Articles | Volume 19, issue 5
https://doi.org/10.5194/hess-19-2535-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-2535-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Transferring global uncertainty estimates from gauged to ungauged catchments
Irstea, Hydrosystems and Bioprocesses Research Unit (HBAN), Antony, France
V. Andréassian
Irstea, Hydrosystems and Bioprocesses Research Unit (HBAN), Antony, France
C. Perrin
Irstea, Hydrosystems and Bioprocesses Research Unit (HBAN), Antony, France
UPMC Univ. Paris 06, UMR 7619 Metis, Paris, France
Related authors
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, https://doi.org/10.5194/hess-25-2979-2021, 2021
Short summary
Short summary
Efficient flood mapping methods are needed for large-scale, comprehensive identification of flash flood inundation hazards caused by small upstream rivers. An evaluation of three automated mapping approaches of increasing complexity, i.e., a digital terrain model (DTM) filling and two 1D–2D hydrodynamic approaches, is presented based on three major flash floods in southeastern France. The results illustrate some limits of the DTM filling method and the value of using a 2D hydrodynamic approach.
Lionel Berthet, François Bourgin, Charles Perrin, Julie Viatgé, Renaud Marty, and Olivier Piotte
Hydrol. Earth Syst. Sci., 24, 2017–2041, https://doi.org/10.5194/hess-24-2017-2020, https://doi.org/10.5194/hess-24-2017-2020, 2020
Short summary
Short summary
An increasing number of flood forecasting services assess and communicate the uncertainty associated with their forecasts. We present a crash-testing framework that evaluates the quality of hydrological forecasts in an extrapolation context. Overall, the results highlight the challenge of uncertainty quantification when forecasting high flows. They show a significant drop in reliability when forecasting high flows and considerable variability among catchments and across lead times.
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-415, https://doi.org/10.5194/essd-2024-415, 2024
Preprint under review for ESSD
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyse hydrological behavior, perform model assessments.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Pierre Brigode and Ludovic Oudin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-336, https://doi.org/10.5194/hess-2024-336, 2024
Preprint under review for HESS
Short summary
Short summary
We analyzed how well two global climate datasets can simulate river flows across Europe over the last 150 years. Our results show good performance overall, revealing important long-term changes in water availability and extreme events, like floods, in different regions. This research helps us better understand past and future water trends, providing insights to manage resources and address the challenges posed by climate change.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022, https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 26, 2733–2758, https://doi.org/10.5194/hess-26-2733-2022, https://doi.org/10.5194/hess-26-2733-2022, 2022
Short summary
Short summary
A large part of the water cycle takes place underground. In many places, the soil stores water during the wet periods and can release it all year long, which is particularly visible when the river level is low. Modelling tools that are used to simulate and forecast the behaviour of the river struggle to represent this. We improved an existing model to take underground water into account using measurements of the soil water content. Results allow us make recommendations for model users.
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Short summary
Increasing temperature will impact evaporation and water resource management. Hydrological models are fed with an estimation of the evaporative demand of the atmosphere, called potential evapotranspiration (PE). The objectives of this study were (1) to compute the future PE anomaly over France and (2) to determine the impact of the choice of the method to estimate PE. Our results show that all methods present similar future trends. No method really stands out from the others.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, https://doi.org/10.5194/hess-25-2979-2021, 2021
Short summary
Short summary
Efficient flood mapping methods are needed for large-scale, comprehensive identification of flash flood inundation hazards caused by small upstream rivers. An evaluation of three automated mapping approaches of increasing complexity, i.e., a digital terrain model (DTM) filling and two 1D–2D hydrodynamic approaches, is presented based on three major flash floods in southeastern France. The results illustrate some limits of the DTM filling method and the value of using a 2D hydrodynamic approach.
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Lionel Berthet, François Bourgin, Charles Perrin, Julie Viatgé, Renaud Marty, and Olivier Piotte
Hydrol. Earth Syst. Sci., 24, 2017–2041, https://doi.org/10.5194/hess-24-2017-2020, https://doi.org/10.5194/hess-24-2017-2020, 2020
Short summary
Short summary
An increasing number of flood forecasting services assess and communicate the uncertainty associated with their forecasts. We present a crash-testing framework that evaluates the quality of hydrological forecasts in an extrapolation context. Overall, the results highlight the challenge of uncertainty quantification when forecasting high flows. They show a significant drop in reliability when forecasting high flows and considerable variability among catchments and across lead times.
José Manuel Tunqui Neira, Vazken Andréassian, Gaëlle Tallec, and Jean-Marie Mouchel
Hydrol. Earth Syst. Sci., 24, 1823–1830, https://doi.org/10.5194/hess-24-1823-2020, https://doi.org/10.5194/hess-24-1823-2020, 2020
Short summary
Short summary
This paper deals with the mathematical representation of concentration–discharge relationships. We propose a two-sided affine power scaling relationship (2S-APS) as an alternative to the classic one-sided power scaling relationship (commonly known as
power law). We also discuss the identification of the parameters of the proposed relationship, using an appropriate numerical criterion, based on high-frequency chemical time series of the Orgeval-ORACLE observatory.
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 24, 1171–1187, https://doi.org/10.5194/hess-24-1171-2020, https://doi.org/10.5194/hess-24-1171-2020, 2020
Short summary
Short summary
There are many ways for water to join a river after a rainfall event, but they can be split into two categories: the quick ones that remain in the surface and the slow ones that use other trajectories. Thus, measured streamflow of a river can be split into two components: quickflow and baseflow. We present a new method to perform this separation, using only streamflow and rainfall data, which are generally broadly available. It is then used as an analysis tool of river dynamics over France.
José Manuel Tunqui Neira, Vazken Andréassian, Gaëlle Tallec, and Jean-Marie Mouchel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-325, https://doi.org/10.5194/hess-2019-325, 2019
Manuscript not accepted for further review
Short summary
Short summary
This Technical Note deals with the mathematical representation of concentration-discharge relationships and with the identification of its parameters. We propose a two-sided power transformation alternative to the classical log-log transformation, and a multicriterion identification procedure allowing determining parameters that are efficient, both from the concentration and the load points of view.
Vazken Andréassian and Tewfik Sari
Hydrol. Earth Syst. Sci., 23, 2339–2350, https://doi.org/10.5194/hess-23-2339-2019, https://doi.org/10.5194/hess-23-2339-2019, 2019
Short summary
Short summary
In this Technical Note, we present two water balance formulas: the Turc–Mezentsev and Tixeront–Fu formulas. These formulas have a puzzling numerical similarity, which we discuss in detail and try to interpret mathematically and hydrologically.
