Articles | Volume 17, issue 3
https://doi.org/10.5194/hess-17-1113-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-1113-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A critical assessment of the JULES land surface model hydrology for humid tropical environments
Z. Zulkafli
Department of Civil and Environmental Engineering, Imperial College London, London, UK
W. Buytaert
Department of Civil and Environmental Engineering, Imperial College London, London, UK
Grantham Institute for Climate Change, Imperial College London, London, UK
Department of Civil and Environmental Engineering, Imperial College London, London, UK
W. Lavado
Servicio Nacional de Meteorología e Hidrología (SENAMHI), Lima, Peru
J. L. Guyot
IRD – Institut de recherche pour le développement, Lima , Peru
Related authors
No articles found.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Abrar Habib, Athanasios Paschalis, Adrian P. Butler, Christian Onof, John P. Bloomfield, and James P. R. Sorensen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-27, https://doi.org/10.5194/hess-2023-27, 2023
Preprint withdrawn
Short summary
Short summary
Components of the hydrological cycle exhibit a “memory” in their behaviour which quantifies how long a variable would stay at high/low values. Being able to model and understand what affects it is vital for an accurate representation of the hydrological elements. In the current work, it is found that rainfall affects the fractal behaviour of groundwater levels, which implies that changes to rainfall due to climate change will change the periods of flood and drought in groundwater-fed catchments.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Christian Onof and Li-Pen Wang
Hydrol. Earth Syst. Sci., 24, 2791–2815, https://doi.org/10.5194/hess-24-2791-2020, https://doi.org/10.5194/hess-24-2791-2020, 2020
Short summary
Short summary
The randomised Bartlett–Lewis (RBL) model is widely used to synthesise rainfall time series with realistic statistical features. However, it tended to underestimate rainfall extremes at sub-hourly and hourly timescales. In this paper, we revisit the derivation of equations that represent rainfall properties and compare statistical estimation methods that impact model calibration. These changes effectively improved the RBL model's capacity to reproduce sub-hourly and hourly rainfall extremes.
Jeongha Park, Christian Onof, and Dongkyun Kim
Hydrol. Earth Syst. Sci., 23, 989–1014, https://doi.org/10.5194/hess-23-989-2019, https://doi.org/10.5194/hess-23-989-2019, 2019
Short summary
Short summary
Rainfall data are often unavailable for the analysis of water-related problems such as floods and droughts. In such cases, researchers use rainfall generators to produce synthetic rainfall data. However, data from most rainfall generators can serve only one specific purpose; i.e. one rainfall generator cannot be applied to analyse both floods and droughts. To overcome this issue, we invented a multipurpose rainfall generator that can be applied to analyse most water-related problems.
Anoop Kumar Shukla, Chandra Shekhar Prasad Ojha, Ana Mijic, Wouter Buytaert, Shray Pathak, Rahul Dev Garg, and Satyavati Shukla
Hydrol. Earth Syst. Sci., 22, 4745–4770, https://doi.org/10.5194/hess-22-4745-2018, https://doi.org/10.5194/hess-22-4745-2018, 2018
Short summary
Short summary
Geospatial technologies and OIP are promising tools to study the effect of demographic changes and LULC transformations on the spatiotemporal variations in the water quality (WQ) across a large river basin. Therefore, this study could help to assess and solve local and regional WQ-related problems over a river basin. It may help the policy makers and planners to understand the status of water pollution so that suitable strategies could be planned for sustainable development in a river basin.
Gina Tsarouchi and Wouter Buytaert
Hydrol. Earth Syst. Sci., 22, 1411–1435, https://doi.org/10.5194/hess-22-1411-2018, https://doi.org/10.5194/hess-22-1411-2018, 2018
Short summary
Short summary
This work quantifies how future land-use and climate change may affect the hydrology of the Upper Ganges basin. Three sets of modelling experiments are run for the period 2000–2035, considering (1) only climate change, (2) only land-use change and (3) both climate and land-use change. Results point towards a severe increase in high flows. The changes are greater in the combined land-use and climate change experiment. We also show that future winter water demands in the region may not be met.
David Cross, Christian Onof, Hugo Winter, and Pietro Bernardara
Hydrol. Earth Syst. Sci., 22, 727–756, https://doi.org/10.5194/hess-22-727-2018, https://doi.org/10.5194/hess-22-727-2018, 2018
Short summary
Short summary
Extreme rainfall is one of the most significant natural hazards. However, estimating very large events is highly uncertain. We present a new approach to construct intense rainfall using the structure of rainfall generation in clouds. The method is particularly effective at estimating short-duration extremes, which can be the most damaging. This is expected to have immediate impact for the estimation of very rare downpours, with the potential to improve climate resilience and hazard preparedness.
Stefan Hunziker, Stefan Brönnimann, Juan Calle, Isabel Moreno, Marcos Andrade, Laura Ticona, Adrian Huerta, and Waldo Lavado-Casimiro
Clim. Past, 14, 1–20, https://doi.org/10.5194/cp-14-1-2018, https://doi.org/10.5194/cp-14-1-2018, 2018
Short summary
Short summary
Many data quality problems occurring in manned weather station observations are hardly detected with common data quality control methods. We investigated the effects of undetected data quality issues and found that they may reduce the correlation coefficients of station pairs, deteriorate the performance of data homogenization methods, increase the spread of individual station trends, and significantly bias regional trends. Applying adequate quality control approaches is of utmost importance.
