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Abstract. The influence of climate change and an-
thropogenic activities on precipitation–runoff relationships
(PRRs) has been widely discussed. Traditional models as-
suming stationary conditions can lead to inaccurate stream-
flow predictions. To address this issue, we propose a Driv-
ing index for changes in Precipitation–Runoff Relationships
(DPRR), identified as key PRR influencers, involving cli-
mate forcing, groundwater, vegetation dynamics, and an-
thropogenic influences. According to the quantitative re-
sults of inputting the candidate driving factors into a holis-
tic conceptual model, the possible process explanations for
changes in the PRR were deduced. This framework is vali-
dated across five sub-basins in the Wei River basin. More-
over, non-stationary hydrological processes were initially de-
tected, and the nonlinear correlations among the factors were
assessed. The results show that baseflow emerges as the pri-
mary factor positively influencing the PRR (enhancing the
PRR) but with high uncertainty. Potential evapotranspiration
plays a dominant role in driving negative PRR changes in
the sub-basins which are characterized by a semi-arid cli-

mate and minor human interference. Vegetation dynamics
negatively influence the PRR, with driving levels correlat-
ing with the scale of soil and water conservation engineering,
displaying lower uncertainty. Anthropogenic influences, rep-
resented by impervious surface ratio (ISR), night-time light
(NTL), and population density (POP), exhibit varying driv-
ing levels, with ISR having the strongest and most direct im-
pact, closely linked to urbanization processes and scales. The
temporal dynamics of driving factors computed by dynamic
DPRR generally correspond with hydrological regime shifts
in non-stationary environments. The study’s findings offer a
comprehensive understanding of hydrological processes, en-
abling informed decision-making for the development of sus-
tainable hydrological models.
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1 Introduction

Precipitation–runoff relationships (PRRs) are a crucial con-
cern within the fields of engineering hydrology, water re-
source planning and management, and catchment system
evolution (Saft et al., 2015; Nourani et al., 2016; Zhang et
al., 2018). As foundational elements of the hydrological cy-
cle, precipitation and runoff are interconnected, with runoff
acting as a temporal and/or spatial response to precipita-
tion (Xu et al., 2010). This linkage is influenced by climatic
and land cover attributes, such as catchment size, topogra-
phy, soil composition, vegetation, and spatial heterogene-
ity (Bales et al., 2018). Traditionally, these attributes have
been considered to be stationary in catchments with mini-
mal human disturbances (Tian et al., 2018). However, cli-
mate change, dam construction, vegetative restoration, ur-
banization, and increased water consumption have induced
complexities and non-stationarities in many regional stream-
flow patterns (Dey and Mishra, 2017). As a result, the rela-
tionships between precipitation and runoff can exhibit com-
plexity and non-stationarity (Franzen et al., 2020). However,
prevailing modeling approaches often maintain assumptions
of stationary climatic and catchment attributes (Pathiraja et
al., 2016), which limits their applicability in non-stationary
environments. For example, in long-term runoff simulations,
non-stationary climate conditions and catchment character-
istics may lead to serious discrepancies between simulated
runoff based on fixed parameters and observed runoff, thus
affecting water resources planning and operations. This sug-
gests a need for identifying the potential driving mechanisms
behind these changes or non-stationary hydrological condi-
tions. These efforts can contribute to enhancing predictive
modeling, reservoir management, water resources decision-
making, and the preservation of ecosystem functioning and
services (Hejazi and Cai, 2009; Quinn et al., 2017).

Various methods have been employed to describe the PRR,
demonstrating successful applications. The correlation coef-
ficient method is the commonly employed technique to iden-
tify the PRR due to its simplicity and effectiveness. However,
certain limitations in terms of correlation coefficients are of-
ten overlooked. Firstly, before utilizing Pearson’s correlation
coefficient (r) to assess the PRR, it is essential to ensure that
certain assumptions are met, such as the bivariate normality
of the data (Armstrong, 2019). With the influence of climate
change, land conversion, and human water use, both pre-
cipitation and runoff time series may exhibit non-stationary
characteristics (Liu et al., 2015; Zhang et al., 2011), indicat-
ing that the data do not follow a normal distribution. Hence,
the application of the correlation coefficient for detecting
the PRR in non-stationary conditions is constrained. Further-
more, climate change and anthropogenic activities interact
in highly interconnected ways, affecting the water cycle at
various temporal scales (Abbott et al., 2019). For instance,
climate change disrupts water flow and storage patterns on
long-term timescales (Huang et al., 2016; Haddeland et al.,

