Articles | Volume 29, issue 4
https://doi.org/10.5194/hess-29-903-2025
https://doi.org/10.5194/hess-29-903-2025
Research article
 | 
21 Feb 2025
Research article |  | 21 Feb 2025

Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments

Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu

Related authors

A Novel Framework for Calibration and Evaluation of Hydrological Models in Dynamic Catchments
Tian Lan, Xiao Wang, Hongbo Zhang, Xinghui Gong, Xue Xie, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-384,https://doi.org/10.5194/hess-2024-384, 2025
Preprint under review for HESS
Short summary
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Extended-range forecasting of stream water temperature with deep-learning models
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025,https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Projections of streamflow intermittence under climate change in European drying river networks
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025,https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary

Cited articles

Ammann, L., Fenicia, F., and Reichert, P.: A likelihood framework for deterministic hydrological models and the importance of non-stationary autocorrelation, Hydrol. Earth Syst. Sci., 23, 2147–2172, https://doi.org/10.5194/hess-23-2147-2019, 2019. 
Armstrong, R. A.: Should Pearson's correlation coefficient be avoided?, Ophthal. Physl. Opt., 39, 316–327, https://doi.org/10.1111/opo.12636, 2019. 
Bales, R. C., Goulden, M. L., Hunsaker, C. T., Conklin, M. H., Hartsough, P. C., O'Geen, A. T., Hopmans, J. W., and Safeeq, M.: Mechanisms controlling the impact of multi-year drought on mountain hydrology, Sci. Rep., 8, 690, https://doi.org/10.1038/s41598-017-19007-0, 2018. 
Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M., and Woods, R. A.: A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors, Water Resour. Res., 53, 8475–8486, https://doi.org/10.1002/2017WR021593, 2017. 
Download
Short summary
This study develops an integrated framework based on the novel Driving index for changes in Precipitation–Runoff Relationships (DPRR) to explore the controlling changes in precipitation–runoff relationships in non-stationary environments. According to the quantitative results of the candidate driving factors, the possible process explanations for changes in the precipitation–runoff relationships are deduced. The main contribution offers a comprehensive understanding of hydrological processes.
Share