Feng Mao, Julian Clark, Timothy Karpouzoglou, Art Dewulf, Wouter Buytaert, and David Hannah
Hydrol. Earth Syst. Sci., 21, 3655–3670, https://doi.org/10.5194/hess-21-3655-2017, https://doi.org/10.5194/hess-21-3655-2017, 2017
Short summary
Short summary
The paper aims to propose a conceptual framework that supports nuanced understanding and analytical assessment of resilience in socio-hydrological contexts. We identify three framings of resilience for different human–water couplings, which have distinct application fields and are used for different water management challenges. To assess and improve socio-hydrological resilience in each type, we introduce a
resilience canvasas a heuristic tool to design bespoke management strategies.
Himanshu Arora, Chandra Shekhar Prasad Ojha, Wouter Buytaert, Gujjunadu Suryaprakash Kaushika, and Chetan Sharma
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-388, https://doi.org/10.5194/hess-2017-388, 2017
Revised manuscript has not been submitted
Short summary
Short summary
In many agrarian countries (like India), the agricultural practices are usually rainfall dependent. Therefore keeping the water budget into account, precipitation being an important component must be analysed thoroughly for its occurrence and amount. The analysis of trends can provide an insight in understanding the possible impacts in future, which can assist living beings to adapt and cope up with changing climate and hydrological cycle.
Ricardo Zubieta, Augusto Getirana, Jhan Carlo Espinoza, Waldo Lavado-Casimiro, and Luis Aragon
Hydrol. Earth Syst. Sci., 21, 3543–3555, https://doi.org/10.5194/hess-21-3543-2017, https://doi.org/10.5194/hess-21-3543-2017, 2017
Short summary
Short summary
This paper indicates that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, in comparison to observed rainfall (by 11.1 % and 15.7 %, respectively). Statistical analysis indicates that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets for estimating observed streamflows in Andean–Amazonian regions (Ucayali Basin, southern regions of the Amazon Basin of Peru and Ecuador).
Jimmy O'Keeffe, Wouter Buytaert, Ana Mijic, Nicholas Brozović, and Rajiv Sinha
Hydrol. Earth Syst. Sci., 20, 1911–1924, https://doi.org/10.5194/hess-20-1911-2016, https://doi.org/10.5194/hess-20-1911-2016, 2016
Short summary
Short summary
Semi-structured interviews provide an effective and efficient way of collecting qualitative and quantitative data on water use practices. Interviews are organised around a topic guide, which helps lead the conversation while allowing sufficient opportunity to identify issues previously unknown to the researcher. The use of semi-structured interviews could significantly and quickly improve insight on water resources, leading to more realistic future management options and increased water security.
Susana Almeida, Nataliya Le Vine, Neil McIntyre, Thorsten Wagener, and Wouter Buytaert
Hydrol. Earth Syst. Sci., 20, 887–901, https://doi.org/10.5194/hess-20-887-2016, https://doi.org/10.5194/hess-20-887-2016, 2016
Short summary
Short summary
The absence of flow data to calibrate hydrologic models may reduce the ability of such models to reliably inform water resources management. To address this limitation, it is common to condition hydrological model parameters on regionalized signatures. In this study, we justify the inclusion of larger sets of signatures in the regionalization procedure if their error correlations are formally accounted for and thus enable a more complete use of all available information.
P. Blair and W. Buytaert
Hydrol. Earth Syst. Sci., 20, 443–478, https://doi.org/10.5194/hess-20-443-2016, https://doi.org/10.5194/hess-20-443-2016, 2016
Short summary
Short summary
This paper reviews literature surrounding many aspects of socio-hydrological modelling; this includes a background to the subject of socio-hydrology, reasons why socio-hydrological modelling would be used, what is to be modelled in socio-hydrology and concepts that underpin this, as well as several modelling techniques and how they may be applied in socio-hydrology.
S. Moulds, W. Buytaert, and A. Mijic
Geosci. Model Dev., 8, 3215–3229, https://doi.org/10.5194/gmd-8-3215-2015, https://doi.org/10.5194/gmd-8-3215-2015, 2015
Short summary
Short summary
The contribution of lulcc is to provide a free and open-source framework for land use change modelling. The software, which is provided as an R package, addresses problems associated with the current paradigm of closed-source, specialised land use change modelling software which disrupt the scientific process. It is an attempt to move the discipline towards open and transparent science and to ensure land use change models are accessible to scientists working across the geosciences.
L.-P. Wang, S. Ochoa-Rodríguez, C. Onof, and P. Willems
Hydrol. Earth Syst. Sci., 19, 4001–4021, https://doi.org/10.5194/hess-19-4001-2015, https://doi.org/10.5194/hess-19-4001-2015, 2015
Short summary
Short summary
A new methodology is proposed in this paper, focusing on improving the applicability of the operational weather radar data to urban hydrology with rain gauge data. The proposed methodology employed a simple yet effective technique to extract additional information (called local singularity structure) from radar data, which was generally ignored in related works. The associated improvement can be particularly seen in capturing storm peak magnitudes, which is critical for urban applications.
J. Apaéstegui, F. W. Cruz, A. Sifeddine, M. Vuille, J. C. Espinoza, J. L. Guyot, M. Khodri, N. Strikis, R. V. Santos, H. Cheng, L. Edwards, E. Carvalho, and W. Santini
Clim. Past, 10, 1967–1981, https://doi.org/10.5194/cp-10-1967-2014, https://doi.org/10.5194/cp-10-1967-2014, 2014
Short summary
Short summary
In this paper we explore a speleothem δ18O record from Palestina cave, northwestern Peru, on the eastern side of the Andes cordillera, in the upper Amazon Basin. The δ18O record is interpreted as a proxy for South American Summer Monsoon (SASM) intensity and allows the reconstruction of its variability during the last 1600 years. Replicating regional climate signals from different sites and using different proxies is essential for a comprehensive understanding of past changes in SASM activity.