Cédric Rebolho, Vazken Andréassian, and Nicolas Le Moine
Hydrol. Earth Syst. Sci., 22, 5967–5985, https://doi.org/10.5194/hess-22-5967-2018, https://doi.org/10.5194/hess-22-5967-2018, 2018
Short summary
Short summary
Inundation models are useful for hazard management and prevention. They are traditionally based on hydraulic partial differential equations (with satisfying results but large data and computational requirements). This study presents a simplified approach combining reach-scale geometric properties with steady uniform flow equations. The model shows promising results overall, although difficulties persist in the most complex urbanised reaches.
Léonard Santos, Guillaume Thirel, and Charles Perrin
Hydrol. Earth Syst. Sci., 22, 4583–4591, https://doi.org/10.5194/hess-22-4583-2018, https://doi.org/10.5194/hess-22-4583-2018, 2018
Short summary
Short summary
The Kling and Gupta efficiency (KGE) is a score used in hydrology to evaluate flow simulation compared to observations. In order to force the evaluation on the low flows, some authors used the log-transformed flow to calculate the KGE. In this technical note, we show that this transformation should be avoided because it produced numerical flaws that lead to difficulties in the score value interpretation.
Léonard Santos, Guillaume Thirel, and Charles Perrin
Geosci. Model Dev., 11, 1591–1605, https://doi.org/10.5194/gmd-11-1591-2018, https://doi.org/10.5194/gmd-11-1591-2018, 2018
Short summary
Short summary
Many rainfall–runoff models are based on stores. However, the differential equations that describe the stores' evolution are rarely presented in literature.
This represents an issue when the temporal resolution changes. In this work, we propose and evaluate a state-space version of a simple rainfall–runoff model within a robust resolution scheme. The results show that the proposed model performs equally well or slightly better than the original one and is independent of the temporal resolution.
Louise Crochemore, Maria-Helena Ramos, Florian Pappenberger, and Charles Perrin
Hydrol. Earth Syst. Sci., 21, 1573–1591, https://doi.org/10.5194/hess-21-1573-2017, https://doi.org/10.5194/hess-21-1573-2017, 2017
Short summary
Short summary
The use of general circulation model outputs for streamflow forecasting has developed in the last decade. In parallel, traditional streamflow forecasting is commonly based on historical data. This study investigates the impact of conditioning historical data based on circulation model precipitation forecasts on seasonal streamflow forecast quality. Results highlighted a trade-off between the sharpness and reliability of forecasts.
Vazken Andréassian, Laurent Coron, Julien Lerat, and Nicolas Le Moine
Hydrol. Earth Syst. Sci., 20, 4503–4524, https://doi.org/10.5194/hess-20-4503-2016, https://doi.org/10.5194/hess-20-4503-2016, 2016
Short summary
Short summary
We present a new method to derive the empirical (i.e., data-based) elasticity of streamflow to precipitation and potential evaporation. This method, which uses long-term hydrometeorological records, is tested on a set of 519 French catchments. We compare our method with the classical approach found in the literature and demonstrate its robustness and efficiency. Empirical elasticity is a powerful tool to test the extrapolation capacity of hydrological models.
Alban de Lavenne, Guillaume Thirel, Vazken Andréassian, Charles Perrin, and Maria-Helena Ramos
Proc. IAHS, 373, 87–94, https://doi.org/10.5194/piahs-373-87-2016, https://doi.org/10.5194/piahs-373-87-2016, 2016
Short summary
Short summary
Developing modelling tools that help to understand the spatial distribution of water resources is a key issue for better management. Ideally, hydrological models which discretise catchment space into sub-catchments should offer better streamflow simulations than lumped models, along with spatially-relevant water resources management solutions. However we demonstrate that those model raise other issues related to the calibration strategy and to the identifiability of the parameters.
B. N. Nka, L. Oudin, H. Karambiri, J. E. Paturel, and P. Ribstein
Hydrol. Earth Syst. Sci., 19, 4707–4719, https://doi.org/10.5194/hess-19-4707-2015, https://doi.org/10.5194/hess-19-4707-2015, 2015
Short summary
Short summary
The region of West Africa is undergoing important climate and environmental changes affecting the magnitude and occurrence of floods. This study aims to analyze the evolution of flood hazard in the region and to find links between flood hazards pattern and rainfall or vegetation index patterns.
B. Salavati, L. Oudin, C. Furusho, and P. Ribstein
Proc. IAHS, 370, 29–32, https://doi.org/10.5194/piahs-370-29-2015, https://doi.org/10.5194/piahs-370-29-2015, 2015
Short summary
Short summary
We applied a hydrological model on 43 urban catchments in the United States to quantify the flow changes attributable to urbanization. Then, we tried to relate these flow changes to the changes of urban/impervious areas of the catchments. We argue that these spatial changes of urban areas can be more precisely characterized by landscape metrics. Our results showed that the catchments with larger impervious areas and larger mean patch areas are likely to have larger increase of runoff yield.
P. Nicolle, R. Pushpalatha, C. Perrin, D. François, D. Thiéry, T. Mathevet, M. Le Lay, F. Besson, J.-M. Soubeyroux, C. Viel, F. Regimbeau, V. Andréassian, P. Maugis, B. Augeard, and E. Morice
Hydrol. Earth Syst. Sci., 18, 2829–2857, https://doi.org/10.5194/hess-18-2829-2014, https://doi.org/10.5194/hess-18-2829-2014, 2014
D. Defrance, P. Javelle, D. Organde, S. Ecrepont, V. Andréassian, and P. Arnaud
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-4365-2014, https://doi.org/10.5194/hessd-11-4365-2014, 2014
Revised manuscript has not been submitted
L. Coron, V. Andréassian, C. Perrin, M. Bourqui, and F. Hendrickx
Hydrol. Earth Syst. Sci., 18, 727–746, https://doi.org/10.5194/hess-18-727-2014, https://doi.org/10.5194/hess-18-727-2014, 2014
F. Lobligeois, V. Andréassian, C. Perrin, P. Tabary, and C. Loumagne
Hydrol. Earth Syst. Sci., 18, 575–594, https://doi.org/10.5194/hess-18-575-2014, https://doi.org/10.5194/hess-18-575-2014, 2014
H. V. Gupta, C. Perrin, G. Blöschl, A. Montanari, R. Kumar, M. Clark, and V. Andréassian
Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, https://doi.org/10.5194/hess-18-463-2014, 2014
W. R. van Esse, C. Perrin, M. J. Booij, D. C. M. Augustijn, F. Fenicia, D. Kavetski, and F. Lobligeois
Hydrol. Earth Syst. Sci., 17, 4227–4239, https://doi.org/10.5194/hess-17-4227-2013, https://doi.org/10.5194/hess-17-4227-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
A data-centric perspective on the information needed for hydrological uncertainty predictions
A decomposition approach to evaluating the local performance of global streamflow reanalysis
How much water vapour does the Tibetan Plateau release into the atmosphere?
