0 mm. Next, the days with precipitation
are separated from days with no rainfall. Figure 6a shows the
sorted values of precipitation for the observations, the raw
historical model, and the raw future model. In this example,
there are 434 observed rain days, 525 raw historical model
rain days, and 593 raw future model rain days. Our expected
number of bias corrected future model rain days, RDBC, can
be defined as

RDBC = RDMODF×
RDOBS

/
TDOBS

RDMODH
/

TDMODH
, (1)

where TDOBS and TDMODH are the total number of days
including non-rain days for observations and raw historical
model, while RDMODF, RDOBS, and RDMODH are the num-
ber of rain days for the raw model future, observations, and
raw historical model. In this example, the total number of
days including non-rain days is 900 for both the observa-
tions and the raw historical model (30 years times 30 days
in April). These lengths of days are included to allow for the
flexibility of different calibration period lengths. Then, RDBC
is found to be 593× (434/900)/(525/900)= 490 days (490
is the nearest integer value).

Step (2): fit gamma distribution parameters (or similarly
the most appropriate distribution determined by the user), us-
ing maximum likelihood, to the positive observed precipita-
tion values (Fig. 6b), and the raw historical and future mod-
eled values (Fig. 6c). The probability density function of the
gamma distribution is

f (x;k,θ)=
xk−1 exp

(
−x

/
θ
)

θk0(k)
, (2)

where k(> 0) is the shape parameter, θ(> 0) is the scale pa-
rameter, x(> 0) is the precipitation amount, and 0(k) is the
gamma function evaluated at k. Next, use the fitted shape and
scale parameters to find the corresponding CDF values of the
positive precipitation events in the three time series. Set an
upper threshold for the CDF values (e.g., 0.9999999), since

imprecise rounding can lead to the CDF function providing
a value of 1.0, which corresponds to an infinite precipitation
amount.

Step (3): calculate the scaling between the fitted raw future
model distribution and the fitted raw historical distribution
at all of the CDF values corresponding to the precipitation
events of the raw future model time series. The scaling is
calculated as

SFR =
ICDFMODF (CDFMODF)

ICDFMODH (CDFMODF)
, (3)

where SFR is an array of relative scaling factors (the length
is equal to number of rain days in the raw future model,
which in this case is 593 values), ICDFMODF and ICDFMODH
are the inverse cumulative distribution functions (ICDFs), or
the percent point functions, for the fitted future and histor-
ical model distributions, respectively, while CDFMODF are
the estimated CDF values for the future raw model corre-
sponding to the fitted distribution. The relative scaling fac-
tors, for each raw future modeled value, can be seen in
Fig. 6d. As an example, lets find the scaling factor that
would correspond to the largest value in the raw future model
time series. In the raw future model time series, this value
is 35.8 mm. Using the fitted raw future model distribution,
this event corresponds to a CDF value of 0.9974. The value
ICDFMODF (0.9974)will yield the original value of 35.8 mm,
while ICDFMODH (0.9974) is equal to 30.6 mm. The most ex-
treme value that is bias corrected will have a relative scal-
ing factor equal to 1.17 (35.8 mm/30.6 mm). For reference,
the largest value in the raw historical model time series is
40.6 mm (seen in Fig. 6a). That value is more extreme with
respect to its own distribution, with a corresponding CDF
value of 0.9995. However, we want to compare events that
are equally probable (as discussed in Sect. 3.3).