G. M. Tsarouchi, W. Buytaert, and A. Mijic
Hydrol. Earth Syst. Sci., 18, 4223–4238, https://doi.org/10.5194/hess-18-4223-2014, https://doi.org/10.5194/hess-18-4223-2014, 2014
H. M. Holländer, H. Bormann, T. Blume, W. Buytaert, G. B. Chirico, J.-F. Exbrayat, D. Gustafsson, H. Hölzel, T. Krauße, P. Kraft, S. Stoll, G. Blöschl, and H. Flühler
Hydrol. Earth Syst. Sci., 18, 2065–2085, https://doi.org/10.5194/hess-18-2065-2014, https://doi.org/10.5194/hess-18-2065-2014, 2014
S. B. Morera, T. Condom, P. Vauchel, J.-L. Guyot, C. Galvez, and A. Crave
Hydrol. Earth Syst. Sci., 17, 4641–4657, https://doi.org/10.5194/hess-17-4641-2013, https://doi.org/10.5194/hess-17-4641-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Investigating the response of land–atmosphere interactions and feedbacks to spatial representation of irrigation in a coupled modeling framework
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Hybrid forecasting: blending climate predictions with AI models
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Accounting for Precipitation Asymmetry in a Multiplicative Random Cascades Disaggregation Model
Local moisture recycling across the globe
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
A semi-parametric hourly space-time weather generator
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Linking the complementary evaporation relationship with the Budyko framework for ungauged areas in Australia
Risks of seasonal extreme rainfall events in Bangladesh under 1.5 and 2.0 °C warmer worlds – how anthropogenic aerosols change the story
Pan evaporation is increased by submerged macrophytes
Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis
Characterizing basin-scale precipitation gradients in the Third Pole region using a high-resolution atmospheric simulation-based dataset
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
A principal component based strategy for regionalisation of precipitation intensity-duration-frequency (IDF) statistics
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Hydrological concept formation inside long short-term memory (LSTM) networks
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe
Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature
Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations
Recent decrease in summer precipitation over the Iberian Peninsula closely links to reduction in local moisture recycling
Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity
Critical transitions in the hydrological system: early-warning signals and network analysis
Testing a maximum evaporation theory over saturated land: implications for potential evaporation estimation
The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy
Impact of correcting sub-daily climate model biases for hydrological studies
The Mesoamerican mid-summer drought: the impact of its definition on occurrences and recent changes
Reconstructing climate trends adds skills to seasonal reference crop evapotranspiration forecasting
Influence of initial soil moisture in a regional climate model study over West Africa – Part 1: Impact on the climate mean
Influence of initial soil moisture in a regional climate model study over West Africa – Part 2: Impact on the climate extremes
Compound flood impact forecasting: integrating fluvial and flash flood impact assessments into a unified system
Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning
Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany
Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification
Flexible and consistent quantile estimation for intensity–duration–frequency curves
Evaluation of Asian summer precipitation in different configurations of a high-resolution general circulation model in a range of decision-relevant spatial scales
Rainfall-induced shallow landslides and soil wetness: comparison of physically based and probabilistic predictions
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023, https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
Hydrol. Earth Syst. Sci., 27, 2787–2805, https://doi.org/10.5194/hess-27-2787-2023, https://doi.org/10.5194/hess-27-2787-2023, 2023
Short summary
Short summary
Irrigation has been shown to impact weather and climate, but it has only recently been considered in prediction models. Prescribing where (globally) irrigation takes place is important to accurately simulate its impacts on temperature, humidity, and precipitation. Here, we evaluated three different irrigation maps in a weather model and found that the extent and intensity of irrigated areas and their boundaries are important drivers of weather impacts resulting from human practices.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023, https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023, https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Short summary
We use circulation classifications and spatiotemporal deep neural networks to correct raw daily forecast precipitation by combining large-scale circulation patterns with local spatiotemporal information. We find that the method not only captures the westward and northward movement of the western Pacific subtropical high but also shows substantially higher bias-correction capabilities than existing standard methods in terms of spatial scale, timescale, and intensity.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
EGUsphere, https://doi.org/10.5194/egusphere-2023-544, https://doi.org/10.5194/egusphere-2023-544, 2023
Short summary
Short summary
High-resolution precipitation, needed for many applications in hydrology, are typically rare worldwide. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, Multiplicative Random Cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Short summary
Rainfall volumes at varying duration and frequencies are required for many engineering water works. These design volumes have been provided by KOSTRA-DWD in Germany. However, a revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. For this purpose, in our study, we investigate different methods and data available to achieve the best procedure that will serve as a basis for the development of the new KOSTRA-DWD product.
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-45, https://doi.org/10.5194/hess-2023-45, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperuatre), the model is then coupled to a simple resampling approach.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022, https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
Daeha Kim, Minha Choi, and Jong Ahn Chun
Hydrol. Earth Syst. Sci., 26, 5955–5969, https://doi.org/10.5194/hess-26-5955-2022, https://doi.org/10.5194/hess-26-5955-2022, 2022
Short summary
Short summary
We proposed a practical method that predicts the evaporation rates on land surfaces (ET) where only atmospheric data are available. Using a traditional equation that describes partitioning of precipitation into ET and streamflow, we could approximately identify the key parameter of the predicting formulation based on land–atmosphere interactions. The simple method conditioned by local climates outperformed sophisticated models in reproducing water-balance estimates across Australia.
