Articles | Volume 20, issue 8
https://doi.org/10.5194/hess-20-3263-2016
https://doi.org/10.5194/hess-20-3263-2016
Research article
 | 
11 Aug 2016
Research article |  | 11 Aug 2016

Cloud tolerance of remote-sensing technologies to measure land surface temperature

Thomas R. H. Holmes, Christopher R. Hain, Martha C. Anderson, and Wade T. Crow

Related authors

Assimilation of vegetation optical depth retrievals from passive microwave radiometry
Sujay V. Kumar, Thomas R. Holmes, Rajat Bindlish, Richard de Jeu, and Christa Peters-Lidard
Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020,https://doi.org/10.5194/hess-24-3431-2020, 2020
Short summary
Microwave implementation of two-source energy balance approach for estimating evapotranspiration
Thomas R. H. Holmes, Christopher R. Hain, Wade T. Crow, Martha C. Anderson, and William P. Kustas
Hydrol. Earth Syst. Sci., 22, 1351–1369, https://doi.org/10.5194/hess-22-1351-2018,https://doi.org/10.5194/hess-22-1351-2018, 2018
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Technical note: Surface fields for global environmental modelling
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024,https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Benchmarking multimodel terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations over major global river basins
Sadia Bibi, Tingju Zhu, Ashraf Rateb, Bridget R. Scanlon, Muhammad Aqeel Kamran, Abdelrazek Elnashar, Ali Bennour, and Ci Li
Hydrol. Earth Syst. Sci., 28, 1725–1750, https://doi.org/10.5194/hess-28-1725-2024,https://doi.org/10.5194/hess-28-1725-2024, 2024
Short summary
Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024,https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Investigating sources of variability in closing the terrestrial water balance with remote sensing
Claire I. Michailovsky, Bert Coerver, Marloes Mul, and Graham Jewitt
Hydrol. Earth Syst. Sci., 27, 4335–4354, https://doi.org/10.5194/hess-27-4335-2023,https://doi.org/10.5194/hess-27-4335-2023, 2023
Short summary
Dynamic rainfall erosivity estimates derived from IMERG data
Robert A. Emberson
Hydrol. Earth Syst. Sci., 27, 3547–3563, https://doi.org/10.5194/hess-27-3547-2023,https://doi.org/10.5194/hess-27-3547-2023, 2023
Short summary

Cited articles

Aires, F., Prigent, C., Rossow, W. B., and Rothstein, M.: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations, J. Geophys. Res.-Atmos., 106, 14887–14907, https://doi.org/10.1029/2001JD900085, 2001.
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
André, C., Ottlé, C., Royer, A., and Maignan, F.: Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data, Remote Sens. Environ., 162, 1–10, https://doi.org/10.1016/j.rse.2015.01.028, 2015.
Catherinot, J., Prigent, C., Maurer, R., Papa, F., Jiménez, C., Aires, F., and Rossow, W. B.: Evaluation of “all weather” microwave-derived land surface temperatures with in situ CEOP measurements, J. Geophys. Res.-Atmos., 116, D23105, https://doi.org/10.1029/2011JD016439, 2011.
Download
Short summary
We test the cloud tolerance of two technologies to estimate land surface temperature (LST) from space: microwave (MW) and thermal infrared (TIR). Although TIR has slightly lower errors than MW with ground data under clear-sky conditions, it suffers increasing negative bias as cloud cover increases. In contrast, we find no direct impact of clouds on the accuracy and bias of MW-LST. MW-LST can therefore be used to improve TIR cloud screening and increase sampling in clouded regions.