2014), while anthropogenic influences, such as agriculture,
urbanization expansion, and deforestation, disturb the land
surface on multi-decadal timescales (Qiu et al., 2017; Hu et
al., 2021). Water withdrawals in a catchment, including those
for agricultural, industry, and domestic sectors, are regulated
at different times and locations (Wada et al., 2011). There-
fore, the PRR may undergo temporal changes in catchments
exhibiting non-stationary behaviors. However, Pearson’s cor-
relation coefficient fails to capture the non-stationarity in the
PRR (Huang et al., 2015).

Another common method used to characterize the PRR is
the event runoff coefficient (rc), which quantifies the fraction
of precipitation that is retained within different storage com-
ponents, such as vegetation interception, soil moisture accu-
mulation, and percolation into deeper layers (Tarasova et al.,
2018). It plays a pivotal role in estimating the discharge from
these storage compartments as event runoff in basins (Merz
et al., 2006). However, it is worth noting the constraints of
the runoff coefficient in describing the relationships between
precipitation and runoff. (1) The runoff coefficient is calcu-
lated as the ratio between the volume of the runoff during a
specific event and the corresponding precipitation (Savenije,
1996), and the unknown antecedent soil moisture condition
plays an important role. (2) The runoff coefficient captures
the association between precipitation and runoff and may not
directly reflect the influence of a specific factor on the PRR,
such as the catchment’s climatic and land cover characteris-
tics, including evaporation, vegetation, groundwater, and im-
permeable area. Instead, the runoff coefficient indicates the
integrated characteristics of a catchment. (3) The estimation
of the runoff coefficient often relies on simplifying assump-
tions (Feng et al., 2016), which can introduce uncertainties
or inaccuracies in the calculations. Hydrological modeling
is another prevalent approach in describing precipitation–
runoff relationships. Continuous simulation of the PRR is
accomplished through the application of data-driven hydro-
logical models or process-based models with intricate model
structures (Sikorska-Senoner and Quilty, 2021; Nayak et al.,
2013). Data-driven models such as artificial neural networks
(ANNs) and linear-perturbation models (LPMs) rely on em-
pirical analysis to produce corresponding outputs based on
specific input data (Tanty and Desmukh, 2015; Nash and
Barsi, 1983). These models are heavily dependent on the
characteristics of existing data and provide a relatively vague
description of the hydrological-cycle processes, failing to ex-
plicitly reflect the impact of individual factors within these
processes. On the other hand, process-based hydrological
models such as TOPMODEL and SWAT can reveal more
details and mechanisms of physical processes (Beven et al.,
2021; Krysanova and White, 2015). However, these mod-
els involve complex modeling processes and require careful
selection based on adequate prior knowledge (Reichl et al.,
2009). Furthermore, many traditional hydrological models
regionalize the PRR over a specific period in stationary cli-
matic and catchment conditions, assuming minimal human
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interference (Yang et al., 2022; Westra et al., 2014). As a
result, they may not be suitable for non-stationary hydrolog-
ical processes. With the advancement of hydrological mod-
els, the impact of human activities is increasingly incorpo-
rated into the simulation of hydrological processes. Models
such as WEP-L, WaterGAP, PCR-GLOBWB, and CWatM
not only simulate natural hydrological cycles but also ef-
fectively incorporate the influence of anthropogenic factors
into their simulations (Jia et al., 2006; Müller Schmied et al.,
2021; Sutanudjaja et al., 2018; Burek et al., 2020). However,
it is crucial to recognize that such hydrological models have
high data requirements, limiting their application in regions
lacking sufficient observational data (Clark et al., 2016). For
instance, data on human activities are often difficult to obtain
comprehensively, and while some remote sensing data may
be used, the impact of human activities on runoff as repre-
sented by these data is complex and cannot be directly used
as model input. Therefore, there is a need for a simple and ef-
fective PRR technique that has lower data requirements while
being able to explore the impact of individual factors on the
PRR under non-stationary conditions.