Step (4): calculate the recurrence intervals for the three
sorted arrays of positive precipitation. The recurrence inter-
val array, RI, is calculated as

RI=
1

1−CDF
, (4)

where CDF is the array of values found in step 2. Proceeding
with the values from the previous step, the largest modeled
event in the future period had a corresponding CDF value
of 0.9974, which corresponds to a return period of 385 days
(seen as the largest value of the blue line in Fig. 6e). Simi-
larly, the largest recurrence intervals of the observations and
raw historical model are 1667 and 2000 days, respectively.
To compare the recurrence intervals across the entire distri-
bution, the observed and raw historical model RIs are lin-
early interpolated. Figure 6e shows the linearly interpolated
RIs (the linear interpolation stretches or contracts the values
along the x axis, keeping the original range).
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Figure 6. Illustration of the scaled distribution mapping (SDM) methodology for precipitation. Panel (a) shows the sorted positive precipita-
tion values for observations, along with the raw historical and raw future model. Panels (b) and (c) show the empirical and fitted distributions.
The scaling factors between the raw modeled future and historical time periods is shown in (d). The return periods and the scaled return pe-
riod are plotted in (e) and (f), respectively (the (I) indicates the linear interpolation). Panel (g) shows the initial bias corrected precipitation
values in gold and the final bias corrected values for the future model period is shown as the black line in (g) and (h).

Step (5): find the scaled or adjusted RI for the raw future
model. This is calculated as

RISCALED =max
(

1,
RIIOBS×RIMODF

RIIMODH

)
, (5)

where RIMODF is the RI for the raw future model and RIIOBS
and RIIMODH are the linearly interpolated RIs for the ob-
servations and raw historical model, respectively. The max-
imum value, which is greater than or equal to 1, is used to
evaluate each value in the RISCALED array. This is neces-
sary (especially for temperature) to ensure that the values
of CDFSCALED in Eq. (6) are between 0 and 1. RISCALED
is shown in Fig. 6f as the gold line. This modifies or scales
the RI of observed events by the projected changes to the ex-
tremity of modeled events. RISCALED, for the most extreme
value, is found to be 321 days= 1667× 385/2000. As a re-
sult, the return period of the most extreme observed value is
reduced because the raw future modeled extreme value was
more likely (smaller return period) than that of the raw his-
torical modeled extreme value. Use the RISCALED to find the
corresponding scaled CDF values with

CDFSCALED = 1−
1

RISCALED
, (6)

where the CDFSCALED array is subsequently sorted in de-
scending order and reflects the scaling of the modeled change
in event likelihood with respect to the observed likelihoods.

Step (6): the initial array of bias corrected values can now
be calculated as

BCINITIAL = ICDFOBS (CDFSCALED)×SFR, (7)

where ICDFOBS is the inverse cumulative distribution func-
tion for the observed fitted distribution, and CDFSCALED and
SFR are obtained from Eqs. (6) and (3). Figure 6g shows
BCINITIAL as the gold line. Lastly, the frequency of rain days
needs to be adjusted. Recall from Eq. (1), RDBC is equal to
490 days. BCINITIAL is linearly interpolated from a length of
593 to 490 days. This yields the bias corrected values, which
can be seen as the black line in Fig. 6h.

Step (7): as a final step, the bias corrected values for pos-
itive rain days are placed back into the modeled time series
in the correct temporal locations. Consider in this example
that the maximum raw modeled precipitation amount fell on
28 April 2078. Then, the largest bias corrected value will
be reinserted back into that day. This is applied to the rest
of the 489 positive values of precipitation. Originally, there
were 593 raw modeled future rain days; therefore, the small-
est 103 raw modeled values will have no precipitation after
bias correction. Similar to this example, GCMs/RCMs more
often overestimate the frequency of rain days (Leander et al.,
2008). However, in the case of the model underestimating the
rain-day frequency, the SDM method is currently not adjust-
ing the original raw modeled rain-day frequency. It should be
kept in mind, however, that even if the model underestimated
the frequency, the impact on the distribution is significantly
less. In this example, if the raw model had 10 % fewer rain

www.hydrol-earth-syst-sci.net/21/2649/2017/ Hydrol. Earth Syst. Sci., 21, 2649–2666, 2017



2658 M. B. Switanek et al.: Scaled distribution mapping

days than observations, that would have only translated to a
0.4 % reduction in total precipitation. This is due to the fact
that the method is preferentially filling the largest events first.