Technical note: Complexity–uncertainty curve (c-u-curve) – a method to analyse, classify and compare dynamical systems
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
On the importance of observation uncertainty when evaluating and comparing models: a hydrological example
Why do our rainfall–runoff models keep underestimating the peak flows?
Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies
Pitfalls and a feasible solution for using KGE as an informal likelihood function in MCMC methods: DREAM(ZS) as an example
Benchmarking global hydrological and land surface models against GRACE in a medium-sized tropical basin
Guidance on evaluating parametric model uncertainty at decision-relevant scales
Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method
Sequential data assimilation for real-time probabilistic flood inundation mapping
Key challenges facing the application of the conductivity mass balance method: a case study of the Mississippi River basin
Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda
Technical note: Uncertainty in multi-source partitioning using large tracer data sets
Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0 °C global warming
A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation
Technical note: Analytical sensitivity analysis and uncertainty estimation of baseflow index calculated by a two-component hydrograph separation method with conductivity as a tracer
Understanding the water cycle over the upper Tarim Basin: retrospecting the estimated discharge bias to atmospheric variables and model structure
The effect of input data resolution and complexity on the uncertainty of hydrological predictions in a humid vegetated watershed
Parameter uncertainty analysis for an operational hydrological model using residual-based and limits of acceptability approaches
Technical note: Pitfalls in using log-transformed flows within the KGE criterion
Improvement of model evaluation by incorporating prediction and measurement uncertainty
Transferability of climate simulation uncertainty to hydrological impacts
Intercomparison of different uncertainty sources in hydrological climate change projections for an alpine catchment (upper Clutha River, New Zealand)
Mapping (dis)agreement in hydrologic projections
Consistency assessment of rating curve data in various locations using Bidirectional Reach (BReach)
The critical role of uncertainty in projections of hydrological extremes
Residual uncertainty estimation using instance-based learning with applications to hydrologic forecasting
Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding
Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales
Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model
Quantifying uncertainty on sediment loads using bootstrap confidence intervals
Event-scale power law recession analysis: quantifying methodological uncertainty
Disentangling timing and amplitude errors in streamflow simulations
Reliability of lumped hydrological modeling in a semi-arid mountainous catchment facing water-use changes
Using dry and wet year hydroclimatic extremes to guide future hydrologic projections
Uncertainty contributions to low-flow projections in Austria
Accounting for dependencies in regionalized signatures for predictions in ungauged catchments
Climate change and its impacts on river discharge in two climate regions in China
Uncertainty in hydrological signatures
Climate model uncertainty versus conceptual geological uncertainty in hydrological modeling
Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments
Spatial sensitivity analysis of snow cover data in a distributed rainfall-runoff model
Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remote-sensing data
The skill of seasonal ensemble low-flow forecasts in the Moselle River for three different hydrological models
Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography
The importance of hydrological uncertainty assessment methods in climate change impact studies
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci., 28, 4099–4126, https://doi.org/10.5194/hess-28-4099-2024, https://doi.org/10.5194/hess-28-4099-2024, 2024
Short summary
Short summary
This work examines the impact of temporal and spatial information on the uncertainty estimation of streamflow forecasts. The study emphasizes the importance of data updates and global information for precise uncertainty estimates. We use conformal prediction to show that recent data enhance the estimates, even if only available infrequently. Local data yield reasonable average estimations but fall short for peak-flow events. The use of global data significantly improves these predictions.
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024, https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
Short summary
The local performance plays a critical part in practical applications of global streamflow reanalysis. This paper develops a decomposition approach to evaluating streamflow analysis at different timescales. The reanalysis is observed to be more effective in characterizing seasonal, annual and multi-annual features than daily, weekly and monthly features. Also, the local performance is shown to be primarily influenced by precipitation seasonality, longitude, mean precipitation and mean slope.
Chaolei Zheng, Li Jia, Guangcheng Hu, Massimo Menenti, and Joris Timmermans
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-55, https://doi.org/10.5194/hess-2024-55, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Significant changes are occurring in the Tibetan Plateau, but the amount and variations of evapotranspiration (ET) are with large uncertainty. This study compares 22 ET products and finds that the mean annual ET is 350.34 mm/yr over the Tibetan Plateau, with soil water contribute most to total ET. It also find most products showing an increasing trend. It provides a comprehensive study that supports further ET estimation and potential use of ET data for relevant water and climate studies.
Uwe Ehret and Pankaj Dey
Hydrol. Earth Syst. Sci., 27, 2591–2605, https://doi.org/10.5194/hess-27-2591-2023, https://doi.org/10.5194/hess-27-2591-2023, 2023
Short summary
Short summary
We propose the
c-u-curvemethod to characterize dynamical (time-variable) systems of all kinds.
Uis for uncertainty and expresses how well a system can be predicted in a given period of time.
Cis for complexity and expresses how predictability differs between different periods, i.e. how well predictability itself can be predicted. The method helps to better classify and compare dynamical systems across a wide range of disciplines, thus facilitating scientific collaboration.
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023, https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Short summary
This publication provides an introduction to the CREDIBLE Uncertainty Estimation (CURE) toolbox. CURE offers workflows for a variety of uncertainty estimation methods. One of its most important features is the requirement that all of the assumptions on which a workflow analysis depends be defined. This facilitates communication with potential users of an analysis. An audit trail log is produced automatically from a workflow for future reference.
Jerom P.M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
EGUsphere, https://doi.org/10.5194/egusphere-2023-1156, https://doi.org/10.5194/egusphere-2023-1156, 2023
Short summary
Short summary
Hydrological model performance involves comparing simulated states and fluxes with observed counterparts. Often, it is overlooked that there is inherent uncertainty surrounding the observations. This can significantly impact the results. In this publication, we emphasize the significance of accounting for observation uncertainty in model comparison. We propose a practical method that is applicable for any observational time series with available uncertainty estimations.