Detrended fluctuation analysis (DFA) is a widely used
technique in the investigation of power-law autocorrela-
tions within non-stationary time series data (Peng et al.,
1994). This approach offers significant advantages as it ef-
fectively removes the influence of polynomial trends present
in the data and facilitates the identification of scale proper-
ties (Kantelhardt et al., 2001). Detrended cross-correlation
analysis (DCCA), derived from DFA, was initially pro-
posed by Kantelhardt et al. (2002) as a method for detect-
ing power-law cross-correlation between non-stationary sig-
nals. Trends in non-stationary time series can negatively
affect cross-correlation identification (Kwiatkowski et al.,
1992). Thereby, DCCA represents a modified approach to
conventional covariance analysis of time series (Podobnik
and Stanley, 2008). The detrended partial-cross-correlation
analysis (DPCCA), built upon DCCA and utilizing a partial-
correlation technique, serves to mitigate the influence of
trends within non-stationary time series when determining
cross-correlations (Yuan et al., 2015). Furthermore, it effec-
tively eliminates the impact of other signals on the two ex-
amined signals, revealing the intrinsic cross-correlations be-
tween them (Shen and Li, 2016; Zhang et al., 2020b). Pre-
cipitation and runoff time series may be stationary or non-
stationary, and other influencing factors may also influence
their relationships. This technique has the potential to deepen
and broaden our understanding of the interactional mecha-
nisms underlying the precipitation–runoff correlation in non-
stationary scenarios. Given these and developing from the
benefits of DCCA and DPCCA for cross-correlation analy-
sis in non-stationary situations, we propose an index to iden-
tify the potential effects of the driving level and direction of
one influencing factor in the changes in the PRR and address
the limitations of DCCA and DPCCA. This index allows for
a comparison of driving levels and directions without being

constrained by inconsistent data sequence lengths and across
various types of catchments. Furthermore, the index provides
a definitive measure of cross-correlation based on kernel den-
sity function. It facilitates an assessment of the temporal dy-
namics of the driving levels and directions of changes in
the PRR. Considering the linear characteristics of the index,
it pre-processes the time lag between precipitation and the
mass centers of baseflow. Furthermore, the index character-
izes the uncertainty associated with driving levels in PRR
changes across various timescales.

In these regards, the objective of this study is to investigate
the potential processes controlling changes in precipitation–
runoff relationships under non-stationary conditions and to
use the findings to gain an in-depth insight into hydrological
processes, facilitating informed decisions for sustainable wa-
ter resource management in a catchment. The study focuses
on three main aspects:

– developing an integrated framework for explor-
ing the potential processes controlling changes in
precipitation–runoff relationships in non-stationary en-
vironments;

– proposing a novel Driving index for changes in
Precipitation–Runoff Relationships (DPRR) to quantify
the driving levels and directions of factors influencing
precipitation–runoff links;

– establishing a holistic conceptual model of catchment
response, integrating DPRR values to infer the potential
processes controlling changes in precipitation–runoff
relationships.

To achieve these objectives, this study has selected five
sub-basins with varying catchment characteristics within the
Wei River basin in northern China. These sub-basins experi-
ence significant impacts of climate change and human activ-
ities and serve to effectively illustrate our research objectives
and methodologies.

2 Case study area and data description

2.1 Case study area

The Wei River basin (33°50′–37°05′ N, 103°05′–110°05′ E)
is the largest tributary of the Yellow River basin in China
(Zuo et al., 2015) (see Fig. 1). It spans a wide range of cli-
mates and elevations, gradually decreasing from northwest
to southeast, and covers a drainage area of 134 800 km2,
with a total length of 818 km (Huang et al., 2017b). The
basin experiences a continental monsoon climate, and the
dry and wet conditions have high spatiotemporal variabil-
ity. The annual precipitation in the Wei River basin is ap-
proximately 572 mm, mainly concentrated between June and
October. The multi-year average temperature in the basin is
around 10.6°. The mean annual runoff is about 60 mm (Zhao
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et al., 2015). In particular, the intricate interplay of anthro-
pogenic activities has led to a notable declining trend in the
annual streamflow observed (Zhang et al., 2022). This im-
plies that the assumption of stationary hydrologic proper-
ties has been challenged in the Wei River basin. In light
of this, the Wei River basin is a suitable study area to ana-
lyze the precipitation–runoff dependency in a non-stationary
hydrological system. Five sub-basins with different proper-
ties of precipitation–runoff dependencies and varying anthro-
pogenic interventions in the Wei River basin are applied as
illustrations in this study. The five sub-basins (WR1, WR2,
WR3, WR4, and WR5) are controlled by the Qin’an, Weiji-
abao, Xianyang, Zhangjiashan, and Zhuangtou hydrological
monitoring stations (Fig. 1), respectively.

