Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 19, issue 4
Hydrol. Earth Syst. Sci., 19, 1767–1786, 2015
https://doi.org/10.5194/hess-19-1767-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 1767–1786, 2015
https://doi.org/10.5194/hess-19-1767-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Apr 2015

Research article | 17 Apr 2015

Characteristics and controls of variability in soil moisture and groundwater in a headwater catchment

H. K. McMillan and M. S. Srinivasan

Related authors

mizuRoute version 1: a river network routing tool for a continental domain water resources applications
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016,https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary
Uncertainty in hydrological signatures
I. K. Westerberg and H. K. McMillan
Hydrol. Earth Syst. Sci., 19, 3951–3968, https://doi.org/10.5194/hess-19-3951-2015,https://doi.org/10.5194/hess-19-3951-2015, 2015
Short summary
Operational hydrological data assimilation with the recursive ensemble Kalman filter
H. K. McMillan, E. Ö. Hreinsson, M. P. Clark, S. K. Singh, C. Zammit, and M. J. Uddstrom
Hydrol. Earth Syst. Sci., 17, 21–38, https://doi.org/10.5194/hess-17-21-2013,https://doi.org/10.5194/hess-17-21-2013, 2013

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020,https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Soil moisture sensor network design for hydrological applications
Lu Zhuo, Qiang Dai, Binru Zhao, and Dawei Han
Hydrol. Earth Syst. Sci., 24, 2577–2591, https://doi.org/10.5194/hess-24-2577-2020,https://doi.org/10.5194/hess-24-2577-2020, 2020
Short summary
Catchment-scale drought: capturing the whole drought cycle using multiple indicators
Abraham J. Gibson, Danielle C. Verdon-Kidd, Greg R. Hancock, and Garry Willgoose
Hydrol. Earth Syst. Sci., 24, 1985–2002, https://doi.org/10.5194/hess-24-1985-2020,https://doi.org/10.5194/hess-24-1985-2020, 2020
Short summary
Field-based estimation and modelling of distributed groundwater recharge in a Mediterranean karst catchment, Wadi Natuf, West Bank
Clemens Messerschmid, Martin Sauter, and Jens Lange
Hydrol. Earth Syst. Sci., 24, 887–917, https://doi.org/10.5194/hess-24-887-2020,https://doi.org/10.5194/hess-24-887-2020, 2020
Short summary
Surface water as a cause of land degradation from dryland salinity
J. Nikolaus Callow, Matthew R. Hipsey, and Ryan I. J. Vogwill
Hydrol. Earth Syst. Sci., 24, 717–734, https://doi.org/10.5194/hess-24-717-2020,https://doi.org/10.5194/hess-24-717-2020, 2020
Short summary

Cited articles

Acclima: SDI-12 Sensor Data Sheet: http://acclima.com/wd/acclimadocs/agriculture/SDI-12_TDT_Sensor_Data_Sheet.pdf, last access: 1 November 2014.
Ali, G., Oswald, C. J., Spence, C., Cammeraat, E. L. H., McGuire, K. J., Meixner, T., and Reaney, S. M.: Towards a unified threshold-based hydrological theory: necessary components and recurring challenges, Hydrol. Process., 27, 313–318, https://doi.org/10.1002/hyp.9560, 2013.
Anderson, M. G. and Burt, T. P.: The role of topography in controlling throughflow generation, Earth Surf. Proc. Land., 3, 331–344, 1978.
Beldring, S., Gottschalk, L., Seibert, J., and Tallaksen, L. M.: Distribution of soil moisture and groundwater levels at patch and catchment scales, Agricultural and Forest Meteorology, 98-9, 305-324, 10.1016/s0168-1923(99)00103-3, 1999.
Bachmair, S., Weiler, M., and Troch, P. A.: Intercomparing hillslope hydrological dynamics: Spatio-temporal variability and vegetation cover effects, Water Resour. Res., 48, W05537, https://doi.org/10.1029/2011wr011196, 2012.
Publications Copernicus
Download
Short summary
River flows depend not only on how much water is in a catchment, but also on where the water is stored, which changes over time. We monitored streamflow, soil moisture, and groundwater levels in a NZ catchment, to find out what controls water storage and variability. We found that the catchment had a summer mode where water storage is controlled by near-surface interactions of water with soils and vegetation, and a winter mode where water storage is controlled by deeper groundwater movement.
River flows depend not only on how much water is in a catchment, but also on where the water is...
Citation