András Bárdossy and Faizan Anwar
Hydrol. Earth Syst. Sci., 27, 1987–2000, https://doi.org/10.5194/hess-27-1987-2023, https://doi.org/10.5194/hess-27-1987-2023, 2023
Short summary
Short summary
This study demonstrates the fact that the large river flows forecasted by the models show an underestimation that is inversely related to the number of locations where precipitation is recorded, which is independent of the model. The higher the number of points where the amount of precipitation is recorded, the better the estimate of the river flows.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022, https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Short summary
We adapt the informal Kling–Gupta efficiency (KGE) with a gamma distribution to apply it as an informal likelihood function in the DiffeRential Evolution Adaptive Metropolis DREAM(ZS) method. Our adapted approach performs as well as the formal likelihood function for exploring posterior distributions of model parameters. The adapted KGE is superior to the formal likelihood function for calibrations combining multiple observations with different lengths, frequencies and units.
Silvana Bolaños Chavarría, Micha Werner, Juan Fernando Salazar, and Teresita Betancur Vargas
Hydrol. Earth Syst. Sci., 26, 4323–4344, https://doi.org/10.5194/hess-26-4323-2022, https://doi.org/10.5194/hess-26-4323-2022, 2022
Short summary
Short summary
Using total water storage (TWS) from GRACE satellites, we assess the reliability of global hydrological and land surface models over a medium-sized tropical basin with a well-developed gauging network. We find the models poorly represent TWS for the monthly series, but they improve in representing seasonality and long-term trends. We conclude that GRACE provides a valuable dataset to benchmark global simulations of TWS change, offering a useful tool to improve global models in tropical basins.
Jared D. Smith, Laurence Lin, Julianne D. Quinn, and Lawrence E. Band
Hydrol. Earth Syst. Sci., 26, 2519–2539, https://doi.org/10.5194/hess-26-2519-2022, https://doi.org/10.5194/hess-26-2519-2022, 2022
Short summary
Short summary
Watershed models are used to simulate streamflow and water quality, and to inform siting and sizing decisions for runoff and nutrient control projects. Data are limited for many watershed processes that are represented in such models, which requires selecting the most important processes to be calibrated. We show that this selection should be based on decision-relevant metrics at the spatial scales of interest for the control projects. This should enable more robust project designs.
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci., 26, 1203–1221, https://doi.org/10.5194/hess-26-1203-2022, https://doi.org/10.5194/hess-26-1203-2022, 2022
Short summary
Short summary
Decomposing parameter and input errors in model calibration is a considerable challenge. This study transfers the direct estimation of an input error series to their rank estimation and develops a new algorithm, i.e., Bayesian error analysis with reordering (BEAR). In the context of a total suspended solids simulation, two synthetic studies and a real study demonstrate that the BEAR method is effective for improving the input error estimation and water quality model calibration.
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021, https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary
Short summary
In this study, daily observations are assimilated into a hydrodynamic model to update the performance of modeling and improve the flood inundation mapping skill. Results demonstrate that integrating data assimilation with a hydrodynamic model improves the performance of flood simulation and provides more reliable inundation maps. A flowchart provides the overall steps for applying this framework in practice and forecasting probabilistic flood maps before the onset of upcoming floods.
Hang Lyu, Chenxi Xia, Jinghan Zhang, and Bo Li
Hydrol. Earth Syst. Sci., 24, 6075–6090, https://doi.org/10.5194/hess-24-6075-2020, https://doi.org/10.5194/hess-24-6075-2020, 2020
Short summary
Short summary
Baseflow separation plays a critical role in science-based management of water resources. This study addressed key challenges hindering the application of the generally accepted conductivity mass balance (CMB). Monitoring data for over 200 stream sites of the Mississippi River basin were collected to answer the following questions. What are the characteristics of a watershed that determine the method suitability? What length of monitoring data is needed? How can the parameters be more accurate?
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020, https://doi.org/10.5194/hess-24-4641-2020, 2020
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020, https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary
Short summary
The USLE is a commonly used model to estimate soil erosion by water. It quantifies soil loss as a product of six inputs representing rainfall erosivity, soil erodibility, slope length and steepness, plant cover, and support practices. Many methods exist to derive these inputs, which can, however, lead to substantial differences in the estimated soil loss. Here, we analyze the effect of different input representations on the estimated soil loss in a large-scale study in Kenya and Uganda.
Alicia Correa, Diego Ochoa-Tocachi, and Christian Birkel
Hydrol. Earth Syst. Sci., 23, 5059–5068, https://doi.org/10.5194/hess-23-5059-2019, https://doi.org/10.5194/hess-23-5059-2019, 2019
Short summary
Short summary
The applications and availability of large tracer data sets have vastly increased in recent years leading to research into the contributions of multiple sources to a mixture. We introduce a method based on Taylor series approximation to estimate the uncertainties of such sources' contributions. The method is illustrated with examples of hydrology (14 tracers) and a MATLAB code is provided for reproducibility. This method can be generalized to any number of tracers across a range of disciplines.
Hongmei Xu, Lüliu Liu, Yong Wang, Sheng Wang, Ying Hao, Jingjin Ma, and Tong Jiang
Hydrol. Earth Syst. Sci., 23, 4219–4231, https://doi.org/10.5194/hess-23-4219-2019, https://doi.org/10.5194/hess-23-4219-2019, 2019
Short summary
Short summary
1.5 and 2 °C have become targets in the discussion of climate change impacts. However, climate research is also challenged to provide more robust information on the impact of climate change at local and regional scales to assist the development of sound scientific adaptation and mitigation measures. This study assessed the impacts and differences of 1.5 and 2.0 °C global warming on basin-scale river runoff by examining four river basins covering a wide hydroclimatic setting in China.
Lorenz Ammann, Fabrizio Fenicia, and Peter Reichert
Hydrol. Earth Syst. Sci., 23, 2147–2172, https://doi.org/10.5194/hess-23-2147-2019, https://doi.org/10.5194/hess-23-2147-2019, 2019
Short summary
Short summary
The uncertainty of hydrological models can be substantial, and its quantification and realistic description are often difficult. We propose a new flexible probabilistic framework to describe and quantify this uncertainty. It is show that the correlation of the errors can be non-stationary, and that accounting for temporal changes in correlation can lead to strongly improved probabilistic predictions. This is a promising avenue for improving uncertainty estimation in hydrological modelling.