2.2 Data description

This study utilizes four main types of data: observed stream-
flow data, meteorological data, geographical information
data, and remote sensing datasets related to anthropogenic
influences. Daily streamflow data from the Yellow River
Conservancy Commission were collected for five sub-basins
and are reported in Table S1 in Sect. S1 in the Supple-
ment, which includes the drainage area, duration, longi-
tude, and latitude of hydrological monitoring stations. Daily
baseflow (BF) was calculated using the Chapman–Maxwell
filter method, as detailed in Sect. S2. Given the critical
role of baseflow in this study, the calculated values have
been validated by the relevant literature to ensure accu-
racy and reliability. Daily meteorological data from the pe-
riod 1960–2019 were obtained from the China National Sur-
face Weather Station (V3.0) (http://www.nmic.cn/, last ac-
cess: 11 February 2025), involving precipitation; mean, max-
imum, and minimum air temperature; actual atmospheric
pressure; wind speed; relative humidity; and sunshine du-
ration. The quality of data from 39 meteorological stations
(Fig. 1 and Table S2) was rigorously controlled to ensure
high reliability before its release. Missing data, which were
less than 0.01 %, were reconstructed using linear regression
techniques and neighboring stations. Potential evapotran-
spiration (ET0) was estimated using the Penman–Monteith
equation (Sect. S2). A 90 m resolution digital elevation
model (DEM) was obtained from the USGS Shuttle Radar
Topography Mission (SRTM) digital elevation database
(http://srtm.csi.cgiar.org/, last access: 11 February 2025).
The Global Inventory Modelling and Mapping Studies
(GIMMS) NDVI3g dataset (https://cmr.earthdata.nasa.gov/
search/concepts/C2759076389-ORNL_CLOUD, last access:
11 February 2025) was used to analyze vegetation cover dy-
namics from 1982 to 2014 at a spatial resolution of 1/12°.
Impervious surface ratio (ISR) data from 1985 to 2019 at a
spatial resolution of 30 m were collected to infer the rate of
urbanization (Gong et al., 2020). The ISR dataset was ex-
tracted and calculated from the Google Earth Engine plat-
form. The Defense Meteorological Satellite Program’s Op-

erational Linescan System provides a free annual time series
of night-time light (NTL) satellite images through the NOAA
National Geophysical Data Center (NGDC, 2013). The NTL
data used in this study cover the period from 1992 to 2019
at a spatial resolution of 30 arcsec. Population data (POP)
from 2000 to 2019 were obtained from WorldPop (World-
Pop, 2018), constituting the data on population distributions
and dynamics at a high spatial resolution, which character-
izes population growth and rural–urban migration. The POP
dataset was processed by an unconstrained top-down mod-
eling method into a resolution of 30 arcsec. The processing
of normalized difference vegetation index (NDVI) data in-
volves averaging the raster data within each study area. For
ISR data, the number of impervious surface rasters within
each study area is divided by the total number of rasters. NTL
data are processed by summing the night-time light intensity
within each study area. Similarly, POP data are processed by
summing the population within each study area. In addition,
the regulations of reservoirs, as a significant anthropogenic
intervention in the water cycle of the Wei River basin, are
further investigated. Information regarding the completion
dates, storage capacities, and spatial distribution (Fig. 1) of
the 24 primary reservoirs has been obtained from the Yellow
River Conservancy Commission. The annual water usage, in-
cluding by agricultural, industrial, and domestic sectors, in
the Wei River basin between 1956 and 2009 (obtained by the
Yellow River Conservancy Commission), was analyzed to fa-
cilitate the assessment and validation of the anthropogenic
influences on the precipitation–runoff links.