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022, https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Brigitta Simon-Gáspár, Gábor Soós, and Angela Anda
Hydrol. Earth Syst. Sci., 26, 4741–4756, https://doi.org/10.5194/hess-26-4741-2022, https://doi.org/10.5194/hess-26-4741-2022, 2022
Short summary
Short summary
Due to climate change, it is extremely important to determine evaporation as accurately as possible. In nature, there are sediments and macrophytes in the open waters; thus, one of the aims was to investigate their effect on evaporation. The second aim of this paper was to estimate daily evaporation by using different models, which, according to results, have high priority in the evaporation prediction. Water management can obtain useful information from the results of the current research.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Yaozhi Jiang, Kun Yang, Hua Yang, Hui Lu, Yingying Chen, Xu Zhou, Jing Sun, Yuan Yang, and Yan Wang
Hydrol. Earth Syst. Sci., 26, 4587–4601, https://doi.org/10.5194/hess-26-4587-2022, https://doi.org/10.5194/hess-26-4587-2022, 2022
Short summary
Short summary
Our study quantified the altitudinal precipitation gradients (PGs) over the Third Pole (TP). Most sub-basins in the TP have positive PGs, and negative PGs are found in the Himalayas, the Hengduan Mountains and the western Kunlun. PGs are positively correlated with wind speed but negatively correlated with relative humidity. In addition, PGs tend to be positive at smaller spatial scales compared to those at larger scales. The findings can assist precipitation interpolation in the data-sparse TP.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-233, https://doi.org/10.5194/hess-2022-233, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
Intensity-Duration-Frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, e.g., for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022, https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022, https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
Short summary
Despite the accuracy of deep learning rainfall-runoff models, we are currently uncertain of what these models have learned. In this study we explore the internals of one deep learning architecture and demonstrate that the model learns about intermediate hydrological stores of soil moisture and snow water, despite never having seen data about these processes during training. Therefore, we find evidence that the deep learning approach learns a physically realistic mapping from inputs to outputs.
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022, https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Short summary
How to combine multi-source precipitation data effectively is one of the hot topics in hydrometeorological research. This study presents a two-step merging strategy based on machine learning for multi-source precipitation merging over China. The results demonstrate that the proposed method effectively distinguishes the occurrence of precipitation events and reduces the error in precipitation estimation. This method is robust and may be successfully applied to other areas even with scarce data.
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022, https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary
Short summary
The hydrometeorological skills of two new nowcasting systems for forecasting Mediterranean intense rainfall events and floods are investigated. The results reveal that up to 75 or 90 min of forecast the performance of the nowcasting system blending numerical weather prediction and extrapolation of radar estimation is higher than the numerical weather model. For lead times up to 3 h the skills are equivalent in general. Using these nowcasting systems for flash flood forecasting is also promising.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Shakirudeen Lawal, Stephen Sitch, Danica Lombardozzi, Julia E. M. S. Nabel, Hao-Wei Wey, Pierre Friedlingstein, Hanqin Tian, and Bruce Hewitson
Hydrol. Earth Syst. Sci., 26, 2045–2071, https://doi.org/10.5194/hess-26-2045-2022, https://doi.org/10.5194/hess-26-2045-2022, 2022
Short summary
Short summary
To investigate the impacts of drought on vegetation, which few studies have done due to various limitations, we used the leaf area index as proxy and dynamic global vegetation models (DGVMs) to simulate drought impacts because the models use observationally derived climate. We found that the semi-desert biome responds strongly to drought in the summer season, while the tropical forest biome shows a weak response. This study could help target areas to improve drought monitoring and simulation.
Yubo Liu, Monica Garcia, Chi Zhang, and Qiuhong Tang
Hydrol. Earth Syst. Sci., 26, 1925–1936, https://doi.org/10.5194/hess-26-1925-2022, https://doi.org/10.5194/hess-26-1925-2022, 2022
Short summary
Short summary
Our findings indicate that the reduction in contribution to the Iberian Peninsula (IP) summer precipitation is mainly concentrated in the IP and its neighboring grids. Compared with 1980–1997, both local recycling and external moisture were reduced during 1998–2019. The reduction in local recycling in the IP closely links to the disappearance of the wet years and the decreasing contribution in the dry years.
Nejc Bezak, Pasquale Borrelli, and Panos Panagos
Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, https://doi.org/10.5194/hess-26-1907-2022, 2022
Short summary
Short summary
Rainfall erosivity is one of the main factors in soil erosion. A satellite-based global map of rainfall erosivity was constructed using data with a 30 min time interval. It was shown that the satellite-based precipitation products are an interesting option for estimating rainfall erosivity, especially in regions with limited ground data. However, ground-based high-frequency precipitation measurements are (still) essential for accurate estimates of rainfall erosivity.
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Paola Mazzoglio, Ilaria Butera, Massimiliano Alvioli, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 26, 1659–1672, https://doi.org/10.5194/hess-26-1659-2022, https://doi.org/10.5194/hess-26-1659-2022, 2022
Short summary
Short summary
We have analyzed the spatial dependence of rainfall extremes upon elevation and morphology in Italy. Regression analyses show that previous rainfall–elevation relations at national scale can be substantially improved with new data, both using topography attributes and constraining the analysis within areas stemming from geomorphological zonation. Short-duration mean rainfall depths can then be estimated, all over Italy, using different parameters in each area of the geomorphological subdivision.