In the case that the historical model period and the bias
correction period of interest completely overlap, the bias cor-
rected data will be exactly the same as the observed distribu-
tion. There would be no difference between the distributions
in magnitude, likelihood, nor rain-day frequency, and there-
fore the observed distribution undergoes no scaling.

4.1.2 Temperature

The SDM methodology for temperature is outline in the fol-
lowing steps. Again, the future period is a general represen-
tation of any time period one desires to bias correct, and it
can be the same period as the raw historical model period.

Step (1): detrend the raw modeled and observed time se-
ries in order to get a more accurate measure of the natural
variability (we have used a linear trend, though any trend line
could be used). These trends are added back in at the end, but
until then, all subsequent steps use the detrended time series.

Step (2): fit a normal probability distribution function to
the detrended observed, raw historical modeled, and the raw
future modeled time series. For a normal distribution, the fit-
ted parameters are simply the empirical mean and standard
deviation. Next, using these fitted normal distributions, find
the corresponding CDF values for the temperature events that
occurred in the three time series. Similarly to precipitation,
set an upper and lower threshold for the CDF values (e.g.,
0.0001, 0.9999). Again, imprecise rounding can lead to the
CDF function providing a value of 1.0 or 0.0, which corre-
sponds to an infinite temperature values.

Step (3): calculate the scaling between the fitted raw future
model distribution and the fitted raw historical distribution at
each probability of the events taking place in the raw future
model time series. The scaling is then calculated as

SFA = [ICDFMODF (CDFMODF)− ICDFMODH (CDFMODF)]

×

(
σOBS
σMODH

)
, (8)

where SFA is an array of absolute scaling factors, ICDFMODF
and ICDFMODH are again the ICDFs for the fitted future and
historical model distributions, CDFMODF is an array with the
estimated CDF values for the future raw model correspond-
ing to the fitted distribution, and σOBS and σMODH are the
standard deviations of the observed and raw historical distri-
butions.

Step (4): next, calculate the recurrence intervals for the
three sorted arrays of temperature with

RI=
1

0.5− |CDF− 0.5|
. (9)

Eq. (9) is different from Eq. (4) to reflect the two-tailed na-
ture of a normal distribution.

Step (5): find RISCALED for the raw future model using
Eq. (5). If the lengths of the time series are the same for
the historical and future periods, no linear interpolation is re-
quired. Then, use the RISCALED array to find the correspond-
ing modified CDF values with

CDFSCALED =0.5+ sgn(CDFOBS− 0.5)

×

∣∣∣∣0.5− 1
RISCALED

∣∣∣∣ . (10)

Step (6): the initial array of bias corrected values can now
be calculated as

BCINITIAL = ICDFOBS (CDFSCALED)+SFA, (11)

where all variables have been previously defined.
Step (7): reinsert the bias corrected values, BCINITIAL,

back into the correct temporal locations from the original
raw future modeled time series. Lastly, the trend of the raw
future modeled time series is added back into the bias cor-
rected time series. Like with precipitation, when the histor-
ical model period and the bias correction period of interest
completely overlap, the bias corrected temperature data will
be exactly the same as the observed distribution (except the
trend of the bias corrected data will be that of the modeled
trend and not of observations).