3 Methods

The methodology flow of this research is detailed in Sect. S3.

3.1 Detection of non-stationary processes

The non-stationary hydrological processes in the study area
were initially identified in this study. Mean and trend are es-
sential statistical properties that remain constant over time
in stationary conditions and are typically utilized to iden-
tify abrupt shifts and gradual changes in non-stationary con-
ditions, respectively (Cryer and Kellet, 1991). To identify
abrupt shifts in the hydrological time series involving runoff
and baseflow, we employed the Pettitt test in conjunction
with the trend-free pre-whitening and binary segmentation
techniques (TFPW-BS-Pettitt). The Pettitt test is designed
to detect changes in mean values (Mallakpour and Villarini,
2016), and the trend-free pre-whitening (TFPW) procedure
(Yue et al., 2003) is applied in the Pettitt algorithm to miti-
gate the significant autocorrelation effects of non-stationary
time series. The binary segmentation (BS) method (Lee and
Verma, 2012) segments sub-periods prior to Pettitt’s detec-
tion through iterative processes to identify multiple abrupt
shift points in the time series. The non-parametric Mann–
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Figure 1. Information of the study area and five selected sub-basins (WR1, WR2, WR3, WR4, and WR5), hydrological monitoring stations,
meteorological stations (precipitation stations), and primary reservoirs within the Wei River basin. In the upper-left figure, the red circle
indicates the geographical location of the Wei River basin in China. Publisher’s remark: please note that the above figure contains disputed
territories.

Kendall (MK) statistical test is used to assess trends or grad-
ual changes in the time series (Yue and Wang, 2004), with
significant sequential autocorrelation being removed using
TFPW procedures before the MK test. For the detailed cal-
culation process of TFPW-BS-Pettitt and TFPW-MK, please
refer to Sect. S4.

3.2 Identification of potential drivers of the changes in
precipitation–runoff relationships

The candidate driving factors for changes in the PRR in
non-stationary processes include climate forcing, groundwa-
ter, vegetation dynamics, and anthropogenic influences. Fur-
thermore, a holistic conceptual model of catchment response
(Fig. 2a) is developed by integrating the possible explana-
tions (Fig. 2b) that align with empirical evidence and logical
reasoning. The potential driving processes of the candidate
driving factors are elaborated upon in Sect. S5. Furthermore,
a detailed description of this conceptual model is provided
in the Discussion section based on the Results section and is
validated by information theory and existing literature find-
ings.

A Driving index for changes in Precipitation–Runoff Rela-
tionships (DPRR) is proposed as a means to identify the po-

tential driving mechanisms that influence the precipitation–
runoff connections within non-stationary hydrological pro-
cesses. The index effectively overcomes the limitations as-
sociated with conventional approaches used to describe the
PRR and its driving mechanisms in non-stationary condi-
tions. The calculation procedure for the DPRR index is as
follows:

– Step 1. The time lag between precipitation and baseflow
is given by

R(m)=
∑N

i=1
xPre
i xBF

i−m. (1)

R(m) is the cross-correlation coefficient, which is cal-
culated by the XCORR function; m is the time lag, and
its range is [−12, 0], which was selected based on the
monthly timescale; xPre

i is the precipitation time series
(i= 1, 2, 3, . . ., N ); xBF

i−m represents the baseflow time
series, where xBF

i−m is equal to zero when i−m exceeds
N .

R(mmax)=max {R(m)} (2)
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Figure 2. (a) A conceptual model of catchment response developed by integrating the causal-loop-based process explanations through
investigating candidate driving factors. (b) Visual synthesis of selected process explanations for potential driving mechanisms of the changes
in the PRR under non-stationary processes, depicting a general catchment affected by anthropogenic interference.

In the above, mmax corresponds to the time lag m at
which R(m) achieves its maximum value.{
x

BF_lag
i = xBF

i−mmax
i−mmax ≤N

x
BF_lag
i = xBF

N i−mmax >N
(3)

In the above, xBF_lag
i denotes the baseflow time series at

the time lag of mmax.

– Step 2. Suppose that the precipitation time series, the
runoff time series, and the influencing factor of the PRR
are x1

i , x2
i , x3

i (i =1,2,3, . . .,N), respectively. Each time
series xji (j = 1, 2, 3) is accumulated as the profile P jk
(k = 1,2,3, . . .,N ).