Weifei Yang, Changlai Xiao, and Xiujuan Liang
Hydrol. Earth Syst. Sci., 23, 1103–1112, https://doi.org/10.5194/hess-23-1103-2019, https://doi.org/10.5194/hess-23-1103-2019, 2019
Short summary
Short summary
This paper analyzed the sensitivity of the baseflow index to the parameters of the conductivity two-component hydrograph separation method. The results indicated that the baseflow index is more sensitive to the conductivity of baseflow and the separation method may be more suitable for the long time series in a small watershed. After considering the mutual offset of the measurement errors of conductivity and streamflow, the uncertainty in baseflow index was reduced by half.
Xudong Zhou, Jan Polcher, Tao Yang, Yukiko Hirabayashi, and Trung Nguyen-Quang
Hydrol. Earth Syst. Sci., 22, 6087–6108, https://doi.org/10.5194/hess-22-6087-2018, https://doi.org/10.5194/hess-22-6087-2018, 2018
Short summary
Short summary
Model bias is commonly seen in discharge simulation by hydrological or land surface models. This study tested an approach with the Budyko hypothesis to retrospect the estimated discharge bias to different bias sources including the atmospheric variables and model structure. Results indicate that the bias is most likely caused by the forcing variables, and the forcing bias should firstly be assessed and reduced in order to perform pertinent analysis of the regional water cycle.
Linh Hoang, Rajith Mukundan, Karen E. B. Moore, Emmet M. Owens, and Tammo S. Steenhuis
Hydrol. Earth Syst. Sci., 22, 5947–5965, https://doi.org/10.5194/hess-22-5947-2018, https://doi.org/10.5194/hess-22-5947-2018, 2018
Short summary
Short summary
The paper analyzes the effect of two input data (DEMs and the combination of soil and land use data) with different resolution and complexity on the uncertainty of model outputs (the predictions of streamflow and saturated areas) and parameter uncertainty using SWAT-HS. Results showed that DEM resolution has significant effect on the spatial pattern of saturated areas and using complex soil and land use data may not necessarily improve model performance or reduce model uncertainty.
Aynom T. Teweldebrhan, John F. Burkhart, and Thomas V. Schuler
Hydrol. Earth Syst. Sci., 22, 5021–5039, https://doi.org/10.5194/hess-22-5021-2018, https://doi.org/10.5194/hess-22-5021-2018, 2018
Léonard Santos, Guillaume Thirel, and Charles Perrin
Hydrol. Earth Syst. Sci., 22, 4583–4591, https://doi.org/10.5194/hess-22-4583-2018, https://doi.org/10.5194/hess-22-4583-2018, 2018
Short summary
Short summary
The Kling and Gupta efficiency (KGE) is a score used in hydrology to evaluate flow simulation compared to observations. In order to force the evaluation on the low flows, some authors used the log-transformed flow to calculate the KGE. In this technical note, we show that this transformation should be avoided because it produced numerical flaws that lead to difficulties in the score value interpretation.
Lei Chen, Shuang Li, Yucen Zhong, and Zhenyao Shen
Hydrol. Earth Syst. Sci., 22, 4145–4154, https://doi.org/10.5194/hess-22-4145-2018, https://doi.org/10.5194/hess-22-4145-2018, 2018
Short summary
Short summary
In this study, the cumulative distribution function approach (CDFA) and the Monte Carlo approach (MCA) were used to develop two new approaches for model evaluation within an uncertainty framework. These proposed methods could be extended to watershed models to provide a substitution for traditional model evaluations within an uncertainty framework.
Hui-Min Wang, Jie Chen, Alex J. Cannon, Chong-Yu Xu, and Hua Chen
Hydrol. Earth Syst. Sci., 22, 3739–3759, https://doi.org/10.5194/hess-22-3739-2018, https://doi.org/10.5194/hess-22-3739-2018, 2018
Short summary
Short summary
Facing a growing number of climate models, many selection methods were proposed to select subsets in the field of climate simulation, but the transferability of their performances to hydrological impacts remains doubtful. We investigate the transferability of climate simulation uncertainty to hydrological impacts using two selection methods, and conclude that envelope-based selection of about 10 climate simulations based on properly chosen climate variables is suggested for impact studies.
Andreas M. Jobst, Daniel G. Kingston, Nicolas J. Cullen, and Josef Schmid
Hydrol. Earth Syst. Sci., 22, 3125–3142, https://doi.org/10.5194/hess-22-3125-2018, https://doi.org/10.5194/hess-22-3125-2018, 2018
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.
Katrien Van Eerdenbrugh, Stijn Van Hoey, Gemma Coxon, Jim Freer, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 21, 5315–5337, https://doi.org/10.5194/hess-21-5315-2017, https://doi.org/10.5194/hess-21-5315-2017, 2017
Short summary
Short summary
Consistency in stage–discharge data is investigated using a methodology called Bidirectional Reach (BReach). Various measurement stations in the UK, New Zealand and Belgium are selected based on their historical ratings information and their characteristics related to data consistency. When applying a BReach analysis on them, the methodology provides results that appear consistent with the available knowledge and thus facilitates a reliable assessment of (in)consistency in stage–discharge data.
Hadush K. Meresa and Renata J. Romanowicz
Hydrol. Earth Syst. Sci., 21, 4245–4258, https://doi.org/10.5194/hess-21-4245-2017, https://doi.org/10.5194/hess-21-4245-2017, 2017
Short summary
Short summary
Evaluation of the uncertainty in projections of future hydrological extremes in the mountainous catchment was performed. The uncertainty of the estimate of 1-in-100-year return maximum flow based on the 1971–2100 time series exceeds 200 % of its median value with the largest influence of the climate model uncertainty, while the uncertainty of the 1-in-100-year return minimum flow is of the same order (i.e. exceeds 200 %) but it is mainly influenced by the hydrological model parameter uncertainty.
Omar Wani, Joost V. L. Beckers, Albrecht H. Weerts, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 21, 4021–4036, https://doi.org/10.5194/hess-21-4021-2017, https://doi.org/10.5194/hess-21-4021-2017, 2017
Short summary
Short summary
We generate uncertainty intervals for hydrologic model predictions using a simple instance-based learning scheme. Errors made by the model in some specific hydrometeorological conditions in the past are used to predict the probability distribution of its errors during forecasting. We test it for two different case studies in England. We find that this technique, even though conceptually simple and easy to implement, performs as well as some other sophisticated uncertainty estimation methods.