Mina Faghih, François Brissette, and Parham Sabeti
Hydrol. Earth Syst. Sci., 26, 1545–1563, https://doi.org/10.5194/hess-26-1545-2022, https://doi.org/10.5194/hess-26-1545-2022, 2022
Short summary
Short summary
The diurnal cycles of precipitation and temperature generated by climate models are biased. This work investigates whether or not impact modellers should correct the diurnal cycle biases prior to conducting hydrological impact studies at the sub-daily scale. The results show that more accurate streamflows are obtained when the diurnal cycles biases are corrected. This is noticeable for smaller catchments, which have a quicker reaction time to changes in precipitation and temperature.
Edwin P. Maurer, Iris T. Stewart, Kenneth Joseph, and Hugo G. Hidalgo
Hydrol. Earth Syst. Sci., 26, 1425–1437, https://doi.org/10.5194/hess-26-1425-2022, https://doi.org/10.5194/hess-26-1425-2022, 2022
Short summary
Short summary
The mid-summer drought (MSD) is common in Mesoamerica. It is a short (weeks-long) period of reduced rainfall near the middle of the rainy season. When it occurs, how long it lasts, and how dry it is all have important implications for smallholder farmers. Studies of changes in MSD characteristics rely on defining characteristics of an MSD. Different definitions affect whether an area would be considered to experience an MSD as well as the changes that have happened in the last 40 years.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Josias Láng-Ritter, Marc Berenguer, Francesco Dottori, Milan Kalas, and Daniel Sempere-Torres
Hydrol. Earth Syst. Sci., 26, 689–709, https://doi.org/10.5194/hess-26-689-2022, https://doi.org/10.5194/hess-26-689-2022, 2022
Short summary
Short summary
During flood events, emergency managers such as civil protection authorities rely on flood forecasts to make informed decisions. In the current practice, they monitor several separate forecasts, each one of them covering a different type of flooding. This can be time-consuming and confusing, ultimately compromising the effectiveness of the emergency response. This work illustrates how the automatic combination of flood type-specific impact forecasts can improve decision support systems.
Junjiang Liu, Xing Yuan, Junhan Zeng, Yang Jiao, Yong Li, Lihua Zhong, and Ling Yao
Hydrol. Earth Syst. Sci., 26, 265–278, https://doi.org/10.5194/hess-26-265-2022, https://doi.org/10.5194/hess-26-265-2022, 2022
Short summary
Short summary
Hourly streamflow ensemble forecasts with the CSSPv2 land surface model and ECMWF meteorological forecasts reduce both the probabilistic and deterministic forecast error compared with the ensemble streamflow prediction approach during the first week. The deterministic forecast error can be further reduced in the first 72 h when combined with the long short-term memory (LSTM) deep learning method. The forecast skill for LSTM using only historical observations drops sharply after the first 24 h.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, https://doi.org/10.5194/hess-25-6479-2021, 2021
Short summary
Short summary
Extreme rainfall events are modeled in this study for different timescales. A new parameterization of the dependence between extreme values and their timescale enables our model to estimate extremes on very short (1 min) and long (5 d) timescales simultaneously. We compare different approaches of modeling this dependence and find that our new model improves performance for timescales between 2 h and 2 d without affecting model performance on other timescales.
Mark R. Muetzelfeldt, Reinhard Schiemann, Andrew G. Turner, Nicholas P. Klingaman, Pier Luigi Vidale, and Malcolm J. Roberts
Hydrol. Earth Syst. Sci., 25, 6381–6405, https://doi.org/10.5194/hess-25-6381-2021, https://doi.org/10.5194/hess-25-6381-2021, 2021
Short summary
Short summary
Simulating East Asian Summer Monsoon (EASM) rainfall poses many challenges because of its multi-scale nature. We evaluate three setups of a 14 km global climate model against observations to see if they improve simulated rainfall. We do this over catchment basins of different sizes to estimate how model performance depends on spatial scale. Using explicit convection improves rainfall diurnal cycle, yet more model tuning is needed to improve mean and intensity biases in simulated summer rainfall.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Cited articles
Aalto, R., Dunne, T., and Guyot, J. L.: Geomorphic controls on Andean denudation rates, J. Geol., 114, 85–99, https://doi.org/10.1086/498101, 2006.
Alkama, R., Decharme, B., Douville, H., and Ribes, A.: Trends in global and basin-scale runoff over the late twentieth century: methodological issues and sources of uncertainty, J. Climate, 24, 3000–3014, https://doi.org/10.1175/2010JCLI3921.1, 2011.
Arora, V. K. and Boer, G. J.: An analysis of simulated runoff and surface moisture fluxes in the CCCma coupled atmosphere land surface hydrological model, Proc. of International Congress on Modelling and Simulation, MODSIM 2003, vol. 1, Townsville, Queensland, Australia, 166–171, 2003.
Asdak, C., Jarvis, P., van Gardingen, P., and Fraser, A.: Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia, J. Hydrol., 206, 237–244, https://doi.org/10.1016/S0022-1694(98)00108-5, 1998.
Bakopoulou, C., Bulygina, N., Butler, A., and McIntyre, N.: Sensitivity analysis and parameter identifiability of the land surface model JULES at the point scale in permeable catchments, Proc. of British Hydrological Society National Symposium, Dundee, June 2012.