P
j
k =

∑k

i=1
x
j
i (4)

– Step 3. The profiles are divided into N − s+ 1 overlap-
ping sub-periods. The time nodes of each sub-period h
are from h to h+s−1 (h = 1, . . .,N−s+1). Then, the

local trend { ˜P jk,h} is generated by a least-squares poly-
nomial fitting. Accordingly, the detrended residual se-
ries {Y js,l} (l = (h− 1) · s+k−h+1) are calculated ac-
cording to the difference between the original time se-
ries and the local trend.

Y
j
s,l = P

j
k −

˜
P
j
k,h (5)

– Step 4. The cross-correlation levels ρj1,j2
(s) between

any two time series on the timescales of s are estimated,

ranging from−1 to 1. The ρj1,j2
(s) is also referred to as

the DCCA (detrended cross-correlation analysis) index,
which characterizes the PRR in non-stationary hydro-
logical processes. The coefficients matrix is constituted
as

ρj1,j2
(s)= ∑(N−s+1)·s

l=1 Y
j1
s,lY

j2
s,l√∑(N−s+1)·s

l=1 Y
j1
s,lY

j1
s,l

√∑(N−s+1)·s
l=1 Y

j2
s,lY

j2
s,l

, (6)

ρ (s)=

[
ρ1,1(s) ρ1,2(s) ρ1,3(s)
ρ2,1(s) ρ2,2(s) ρ2,3(s)
ρ3,1(s) ρ3,2(s) ρ3,3(s)

]
. (7)

– Step 5. The partial-cross-correlation level ρ(12;s) be-
tween the precipitation and runoff is determined based
on the inverse matrix of ρ (s), which is defined as

C (s)= ρ−1(s)=

[
C1,1(s) C1,2(s) C1,3(s)
C2,1(s) C2,2(s) C2,3(s)
C3,1(s) C3,2(s) C3,3(s)

]
, (8)

ρ(1,2;s)=
−C1,2(s)√
C1,1(s)C2,2(s)

. (9)

– Step 6. The ρ1,2(s) denotes the PRR on the timescales
of s with the removal of the non-stationary effects. The
ρ(1,2;s) characterizes the cross-correlation between
precipitation and runoff by eliminating the influences of
an external factor. The difference between ρ1,2(s) and
ρ(1,2;s) represents the driving level of an influencing
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factor of the PRR. To address the issue of inconsistent
data sequence lengths among different driving factors
within a catchment and to facilitate comparisons be-
tween different catchments, we introduce the concept of
relative error. It is computed by dividing the difference
between ρ1,2(s) and ρ(1,2;s) by ρ1,2(s). The ρ1,2(s)

represents the specific PRR of a catchment at a given
timescale s, reflecting the catchment properties the PRR
influenced by integrated multifactorial forces. However,
when the denominator ρ1,2(s) approaches zero, there is
a risk of encountering abnormally high values in the
DPRR index. To address this, we update the denom-
inator to ρ1,2(s)+ 1. Notably, a positive value of the
DPRR index signifies that the driving factor positively
enhances the P–R link, while a negative index value
suggests a negative effect of the driving factor on the
P–R link. In this context, the calculation of the DPRR
index is given by

DPRR(1,2;3;s)=
ρ1,2(s)− ρ (1,2;s)

ρ1,2(s)+ 1
. (10)

– Step 7. The above formula for DPRR can only provide
index values for different timescales. However, we pre-
fer a definitive measure within a given period. Hence,
the kernel density function is utilized.

f̂w (DPRR)=
1

(b− a+ 1)w

b∑
s=a

K(
DPRR−DPRR(1,2;3;s)

w

)
(11)

f̂w (DPRRmax)=max
{
f̂w (DPRR)

}
(12)

In the above, f̂w (DPRR) represents the kernel density
function with w, which denotes the bandwidth. The
range of s is set as [a, b], and a GridSearchCV is con-
ducted for the optimal range (Pedregosa et al., 2011).
The search space for w is set to [0.05, 1.95], with a step
size of 0.05. K denotes the kernel function. DPRRmax
corresponds to the maximum value of kernel density
for DPRR. Here, the Gaussian kernel density function
is utilized for estimating kernel density.