Christa Kelleher, Brian McGlynn, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 21, 3325–3352, https://doi.org/10.5194/hess-21-3325-2017, https://doi.org/10.5194/hess-21-3325-2017, 2017
Short summary
Short summary
Models are tools for understanding how watersheds function and may respond to land cover and climate change. Before we can use models towards these purposes, we need to ensure that a model adequately represents watershed-wide observations. In this paper, we propose a new way to evaluate whether model simulations match observations, using a variety of information sources. We show how this information can reduce uncertainty in inputs to models, reducing uncertainty in hydrologic predictions.
Gabriele Baroni, Matthias Zink, Rohini Kumar, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 21, 2301–2320, https://doi.org/10.5194/hess-21-2301-2017, https://doi.org/10.5194/hess-21-2301-2017, 2017
Short summary
Short summary
Three methods are used to characterize the uncertainty in soil properties. The effect on simulated states and fluxes is quantified using a distributed hydrological model. Different impacts are identified as function of the perturbation method, of the model outputs and of the spatio-temporal resolution. The study underlines the importance of a proper characterization of the uncertainty in soil properties for a correct assessment of their role and further improvements in the model application.
Ji Li, Yangbo Chen, Huanyu Wang, Jianming Qin, Jie Li, and Sen Chiao
Hydrol. Earth Syst. Sci., 21, 1279–1294, https://doi.org/10.5194/hess-21-1279-2017, https://doi.org/10.5194/hess-21-1279-2017, 2017
Short summary
Short summary
Quantitative precipitation forecast produced by the WRF model has a similar pattern to that estimated by rain gauges in a southern China large watershed, hydrological model parameters should be optimized with QPF produced by WRF, and simulating floods by coupling the WRF QPF with a distributed hydrological model provides a good reference for large watershed flood warning and could benefit the flood management communities due to its longer lead time.
Johanna I. F. Slaets, Hans-Peter Piepho, Petra Schmitter, Thomas Hilger, and Georg Cadisch
Hydrol. Earth Syst. Sci., 21, 571–588, https://doi.org/10.5194/hess-21-571-2017, https://doi.org/10.5194/hess-21-571-2017, 2017
Short summary
Short summary
Determining measures of uncertainty on loads is not trivial, as a load is a product of concentration and discharge per time point, summed up over time. A bootstrap approach enables the calculation of confidence intervals on constituent loads. Ignoring the uncertainty on the discharge will typically underestimate the width of 95 % confidence intervals by around 10 %. Furthermore, confidence intervals are asymmetric, with the largest uncertainty on the upper limit.
David N. Dralle, Nathaniel J. Karst, Kyriakos Charalampous, Andrew Veenstra, and Sally E. Thompson
Hydrol. Earth Syst. Sci., 21, 65–81, https://doi.org/10.5194/hess-21-65-2017, https://doi.org/10.5194/hess-21-65-2017, 2017
Short summary
Short summary
The streamflow recession is the period following rainfall during which flow declines. This paper examines a common method of recession analysis and identifies sensitivity of the technique's results to necessary, yet subjective, methodological choices. The results have implications for hydrology, sediment and solute transport, and geomorphology, as well as for testing numerous hydrologic theories which predict the mathematical form of the recession.
Simon Paul Seibert, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 20, 3745–3763, https://doi.org/10.5194/hess-20-3745-2016, https://doi.org/10.5194/hess-20-3745-2016, 2016
Short summary
Short summary
While the assessment of "vertical" (magnitude) errors of streamflow simulations is standard practice, "horizontal" (timing) errors are rarely considered. To assess their role, we propose a method to quantify both errors simultaneously which closely resembles visual hydrograph comparison. Our results reveal differences in time–magnitude error statistics for different flow conditions. The proposed method thus offers novel perspectives for model diagnostics and evaluation.
Paul Hublart, Denis Ruelland, Inaki García de Cortázar-Atauri, Simon Gascoin, Stef Lhermitte, and Antonio Ibacache
Hydrol. Earth Syst. Sci., 20, 3691–3717, https://doi.org/10.5194/hess-20-3691-2016, https://doi.org/10.5194/hess-20-3691-2016, 2016
Short summary
Short summary
Our paper explores the reliability of conceptual catchment models in the dry Andes. First, we show that explicitly accounting for irrigation water use improves streamflow predictions during dry years. Second, we show that sublimation losses can be easily incorporated into temperature-based melt models without increasing model complexity too much. Our work also highlights areas requiring additional research, including the need for a better conceptualization of runoff generation processes.
Stephen Oni, Martyn Futter, Jose Ledesma, Claudia Teutschbein, Jim Buttle, and Hjalmar Laudon
Hydrol. Earth Syst. Sci., 20, 2811–2825, https://doi.org/10.5194/hess-20-2811-2016, https://doi.org/10.5194/hess-20-2811-2016, 2016
Short summary
Short summary
This paper presents an important framework to improve hydrologic projections in cold regions. Hydrologic modelling/projections are often based on model calibration to long-term data. Here we used dry and wet years as a proxy to quantify uncertainty in projecting hydrologic extremes. We showed that projections based on long-term data could underestimate runoff by up to 35% in boreal regions. We believe the hydrologic modelling community will benefit from new insights derived from this study.
Juraj Parajka, Alfred Paul Blaschke, Günter Blöschl, Klaus Haslinger, Gerold Hepp, Gregor Laaha, Wolfgang Schöner, Helene Trautvetter, Alberto Viglione, and Matthias Zessner
Hydrol. Earth Syst. Sci., 20, 2085–2101, https://doi.org/10.5194/hess-20-2085-2016, https://doi.org/10.5194/hess-20-2085-2016, 2016
Short summary
Short summary
Streamflow estimation during low-flow conditions is important for estimation of environmental flows, effluent water quality, hydropower operations, etc. However, it is not clear how the uncertainties in assumptions used in the projections translate into uncertainty of estimated future low flows. The objective of the study is to explore the relative role of hydrologic model calibration and climate scenarios in the uncertainty of low-flow projections in Austria.