Baldocchi, D. D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, Ch., Davis, K., Fuentes, J., Goldstein, A., Katul, G., Law, B. E., Lee, X., Mahli, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. W.: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Bekoe, E.: Application of a hydrological model in a data-poor tropical West African catchment: a case study of the Densu Basin of Ghana, PhD. thesis, Cranfield University, available at: http://dspace.lib.cranfield.ac.uk/handle/1826/1102 (last access: 23 November 2011), 2005.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R .L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Beven, K., Buytaert, W., and Smith, L. A.: On virtual observatories and modelled realities (or why discharge must be treated as a virtual variable), Hydrol. Process., 26, 1905–1908, https://doi.org/10.1002/hyp.9261, 2012.
Blyth, E., Clark, D. B., Ellis, R., Huntingford, C., Los, S., Pryor, M., Best, M., and Sitch, S.: A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale, Geosci. Model Dev., 4, 255–269, https://doi.org/10.5194/gmd-4-255-2011, 2011.
Bookhagen, B. and Strecker, M.: Orographic barriers, high-resolution TRMM rainfall, and relief variations along the Eastern Andes, Geophys. Res. Lett., 35, L06403, https://doi.org/10.1029/2007GL032011, 2008.
Borma, L. S., da Rocha, H. R., Cabral, O. M., von Randow, C., Collicchio, E., Kurzatkowski, D., Brugger, P. J., Freitas, H., Tannus, R., Oliveira, L., Rennó, C. D., and Artaxo, P.: Atmosphere an hyrological controls for the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia, J. Geophys. Res., 114, G01003, https://doi.org/10.1029/2007JG000641, 2009.
Bormann, H. and Diekkrüger, B.: A conceptual, regional hydrological model for Benin (West Africa): validation, uncertainty assessment and assessment of applicability for environmental change analyses, Phys. Chem. Earth Pt. A/B/C, 29, 759–768, https://doi.org/10.1016/j.pce.2004.05.003, 2004.
Brooks, R. and Corey, A.: Hydraulic properties of porous media, in: Hydrology Papers No. 3, Colorado State Univ., Fort Collins, 27 pp., 1964.
Bruijnzeel, L. A., Mulligan, M., and Scatena, F. N.: Hydrometeorology of tropical montane cloud forests: emerging patterns, Hydrol. Process., 25, 465–498, https://doi.org/10.1002/hyp.7974, 2011.
Buytaert, W. and Beven, K.: Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands, Hydrol. Process., 25, 1784–1799, https://doi.org/10.1002/hyp.7936, 2011.
Buytaert, W., Iniguezz, V., Celleri, R., De Bievre, B., Wyseure, G., and Deckers, J.: Analysis of the water balance of small Páramo catchments in South Ecuador, in: Environmental Role of Wetlands in Headwaters, edited by: Krecek, J. and Haigh, M., Springer, 271–281, 2006a.
Buytaert, W., Celleri, R., Willems, P., De Bievre, B. and Wyseure, G.: Spatial and temporal rainfall variability in mountainous areas: A case study from the South Ecuadorian Andes, J. Hydrol., 329, 413–421, https://doi.org/10.1016/j.jhydrol.2006.02.031, 2006b.
Buytaert, W., Iñiguez, V., Celleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., and Hofstede, R.: Human impact on the hydrology of the Andean Páramos, Earth-Sci. Rev., 79, 53–72, https://doi.org/10.1016/j.earscirev.2006.06.002, 2006c.
Campling, P., Gobin, A., Beven, K., and Feyen, J.: Rainfall-runoff modelling of a humid tropical catchment: the TOPMODEL approach, Hydrol. Process., 16, 231–253, https://doi.org/10.1002/hyp.341, 2002.
Carvalho, L. M. V., Jones, C., and Liebmann, B.: The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall, J. Climate, 17, 88–108, https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2, 2004.
Celleri, R.: Rainfall variability and rainfall runoff dynamics in the Paute River Basin – Southern Ecuadorian Andes, Ph. D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2007.
Chappell, N.: Soil pipe distribution and hydrological functioning within the humid tropics: a synthesis, Hydrol. Process., 24, 1567–1581, https://doi.org/10.1002/hyp.7579, 2010.
Clark, D. B. and Gedney, N.: Representing the effects of subgrid variability of soil moisture on runoff generation in a land surface model, J. Geophys. Res.-Atmos., 113, D10111, https://doi.org/10.1029/2007JD008940, 2008.
Clarke, R. T., Mendes, C. A. B., and Buarque, D. C.: A comparison of extreme rainfall characteristics in the Brazilian Amazon derived from two gridded data sets and a national rain gauge network, J. Geophys. Res.-Atmos., 115, D13104, https://doi.org/10.1029/2009JD013217, 2010.
Coe, M.: Long-term simulations of discharge and floods in the Amazon Basin, J. Geophys. Res., 107, 1–17, https://doi.org/10.1029/2001JD000740, 2002.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20, 682–690, https://doi.org/10.1029/WR020i006p00682, 1984.
Cox, P. M., Betts, R. A., Bunton, C. B., Essery, R. L. H., Rowntree, P. R., and Smith, J.: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity, Clim. Dynam., 15, 183–203, https://doi.org/10.1007/s003820050276, 1999.
Dadson, S. J., Ashpole, I., Harris, P., Davies, H. N., Clark, D. B., Blyth, E., and Taylor, C. M.: Wetland inundation dynamics in a model of land surface climate: evaluation in the Niger inland delta region, J. Geophys. Res., 115, D23114, https://doi.org/10.1029/2010JD014474, 2010.
D'Almeida, C., V{ö}r{ö}smarty, C. J., Marengo, J. A., Hurtt, G. C., Dingman, S. L., and Keim, B. D.: A water balance model to study the hydrological response to different scenarios of deforestation in Amazonia, J. Hydrol., 331, 125–136, https://doi.org/10.1016/j.jhydrol.2006.05.027, 2006.