K (x)=
1
√

2π
exp

(
−

1
2
x2
)

(13)

The kernel density estimations for ρ1,2 and ρ (1,2) in
DPRR are also computed.

f̂w
(
ρ1,2

)
=

1
(b− a+ 1)w

b∑
s=a

K

(
ρ1,2− ρ1,2(s)

w

)
(14)

f̂w
(
ρ1,2;max

)
=max

{
f̂w
(
ρ1,2

)}
(15)

f̂w (ρ(1,2))=
1

(b− a+ 1)w

b∑
s=a

K

(
ρ(1,2)− ρ(1,2;s)

w

)
(16)

f̂w (ρ(1,2)max)=max
{
f̂w (ρ(1,2))

}
(17)

A Dynamic Driving index for changes in Precipitation–
Runoff Relationships (D-DPRR) is further designed to eval-
uate the temporal dynamics in the driving level and direction
of the influencing factors of the PRR in non-stationary con-
ditions.

– Step 1. For the D-DPRR, the definition and accumula-
tion of the original time series in the first step are con-
sistent with DPRR.

– Step 2. The cumulative time series are synchronously
divided intoN−s+1 overlapping sub-periods, and their
start and end time nodes are from h to h+ s− 1 (h =

1, . . ., N−s+1). Then, the local trend { ˜P jk,h} is removed
in each sub-period h, and the detrended residual series
{Y
j
s,h,u} are refined considering the uth (u= k−h+ 1)

element in each sub-period.

Y
j
s,h,u = P

j
k −

˜
P
j
k,h (18)

– Step 3. The cross-correlation levels ρj1,j2
(s;h) and the

coefficients matrix in each sub-period h are defined as

ρj1,j2
(s;h)=∑s

u=1Y
j1
s,h,uY

j2
s,h,u√∑s

u=1Y
j1
s,h,uY

j1
s,h,u

√∑s
u=1Y

j2
s,h,uY

j2
s,h,u

, (19)

ρ (s;h)=

[
ρ1,1 (s;h) ρ1,2 (s;h) ρ1,3 (s;h)
ρ2,1 (s;h) ρ2,2 (s;h) ρ2,3 (s;h)
ρ3,1 (s;h) ρ3,2 (s;h) ρ3,3 (s;h)

]
.

(20)

– Step 4. The partial-cross-correlation level ρ(1, 2;s;h)
between precipitation and runoff in each sub-period is
constructed based on the inverse matrix ρ−1(s;h) as
follows:

C (s;h)= ρ−1(s;h)= C1,1 (s;h) C1,2 (s;h) C1,3 (s;h)

C2,1 (s;h) C2,2 (s;h) C2,3 (s;h)

C3,1 (s;h) C3,2 (s;h) C3,3 (s;h)

 , (21)

ρ(1,2;s;h)=
−C1,2(s;h)√

C1,1(s;h)C2,2(s;h)
. (22)

– Step 5. Similarly to DPRR, the D-DPRR is determined
by cross-correlation levels ρj1,j2

(s;h) and the partial-
cross-correlation level ρ(1, 2;s;h) in each period h.

DDPRR(1,2;3;s;h)=
ρ1,2(s;h)− ρ (1,2;s;h)