Susana Almeida, Nataliya Le Vine, Neil McIntyre, Thorsten Wagener, and Wouter Buytaert
Hydrol. Earth Syst. Sci., 20, 887–901, https://doi.org/10.5194/hess-20-887-2016, https://doi.org/10.5194/hess-20-887-2016, 2016
Short summary
Short summary
The absence of flow data to calibrate hydrologic models may reduce the ability of such models to reliably inform water resources management. To address this limitation, it is common to condition hydrological model parameters on regionalized signatures. In this study, we justify the inclusion of larger sets of signatures in the regionalization procedure if their error correlations are formally accounted for and thus enable a more complete use of all available information.
H. Xu and Y. Luo
Hydrol. Earth Syst. Sci., 19, 4609–4618, https://doi.org/10.5194/hess-19-4609-2015, https://doi.org/10.5194/hess-19-4609-2015, 2015
Short summary
Short summary
This study quantified the climate impact on river discharge in the River Huangfuchuan in semi-arid northern China and the River Xiangxi in humid southern China. Climate projections showed trends toward warmer and wetter conditions, particularly for the River Huangfuchuan. The main projected hydrologic impact was a more pronounced increase in annual discharge in both catchments. Peak flows are projected to appear earlier than usual in the River Huangfuchuan and later than usual in River Xiangxi.
I. K. Westerberg and H. K. McMillan
Hydrol. Earth Syst. Sci., 19, 3951–3968, https://doi.org/10.5194/hess-19-3951-2015, https://doi.org/10.5194/hess-19-3951-2015, 2015
Short summary
Short summary
This study investigated the effect of uncertainties in data and calculation methods on hydrological signatures. We present a widely applicable method to evaluate signature uncertainty and show results for two example catchments. The uncertainties were often large (i.e. typical intervals of ±10–40% relative uncertainty) and highly variable between signatures. It is therefore important to consider uncertainty when signatures are used for hydrological and ecohydrological analyses and modelling.
T. O. Sonnenborg, D. Seifert, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 3891–3901, https://doi.org/10.5194/hess-19-3891-2015, https://doi.org/10.5194/hess-19-3891-2015, 2015
Short summary
Short summary
The impacts of climate model uncertainty and geological model uncertainty on hydraulic head, stream flow, travel time and capture zones are evaluated. Six versions of a physically based and distributed hydrological model, each containing a unique interpretation of the geological structure of the model area, are forced by 11 climate model projections. Geology is the dominating uncertainty source for travel time and capture zones, while climate dominates for hydraulic heads and steam flow.
N. Dogulu, P. López López, D. P. Solomatine, A. H. Weerts, and D. L. Shrestha
Hydrol. Earth Syst. Sci., 19, 3181–3201, https://doi.org/10.5194/hess-19-3181-2015, https://doi.org/10.5194/hess-19-3181-2015, 2015
T. Berezowski, J. Nossent, J. Chormański, and O. Batelaan
Hydrol. Earth Syst. Sci., 19, 1887–1904, https://doi.org/10.5194/hess-19-1887-2015, https://doi.org/10.5194/hess-19-1887-2015, 2015
F. Silvestro, S. Gabellani, R. Rudari, F. Delogu, P. Laiolo, and G. Boni
Hydrol. Earth Syst. Sci., 19, 1727–1751, https://doi.org/10.5194/hess-19-1727-2015, https://doi.org/10.5194/hess-19-1727-2015, 2015
M. C. Demirel, M. J. Booij, and A. Y. Hoekstra
Hydrol. Earth Syst. Sci., 19, 275–291, https://doi.org/10.5194/hess-19-275-2015, https://doi.org/10.5194/hess-19-275-2015, 2015
Short summary
Short summary
This paper investigates the skill of 90-day low-flow forecasts using three models. From the results, it appears that all models are prone to over-predict runoff during low-flow periods using ensemble seasonal meteorological forcing. The largest range for 90-day low-flow forecasts is found for the GR4J model. Overall, the uncertainty from ensemble P forecasts has a larger effect on seasonal low-flow forecasts than the uncertainty from ensemble PET forecasts and initial model conditions.
J. Crossman, M. N. Futter, P. G. Whitehead, E. Stainsby, H. M. Baulch, L. Jin, S. K. Oni, R. L. Wilby, and P. J. Dillon
Hydrol. Earth Syst. Sci., 18, 5125–5148, https://doi.org/10.5194/hess-18-5125-2014, https://doi.org/10.5194/hess-18-5125-2014, 2014
Short summary
Short summary
We projected potential hydrochemical responses in four neighbouring catchments to a range of future climates. The highly variable responses in streamflow and total phosphorus (TP) were governed by geology and flow pathways, where larger catchment responses were proportional to greater soil clay content. This suggests clay content might be used as an indicator of catchment sensitivity to climate change, and highlights the need for catchment-specific management plans.
M. Honti, A. Scheidegger, and C. Stamm
Hydrol. Earth Syst. Sci., 18, 3301–3317, https://doi.org/10.5194/hess-18-3301-2014, https://doi.org/10.5194/hess-18-3301-2014, 2014
Cited articles
Andréassian, V., Lerat, J., Loumagne, C., Mathevet, T., Michel, C., Oudin, L., and Perrin, C.: What is really undermining hydrologic science today?, Hydrol. Process., 21, 2819–2822, https://doi.org/10.1002/hyp.6854, 2007.
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11–29, 2001.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrolog. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H.: Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales, Cambridge University Press, 2013.
Bulygina, N., McIntyre, N., and Wheater, H.: Bayesian conditioning of a rainfall-runoff model for predicting flows in ungauged catchments and under land use changes, Water Resour. Res., 47, W02503, https://doi.org/10.1029/2010wr009240, 2011.
Bulygina, N., Ballard, C., McIntyre, N., O'Donnell, G., and Wheater, H.: Integrating different types of information into hydrological model parameter estimation: Application to ungauged catchments and land use scenario analysis, Water Resour. Res., 48, W06519, https://doi.org/10.1029/2011wr011207, 2012.
Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S.: Multi-model ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30, 1371–1386, https://doi.org/10.1016/j.advwatres.2006.11.014, 2007.
Ewen, J. and O'Donnell, G.: Prediction intervals for rainfall-runoff models: raw error method and split-sample validation, Hydrol. Res., 43, 637–648, https://doi.org/10.2166/nh.2012.038, 2012.
Franz, K. J. and Hogue, T. S.: Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community, Hydrol. Earth Syst. Sci., 15, 3367–3382, https://doi.org/10.5194/hess-15-3367-2011, 2011.