4.1.3 SDM and the temporal evolution of climate
change

The SDM method presented in Sect. 4.1.1 and 4.1.2 attempts
to best preserve the raw model projected changes to differ-
ent moments of the distribution. However, the temporal evo-
lution of the climate change signal might not be captured.
Consider the case where SDM is used to bias correct January
temperature values for the period 2011–2100 using the cali-
bration period 1971–2000. Then, the changes to the bias cor-
rected distribution of 2011–2100 versus 1971–2000 will be
very similar to the raw model projected changes to the distri-
bution. On the other hand, investigating a temporal subset of
the bias correction period can yield undesirable results. For
example, the mean change between 2011–2040 and 1971–
2000 might not be as close for the bias corrected and the raw
data. If one desires to have the climate change signal properly
preserved across a variety of timescales, the SDM method
must be discretized into smaller blocks. For this study, the
authors used 30-year periods with a 10-year sliding window
in order to bias correct the middle 10 years. We began by
bias correcting the period 2011–2020 using the period 2001–
2030 as our period of interest (future period) and 1971–2000
as our calibration period. Next, we bias corrected 2021–2030
using the period 2011–2040 (period of interest) along with
the same calibration period. With no modeled data beyond
2100, the period 2091–2100 used 2081–2100 as the period
of interest. A user can adjust the number of years to bias cor-
rect length of the period, number of years to save, and the
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length of the sliding window to more/less strongly follow the
raw modeled temporal evolution of climate change.

4.2 Performance

Figure 7 illustrates the amount of inflation (or deflation) that
was introduced to the raw model projected change to the
mean by the SDM and standard QM methods. The mean cli-
mate change was evaluated between the periods 2071–2100
and 1971–2000. Figure 7a and b show the difference, by
month, between the raw mean temperature changes and the
bias corrected mean temperature changes when using SDM
and QM, respectively. Similarly, Fig. 7c and d show the same
but for relative change to precipitation. For both tempera-
ture and precipitation, SDM has minimal inflation to the raw
model projected mean change. In contrast, using QM leads to
inflation greater than 1 ◦C and 10 %, for temperature and pre-
cipitation, respectively, across large regions of Europe. Fig-
ure 8 is the same as Fig. 7, but depicting the inflation of the
standard deviation for SDM versus QM. Again, SDM much
better preserves the raw model projected changes to the stan-
dard deviation.

The temporal evolution of the SDM and QM performance,
for all grid cells, is illustrated for temperature in Fig. 9. As
discussed in Sect. 4.1.3, the authors implemented SDM us-
ing 30-year periods with a 10-year sliding window in order
to bias correct the middle 10 years. The amount of infla-
tion/deflation to the climate change signals is illustrated for
the mean, standard deviation, skewness, and the trend. Each
colored grid cell in the figure depicts the spatial MAE be-
tween the raw model and bias corrected changes for all grid
cells. For example, consider the lower left grid cell situated in
the SDM row and mean column. This grid cell shows the spa-
tial MAE between the raw modeled and bias corrected mean
changes between the periods 2071–2100 and 1971–2000 for
the month of January (it is the spatial MAE of the January
panel of Fig. 7a). What is most noticeable is how the QM’s
alteration (inflation/deflation) of the climate change signal
increases as a function of the projected time period. When
the projected period is furthest from the calibration period
(2071–2100), the alteration to the leading three moments are
the greatest. In contrast, SDM is seen to outperform QM in
its ability to better preserve the raw projected changes. Fur-
thermore, the performance of SDM does not degrade as a
function of the projected time period. Figure 10 shows the
same as Fig. 9, but for precipitation. Again, SDM performs
much better in preserving the raw projected changes. This
is especially true for projected changes to the mean and the
standard deviation. It should be noted that all methods per-
form worse for precipitation in the summer months. This can
be explained by some regions (e.g., Spain) having very few
days with precipitation, which cannot be fit well by either a
parametric or a non-parametric method. Using a t test, the
average MAEs for Figs. 9 and 10 (averaged over all months
and outlook periods) are found to be statistically significantly

smaller for SDM versus the other three methods (p < 0.01)
for the leading three moments of the distribution.

Figure 11 compares the temperature performances of
SDM to the more recent and similar methods of QDM and
DETQM. SDM is seen to perform best with respect to bet-
ter preserving the raw projected changes for the leading
three moments of the distribution. Both SDM and QDM per-
form equally well for preserving changes to the mean. How-
ever, SDM better minimizes MAE for standard deviation and
skewness. This can be attributed to one of the main differ-
ences between the SDM and QDM methods. QDM scales the
observed distribution by absolute difference between mod-
eled quantiles (future – past), though this does not prop-
erly scale the higher moments of the distribution. In con-
trast, SDM applies the rightmost term, (σOBS/σMODH), in
Eq. (8). This results in more appropriately scaling the higher
moments of the bias corrected temperature data. The other
difference between the methods is that SDM is parametric,
while QDM is non-parametric or empirical.