Daren-Harmel, R. and Smith, P. K.: Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling, J. Hydrol., 337, 326–336, https://doi.org/10.1016/j.jhydrol.2007.01.043, 2007.
Darko, P. K.: Estimation of natural direct groundwater recharge in Southwest Ghana using water balance simulations, available at: http://dlib.lib.cas.cz/6136/, last access: 23 November 2011, J. Hydrol. Hydromech., 50, 198–212, 2002.
Decharme, B. and Douville, H.: Introduction of a sub-grid hydrology in the ISBA land surface model, Clim. Dynam., 26, 65–78, https://doi.org/10.1007/s00382-005-0059-7, 2006.
Dinku, T., Connor, S. J., and Ceccato, P.: Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America, in: Satellite Rainfall Applications for Surface Hydrology, edited by: Gebremichael, M. and Hossain, F., Springer, Netherlands, 193–204, https://doi.org/10.1007/978-90-481-2915-7_11, 2010.
d'Orgeval, T., Polcher, J., and de Rosnay, P.: Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes, Hydrol. Earth Syst. Sci., 12, 1387–1401, https://doi.org/10.5194/hess-12-1387-2008, 2008.
Dunne, T.: Field studies of hillslope processes, in: Hillslope Hydrology, edited by: Kirkby, M., John Wiley, 227–294, 1978.
Ebel, B. A. and Loague, K.: Physics-based hydrologic-response simulation: seeing through the fog of equifinality, Hydrol. Process., 20, 2887–2900, https://doi.org/10.1002/hyp.6388, 2006.
Espinoza-Villar, J. C. E., Guyot, J. L., Ronchail, J., Cochonneau, G., Filizola, N., Fraizy, P., Labat, D., de Oliveira, E., Ordonez, J. J., and Vauchel, P.: Contrasting regional discharge evolutions in the Amazon Basin (1974–2004), J. Hydrol., 375, 297–311, https://doi.org/10.1016/j.jhydrol.2009.03.004, 2009a.
Espinoza-Villar, J., Ronchail, J., Guyot, J. L., Cochonneau, G., Naziano, F., Lavado, W., De Oliveira, E., Pombosa, R., and Vauchel, P.: Spatio-temporal rainfall variability in the Amazon Basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador), Int. J. Climatol., 29, 1574–1594, https://doi.org/10.1002/joc.1791, 2009b.
FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database, http://hydrosheds.cr.usgs.gov/, last access: 21 January 2011, FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2009.
Finch, J. W. and Haria, A.: The representation of chalk soils in the JULES/MOSES soil hydrology model, CEH Project Number: C03017, NERC/Centre for Ecology and Hydrology, 28 pp., 2006.
Fleischbein, K., Wilcke, W., Goller, R., Boy, J., Valarezo, C., Zech, W., and Knoblich, K.: Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties, Hydrol. Process., 19, 1355–1371, https://doi.org/10.1002/hyp.5562, 2005.
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South American climate, Palaeogeogr. Palaeocl., 281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009.
Giertz, S. and Diekkrüger, B.: Analysis of the hydrological processes in a small headwater catchment in Benin (West Africa), Phys. Chem. Earth Pt. A/B/C, 28, 1333–1341, https://doi.org/10.1016/j.pce.2003.09.009, 2003.
Giertz, S., Diekkrü\vec{}ger, B., and Steup, G.: Physically-based modelling of hydrological processes in a tropical headwater catchment (West Africa) – process representation and multi-criteria validation, Hydrol. Earth Syst. Sci., 10, 829–847, https://doi.org/10.5194/hess-10-829-2006, 2006.
Goller, R., Wilcke, W., Leng, M., Tobschall, H., Wagner, K., Valarezo, C., and Zech, W.: Tracing water paths through small catchments under a tropical montane rain forest in South Ecuador by an oxygen isotope approach, J. Hydrol., 308, 67–80, https://doi.org/10.1016/j.jhydrol.2004.10.022, 2005.
Guimberteau, M., Drapeau, G., Ronchail, J., Sultan, B., Polcher, J., Martinez, J.-M., Prigent, C., Guyot, J.-L., Cochonneau, G., Espinoza, J. C., Filizola, N., Fraizy, P., Lavado, W., De Oliveira, E., Pombosa, R., Noriega, L., and Vauchel, P.: Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets, Hydrol. Earth Syst. Sci., 16, 911–935, https://doi.org/10.5194/hess-16-911-2012, 2012.
Hodnett, M. and Tomasella, J.: Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils, Geoderma, 108, 155–180, https://doi.org/10.1016/S0016-7061(01)00101-X, 2002.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
Huffman, G. J. and Bolvin, D. T.: TRMM and other data precipitation data set documentation,. ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf, last access: 27 November 2012.
Josse, C., Navarro, G., Encarnación, F., Tovar, A., Comer, P., Ferreira, W., Rodríguez, F., Saito, J., Sanjurjo, J., Dyson, J., Rubin de Celis, E., Zárate, R., Chang, J., Ahuite, M., Vargas, C., Paredes, F., Castro, W., Maco, J., and Arreátegui, F.: Ecological Systems of the Amazon Basin of Peru and Bolivia, Classification and Mapping, Tech. rep., http://www.natureserve.org/lacSite/sobreNosotros/documents/Sistemas_low_ENG.pdf, last access: 3 February 2011, NatureServe, Arlington, Virginia, 2007a.