Gneiting, T. and Raftery, A. E.: Strictly proper scoring rules, prediction, and estimation, J. Am. Stat.l Assoc., 102, 359–378, https://doi.org/10.1198/016214506000001437, 2007.
Gneiting, T., Balabdaoui, F., and Raftery, A. E.: Probabilistic forecasts, calibration and sharpness, J. Roy. Stat. Soc. Ser. B, 69, 243–268, https://doi.org/10.1111/j.1467-9868.2007.00587.x, 2007.
Hrachowitz, M., Savenije, H. H. G., Bloeschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S., Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB)a review, Hydrolog. Sci. J., 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.
Kapangaziwiri, E., Hughes, D. A., and Wagener, T.: Incorporating uncertainty in hydrological predictions for gauged and ungauged basins in southern Africa, Hydrolog. Sci. J., 57, 1000–1019, https://doi.org/10.1080/02626667.2012.690881, 2012.
Liu, Y. Q. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water Resour. Res., 43, W07401, https://doi.org/10.1029/2006wr005756, 2007.
Mathevet, T.: Quels modèles pluie-débit globaux au pas de temps horaire? Développements empiriques et comparaison de modèles sur un large échantillon de bassins versants, PhD thesis, Paris, France, 2005.
Mathevet, T., Michel, C., Andréassian, V., and Perrin, C.: A bounded version of the Nash-Sutcliffe criterion for better model assessment on large sets of basins, IAHS-AISH Publication, IAHS Red Books Series, 307, 211–219, 2006.
Matott, L. S., Babendreier, J. E., and Purucker, S. T.: Evaluating uncertainty in integrated environmental models: A review of concepts and tools, Water Resour. Res., 45, W06421, https://doi.org/10.1029/2008wr007301, 2009.
McIntyre, N., Lee, H., Wheater, H., Young, A., and Wagener, T.: Ensemble predictions of runoff in ungauged catchments, Water Resour. Res., 41, W12434, https://doi.org/10.1029/2005wr004289, 2005.
Michel, C., Perrin, C., and Andreassian, V.: The exponential store: a correct formulation for rainfall-runoff modelling, Hydrolog. Sci. J., 48, 109–124, https://doi.org/10.1623/hysj.48.1.109.43484, 2003.
Montanari, A.: Uncertainty of Hydrological Predictions, in: Treatise on Water Science, edited by: Peter, W., Elsevier, Oxford, 459–478, 2011.
Montanari, A. and Brath, A.: A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 40, W01106, https://doi.org/10.1029/2003wr002540, 2004.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Anctil, F., and Loumagne, C.: Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 – Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling, J. Hydrol., 303, 290–306, https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005.
Oudin, L., Andreassian, V., Mathevet, T., Perrin, C., and Michel, C.: Dynamic averaging of rainfall–runoff model simulations from complementary model parameterizations, Water Resour. Res., 42, W07410, https://doi.org/10.1029/2005wr004636, 2006.
Oudin, L., Andreassian, V., Perrin, C., Michel, C., and Le Moine, N.: Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments, Water Resour. Res., 44, W03413, https://doi.org/10.1029/2007wr006240, 2008.
Oudin, L., Kay, A., Andreassian, V., and Perrin, C.: Are seemingly physically similar catchments truly hydrologically similar?, Water Resour. Res., 46, W11558, https://doi.org/10.1029/2009wr008887, 2010.
Parajka, J., Viglione, A., Rogger, M., Salinas, J. L., Sivapalan, M., and Bloeschl, G.: Comparative assessment of predictions in ungauged basins – Part 1: Runoff-hydrograph studies, Hydrol. Earth Syst. Sci., 17, 1783–1795, https://doi.org/10.5194/hess-17-1783-2013, 2013.
Perrin, C., Michel, C., and Andreassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/s0022-1694(03)00225-7, 2003.
Perrin, C., Andreassian, V., Serna, C. R., Mathevet, T., and Le Moine, N.: Discrete parameterization of hydrological models: Evaluating the use of parameter sets libraries over 900 catchments, Water Resour. Res., 44, W08447, https://doi.org/10.1029/2007wr006579, 2008.
Refsgaard, J. C., van der Sluijs, J. P., Hojberg, A. L., and Vanrolleghem, P. A.: Uncertainty in the environmental modelling process – A framework and guidance, Environ. Model. Softw., 22, 1543–1556, https://doi.org/10.1016/j.envsoft.2007.02.004, 2007.
Roscoe, K. L., Weerts, A. H., and Schroevers, M.: Estimation of the uncertainty in water level forecasts at ungauged river locations using quantile regression, Int. J. River Basin Manage., 10, 383–394, https://doi.org/10.1080/15715124.2012.740483, 2012.
Solomatine, D. P. and Shrestha, D. L.: A novel method to estimate model uncertainty using machine learning techniques, Water Resour. Res., 45, W00B11, https://doi.org/10.1029/2008wr006839, 2009.
Velazquez, J. A., Anctil, F., and Perrin, C.: Performance and reliability of multimodel hydrological ensemble simulations based on seventeen lumped models and a thousand catchments, Hydrol. Earth Syst. Sci., 14, 2303–2317, https://doi.org/10.5194/hess-14-2303-2010, 2010.
Vidal, J.-P., Martin, E., Franchisteguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50-year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010.
Wagener, T. and Montanari, A.: Convergence of approaches toward reducing uncertainty in predictions in ungauged basins, Water Resour. Res., 47, W06301, https://doi.org/10.1029/2010wr009469, 2011.
Weerts, A. H., Winsemius, H. C., and Verkade, J. S.: Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales), Hydrol. Earth Syst. Sci., 15, 255–265, https://doi.org/10.5194/hess-15-255-2011, 2011.
Wilks, D. S.: Statistical methods in the atmospheric sciences, 3rd Edn., Academic, Oxford, 2011.
Winsemius, H. C., Schaefli, B., Montanari, A., and Savenije, H. H. G.: On the calibration of hydrological models in ungauged basins: A framework for integrating hard and soft hydrological information, Water Resour. Res., 45, W12422, https://doi.org/10.1029/2009wr007706, 2009.
Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins, Adv. Water Resour., 30, 1756–1774, https://doi.org/10.1016/j.advwatres.2007.01.005, 2007.
Zhang, Z., Wagener, T., Reed, P., and Bhushan, R.: Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization, Water Resour. Res., 44, W00B04, https://doi.org/10.1029/2008wr006833, 2008.