Figure 12 compares the performances of the same three
methods, but for precipitation. Again, SDM outperforms
QDM and DETQM. Again, the average MAE for Figs. 11
and 12 are statistically significantly smaller for SDM
(p < 0.01) for the leading three moments of the distribution.
In the case of precipitation, though, SDM shows the greatest
improvement in its ability to preserve the raw projected
mean change. This can be explained by the different
ways that SDM, QDM, and DETQM handle days with
zero precipitation. DETQM removes the mean modeled
trend, but still performs poorly because the detrended
error correction values are still assumed to be stationary.
Like SDM, QDM implements a threshold of modeled
precipitation. Then, these days of zero precipitation are
filled with non-zero uniform random values below the trace
threshold prior to bias correction. The multiplicative scaling
amounts are subsequently found between all quantiles and
applied to the observed quantiles. After bias correction,
the values below the trace threshold are set back to zero.
With that approach, the scaling is unstable when there is a
mismatch in rain-day frequency. For example, consider a
simplified example where the observed, raw future model
and raw historical model have sorted arrays of precipita-
tion amounts in millimeters of [0,1,4,15], [0,1,3,10],
[0,0,1,8], respectively. After filling with uniform non-zero
amounts, assume these arrays become [0.02,1,4,15],
[0.04,1,3,10], [0.02,0.04,1,8]. The scaling array would
then be [2,25,3,1.25]= [0.04,1,3,10]/[0.02,0.04,1,8].
Multiplying the scaling array by the observed ar-
ray gives [0.04,25,12,18.75]. The raw mean
change would then be 1.56=mean([0,1,3,10])
/mean([0,0,1,8]), whereas after bias correction it is
2.79=mean([0,25,12,18.75])/mean([0,1,4,15]). This
simplified example illustrates how implementing QDM
with a mismatch of the rain-day frequency can alter the
raw modeled mean change. As shown in the SDM method-
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Figure 7. The amount of inflation (or deflation) introduced to the raw model projected change to the mean by the SDM and QM methods.
The mean climate change was evaluated between the periods 2071–2100 and 1971–2000. Panels (a) and (b) show the monthly differences
between the raw and bias corrected mean temperature changes using SDM and QM, respectively. Similarly, (c) and (d) show the same but
for relative change to precipitation.

ology, linear interpolation is used to address the issue of
different rain-day frequencies. This scales similar parts of
the distribution and more explicitly changes the number of
bias corrected rain days, and, as a result, SDM much better
preserves raw modeled changes to the mean.

Additionally, we investigated the impact of using a differ-
ent precipitation threshold. A precipitation value of 0.1 mm
is very small and will have no noticeable impact for many
applications. In those cases, it may be more appropriate to
have a larger precipitation threshold. Figure 13 shows aver-
age performances for each method when using a precipita-
tion threshold of 0.1 and 1.0 mm, respectively. The perfor-
mance of SDM improves as a result of using a larger thresh-
old, while the performances of other methods remain ap-
proximately the same. The improvement of SDM with the
1.0 mm threshold can be explained by the fact that a larger
threshold leads to a better fit to the distribution. For obser-
vations, averaged across all grid cells, we found that precip-
itation amounts of less than 1.0 mm (and >= 0.1 mm) made
up 21.6 % of all positive precipitation days, while the sum
of these low values only comprised 2.4 % of the total pre-
cipitation. Similarly for the modeled data, 41.3 % of all posi-

tive precipitation days had precipitation amounts of less than
1.0 mm (and >= 0.1 mm), which cumulatively comprised
5.4 % of the total precipitation. As a result, we found that
using a smaller threshold can adversely affect the quality of
the fit especially with respect to the extremes.