Josse, C., Navarro, G., Encarnación, F., Tovar, A., Comer, P., Ferreira, W., Rodríguez, F., Saito, J., Sanjurjo, J., Dyson, J., Rubin de Celis, E., Zárate, R., Chang, J., Ahuite, M., Vargas, C., Paredes, F., Castro, W., Maco, J., and Arreátegui, F.: Digital Ecological Systems Map of the Amazon Basin of Peru and Bolivia, http://www.natureserve.org/aboutUs/latinamerica/gis_data_downloads.jsp, last access: 25 January 2011, NatureServe, Arlington, Virginia, USA, 2007b.
Kahn, F.: Ecology of economically important palms in Peruvian Amazonia, Adv. Econ. Bot., 6, 42–49, 1988.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K., Ropelewski, C., Wang, J., Roy, J., and Joseph, D.: The NCEP/NCAR 40-Year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kvist, L. and Nebel, G.: A review of Peruvian flood plain forests: ecosystems, inhabitants and resource use, Forest Ecol. Manage., 150, 3–26, https://doi.org/10.1016/S0378-1127(00)00679-4, 2001.
Latrubesse, E. M., Stevaux, J. C., and Sinha, R.: Tropical rivers, Geomorphology, 70, 187–206, https://doi.org/10.1016/j.geomorph.2005.02.005, 2005.
Legesse, D., Vallet-Coulomb, C., and Gasse, F.: Hydrological response of a catchment to climate and land use changes in tropical Africa: case study South Central Ethiopia, J. Hydrol., 275, 67–85, https://doi.org/10.1016/S0022-1694(03)00019-2, 2003.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from spaceborne elevation data, available at: http://hydrosheds.cr.usgs.gov, last access: 3 May 2006, EOS Trans. AGU, 89, 93–94, 2008.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000.
Negrón-Juárez, R., Hodnett, M., Fu, R., Goulden, M., and von Randow, C.: Control of dry season evapotranspiration over the amazonian forest as inferred from observations at a southern amazon forest site, J. Climate, 20, 2827–2839, https://doi.org/10.1175/JCLI4184.1, 2007.
Nesbitt, S. and Anders, A.: Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar, Geophys. Res. Lett., 36, L15815, https://doi.org/10.1029/2009GL038026, 2009.
Paiva, R. C., Collischonn, W., and Tucci, C. E.: Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach, J. Hydrol., 406, 170–181, https://doi.org/10.1016/j.jhydrol.2011.06.007, 2011.
Penman, H. L.: Natural evaporation from open water, bare soil and grass, P. Roy. Soc. Lond. A, 193, 120–145, 1948.
Quesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., and Czimczik, C. I.: Soils of Amazonia with particular reference to the RAINFOR sites, Biogeosciences, 8, 1415–1440, https://doi.org/10.5194/bg-8-1415-2011, 2011.
Rasanen, M., Neller, R., Salo, J., and Jungner, H.: Recent and ancient fluvial deposition systems in the Amazonian foreland basin, Peru Geolog. Mag., 129, 293–306, 1992.
Rollenbeck, R. and Anhuf, D.: Characteristics of the water and energy balance in an Amazonian lowland rainforest in Venezuela and the impact of the ENSO-cycle, J. Hydrol., 337, 377–390, https://doi.org/10.1016/j.jhydrol.2007.02.004, 2007.
Rollenbeck, R. and Bendix, J.: Rainfall distribution in the Andes of Southern Ecuador derived from blending weather radar data and meteorological field observations, Atmos. Res., 99, 277–289, https://doi.org/10.1016/j.atmosres.2010.10.018, 2011.
Salati, E. and Vose, P.: Amazon Basin: a system in equilibrium, Science, 225, 129–138, https://doi.org/10.1126/science.225.4658.129, 1984.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Tomasella, J. and Hodnett, M. G.: Estimating soil water retention characteristics from limited data in Brazilian Amazonia, Soil Sci., 163, 190–202, 1998.
Tomasella, J., Hodnett, M. G., and Rossato, L.: Pedotransfer Functions for the Estimation of Soil Water Retention in Brazilian Soils, Soil Sci. Soc. Am. J., 64, 327–338, https://doi.org/10.2136/sssaj2000.641327x, 2000.
van Genuchten, M. T.: A closed-form equation for predicting the hydraluic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Vertessy, R. A. and Elsenbeer, H.: Distributed modeling of storm flow generation in an Amazonian rain forest catchment: effects of model parameterization, Water Resour. Res., 35, 2173–2187, https://doi.org/10.1029/1999WR900051, 1999.
V{ö}r{ö}smarty, C. J., Moore, B. I., Grace, A. L., Gildea, M. P., Melillo, J. M., Peterson, B. J., Rastetter, E., and Steudler, P.: Continental scale models of water balance and fluvial transport: an application to South America, Global Biogeochem. Cy., 3, 241–265, https://doi.org/10.1029/GB003i003p00241, 1989.
Ward, E., Buytaert, W., Peaver, L., and Wheater, H.: Evaluation of precipitation products over complex mountainous terrain: a water resources perspective, Adv. Water Resour., 34, 1222–1231, https://doi.org/10.1016/j.advwatres.2011.05.007, 2011.
Yeh, P. J. F. and Eltahir, E. A. B.: Representation of water table dynamics in a land surface scheme, Part I: model development, J. Climate, 18, 1861–1880, 2005.
Zadroga, F.: The hydrological importance of a montane cloud forest area of Costa Rica, in: Tropical Agricultural Hydrology, edited by: Lal, R. and Russell, E. W., John Wiley and Sons Ltd., New York, 59–73, 1981.