Articles | Volume 19, issue 4
Hydrol. Earth Syst. Sci., 19, 1767–1786, 2015
https://doi.org/10.5194/hess-19-1767-2015
Hydrol. Earth Syst. Sci., 19, 1767–1786, 2015
https://doi.org/10.5194/hess-19-1767-2015
Research article
17 Apr 2015
Research article | 17 Apr 2015

Characteristics and controls of variability in soil moisture and groundwater in a headwater catchment

H. K. McMillan and M. S. Srinivasan

Related authors

Preface: Linking landscape organisation and hydrological functioning: from hypotheses and observations to concepts, models and understanding
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021,https://doi.org/10.5194/hess-25-5277-2021, 2021
mizuRoute version 1: a river network routing tool for a continental domain water resources applications
Naoki Mizukami, Martyn P. Clark, Kevin Sampson, Bart Nijssen, Yixin Mao, Hilary McMillan, Roland J. Viger, Steve L. Markstrom, Lauren E. Hay, Ross Woods, Jeffrey R. Arnold, and Levi D. Brekke
Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016,https://doi.org/10.5194/gmd-9-2223-2016, 2016
Short summary
Uncertainty in hydrological signatures
I. K. Westerberg and H. K. McMillan
Hydrol. Earth Syst. Sci., 19, 3951–3968, https://doi.org/10.5194/hess-19-3951-2015,https://doi.org/10.5194/hess-19-3951-2015, 2015
Short summary
Operational hydrological data assimilation with the recursive ensemble Kalman filter
H. K. McMillan, E. Ö. Hreinsson, M. P. Clark, S. K. Singh, C. Zammit, and M. J. Uddstrom
Hydrol. Earth Syst. Sci., 17, 21–38, https://doi.org/10.5194/hess-17-21-2013,https://doi.org/10.5194/hess-17-21-2013, 2013

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Sources and mean transit times of stream water in an intermittent river system: the upper Wimmera River, southeast Australia
Zibo Zhou, Ian Cartwright, and Uwe Morgenstern
Hydrol. Earth Syst. Sci., 26, 4497–4513, https://doi.org/10.5194/hess-26-4497-2022,https://doi.org/10.5194/hess-26-4497-2022, 2022
Short summary
Bedrock depth influences spatial patterns of summer baseflow, temperature and flow disconnection for mountainous headwater streams
Martin A. Briggs, Phillip Goodling, Zachary C. Johnson, Karli M. Rogers, Nathaniel P. Hitt, Jennifer B. Fair, and Craig D. Snyder
Hydrol. Earth Syst. Sci., 26, 3989–4011, https://doi.org/10.5194/hess-26-3989-2022,https://doi.org/10.5194/hess-26-3989-2022, 2022
Short summary
Agricultural intensification vs. climate change: what drives long-term changes in sediment load?
Shengping Wang, Borbala Szeles, Carmen Krammer, Elmar Schmaltz, Kepeng Song, Yifan Li, Zhiqiang Zhang, Günter Blöschl, and Peter Strauss
Hydrol. Earth Syst. Sci., 26, 3021–3036, https://doi.org/10.5194/hess-26-3021-2022,https://doi.org/10.5194/hess-26-3021-2022, 2022
Short summary
Evaporation from a large lowland reservoir – observed dynamics and drivers during a warm summer
Femke A. Jansen, Remko Uijlenhoet, Cor M. J. Jacobs, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 26, 2875–2898, https://doi.org/10.5194/hess-26-2875-2022,https://doi.org/10.5194/hess-26-2875-2022, 2022
Short summary
Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021)
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021,https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary

Cited articles

Acclima: SDI-12 Sensor Data Sheet: http://acclima.com/wd/acclimadocs/agriculture/SDI-12_TDT_Sensor_Data_Sheet.pdf, last access: 1 November 2014.
Ali, G., Oswald, C. J., Spence, C., Cammeraat, E. L. H., McGuire, K. J., Meixner, T., and Reaney, S. M.: Towards a unified threshold-based hydrological theory: necessary components and recurring challenges, Hydrol. Process., 27, 313–318, https://doi.org/10.1002/hyp.9560, 2013.
Anderson, M. G. and Burt, T. P.: The role of topography in controlling throughflow generation, Earth Surf. Proc. Land., 3, 331–344, 1978.
Beldring, S., Gottschalk, L., Seibert, J., and Tallaksen, L. M.: Distribution of soil moisture and groundwater levels at patch and catchment scales, Agricultural and Forest Meteorology, 98-9, 305-324, 10.1016/s0168-1923(99)00103-3, 1999.
Bachmair, S., Weiler, M., and Troch, P. A.: Intercomparing hillslope hydrological dynamics: Spatio-temporal variability and vegetation cover effects, Water Resour. Res., 48, W05537, https://doi.org/10.1029/2011wr011196, 2012.
Download
Short summary
River flows depend not only on how much water is in a catchment, but also on where the water is stored, which changes over time. We monitored streamflow, soil moisture, and groundwater levels in a NZ catchment, to find out what controls water storage and variability. We found that the catchment had a summer mode where water storage is controlled by near-surface interactions of water with soils and vegetation, and a winter mode where water storage is controlled by deeper groundwater movement.