5 Conclusions

Bias correction methods are used extensively in impact as-
sessment studies (Ines and Hansen, 2006; Muerth et al.,
2013; Teng et al., 2015). The application of these meth-
ods, however, is not without controversy (Ehret et al., 2012).
A number of important questions that require considera-
tion are (1) does independently applying bias correction to
different meteorological variables (separately to precipita-
tion and temperature) adversely alter the thermodynamically
consistent spatiotemporal fields provided by climate mod-
els? (2) Do bias correction methods avoid pushing the cor-
rected values beyond physically realistic limits? (3) Can
GCMs/RCMs with large biases be reliable in their projec-
tions of climate change? (4) How can substantial model de-
ficiencies not simply be falsely treated as bias and corrected
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Figure 8. Same as Fig. 7, but depicting the inflation of the standard deviation for SDM versus QM.

Figure 9. Performance of SDM and QM for bias correcting temperature with varying outlook periods (i.e., 2011–2040, 2021–2050, . . . ). The
color bars correspond to the mean absolute error (MAE) between the raw model and bias corrected changes for the leading three moments
of the distribution in addition to trends. The lower left grid cell situated in the SDM row and “Mean” column is the spatial MAE between the
raw modeled and bias corrected mean changes between the periods 2071–2100 and 1971–2000 for the month of January (it is the MAE over
all of Europe calculated from Fig. 7a).
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Figure 10. Same as Fig. 9, but for precipitation.

Figure 11. Same as Fig. 9, but compares the temperature performances of SDM to the more recent and similar methods of QDM and
DETQM.

as such? These are difficult questions, and more reflection
and investigation is required before we find answers that are
indisputable. In any regard, for the foreseeable future, there
will continue to be scientists that use bias correction methods
for impact assessment studies.

Statistical bias correction methods vary considerably and
can have a large influence on the expected regional impacts
of climate change. Multiple studies have previously come to
the conclusion that QM is one of the better existing bias cor-
rection methods (Gudmundsson et al., 2012; Teutschbein and
Seibert, 2012, 2013; Chen et al., 2013). However, our anal-
ysis highlighted two issues that challenge this conclusion.

First, we demonstrated that the stationarity assumption is in-
valid and, as a result, the climate change signal cannot be
justifiably altered using QM. Second, split-sample or cross-
validation evaluation tests do not isolate the performance of
the bias correction methods themselves. These performances
are conflated with how well the raw model(s) simulate the
observed changes to the leading moments of the distribution.
In light of these issues, the performance of a bias correc-
tion method should be validated on how well it preserves raw
model projected changes across the entire distribution.

In this study, we presented the SDM bias correction
methodology, which scales the observed distribution by raw
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Figure 12. Same as Fig. 10, but compares the precipitation performances of SDM to the more recent and similar methods of QDM and
DETQM.

Figure 13. The impact of using different precipitation thresholds on methodological performance. Each bar is the average MAE across all
grid cells, months and outlook periods (e.g., blue bar in panel (a) is the average of the Mean SDM panel of Fig. 12). The upper and lower
rows correspond to a 0.1 and 1.0 mm threshold applied to both observed and modeled precipitation, respectively.
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model projected changes to magnitude, rain-day frequency
(for precipitation), and the likelihood of events. The perfor-
mance of SDM was evaluated and found to perform better
than traditional QM along with recent methods that are more
similar such as QDM and DETQM. We advocate using a bias
correction method, such as SDM, which scales the observed
distribution by simulated changes across the modeled distri-
bution. As a result, one need not rely on the invalid station-
arity assumption.

Code and data availability. The data are available at ESGF (e.g.,
https://esgf-node.llnl.gov/projects/esgf-llnl/) and the python codes
for running the SDM methodology are available upon request from
the corresponding author. A reference implementation can be ob-
tained from https://github.com/wegener-center/pyCAT.
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