ρ1,2(s;h)+ 1
(23)
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Compared to conventional hydrological models, (1) the
DPRR index has lower data requirements and offers a sim-
ple and effective technique for identifying the potential im-
pacts of driving factors on the PRR. (2) It also addresses the
limitations of process-driven hydrological models in the run,
which assume stationary conditions (Ammann et al., 2019;
Jehanzaib et al., 2020). Hence, the proposed index offers cru-
cial information for the hydrological-cycle process driven by
climate change or anthropogenic disturbances, which guides
the construction of more robust hydrological models and the
development of water resource management and allocation.
(3) Considering the elimination of trends is a crucial step in
accurately analyzing the relationships between complex non-
stationary systems (Zhao et al., 2012); the DPRR removes
the non-stationary effects by subtracting local trends with
appropriate polynomial orders, ensuring the normality of in-
put signals for cross-correlation analysis (Zebende, 2011).
(4) The effect of external factors on the PRR may lead to
spurious cross-correlation estimations (Yuan et al., 2015).
Hence, the developed index applies the theoretical founda-
tions of the DPCCA technique to reveal the “intrinsic” rela-
tions between precipitation and runoff time series, with the
potential influences of other factors, such as evapotranspi-
ration, groundwater, land cover, and anthropogenic interfer-
ence, being removed. (5) The DPRR index characterizes the
potential driving mechanisms influencing the PRR on dif-
ferent timescales, which can improve our understanding of
hydrological responses to climate forcing and anthropogenic
activities at various timescales. Within a specified period, the
driving level of DPRR signifies the influence level exerted
by a particular factor on the correlation between precipita-
tion and runoff during the period, and the driving direction
of DPRR signifies whether a particular factor has positive
or negative effects on the PRR during the period. (6) The
DPRR index provides the driving level and direction and
allows for comparisons of the index values among differ-
ent driving factors with inconsistent data sequence lengths
and across various types of catchments. (7) Indeed, while
DCCA and DPCCA can only capture the PRR at different
timescales, they do not provide a definitive measure of cross-
correlation (Yuan et al., 2015). Therefore, the kernel density
function is applied to the DPRR index to provide a defini-
tive value for exploring the potential process controls of the
PRR. (8) The Dynamic DPRR (D-DPRR) is proposed as a
metric to assess the temporal dynamics of driving levels and
the directions of changes in the PRR within non-stationary
hydrological processes. (9) Baseflow, which plays a crucial
role in the PRR, is subjected to a pre-processing step involv-
ing the determination of the time lag between precipitation
and the mass centers of baseflow (Singh, 1968). This pre-
processing step is performed prior to the application of the
DPRR, allowing for a more accurate analysis of the poten-
tial drivers of the changes in the PRR. (10) The uncertainty
associated with the driving levels of the changes in the PRR
across various timescales is characterized by violin plots. The

violin plot combines the boxplot and density plot to provide
a detailed representation of data distribution. The wider sec-
tions of the violin plot indicate a higher probability of data
distribution, whereas the narrower sections suggest a lower
probability (Hintze and Nelson, 1998). Therefore, given the
same volume of data, a vertically flatter or multimodal violin
plot signifies a lower concentration and higher uncertainty of
driving levels for the changes in the PRR as the timescale
changes.

4 Results

4.1 Non-stationarity of hydrological processes

The non-stationary testing results for hydrological-process-
related datasets are presented in Table 1. The significant
probability q (t) values derived from the TFPW-BS-Pettitt
method were utilized to identify the most significant abrupt
time points of runoff in WR1, WR2, WR3, WR4, and WR5,
which were found to occur in 1992, 1993, 2002, 1996, and
1994, respectively. Figure 3 depicts the subordinate signifi-
cantly abrupt shift points of the runoff time series. The sig-
nificantly abrupt shift points of the baseflow were found to be
consistent with the runoff time series in the five sub-basins.
The potential reason is that the Wei River basin is situated in
a semi-arid region where streamflow is primarily influenced
by groundwater (Zhao et al., 2015).

Trends in the precipitation time series across the five sub-
basins are non-significant at a 5 % significance level using the
TFPW-MK detection approach. However, the temperature
time series exhibited a significant upward trend. Also, the po-
tential evapotranspiration series shows a significant increas-
ing trend in WR2 and WR3, while a non-significant increas-
ing trend was observed in the remaining sub-basins. An ex-
ploratory analysis was conducted to investigate the potential
mechanism for significant or non-significant non-stationary
changes in climate time series within the Wei River basin.
The global warming scenarios affecting the region have re-
sulted in a sustained increase in the long-term temperature
time series of five sub-basins (Zuo et al., 2015). Further-
more, the temperature variations in the sub-basins are also
influenced by other regional factors, such as urban expan-
sion, which can exacerbate the temperature rise (Huang et
al., 2021). The persistent stationarity observed in the precipi-
tation time series within the Wei River basin was attributed to
the integrated effect of climate forcing associated with the re-
organization of global-scale and regional-scale climate pro-
cesses, as well as the movement of large-scale atmospheric
circulation systems (Saft et al., 2015). The NDVI values
manifest a significant upward trend on an annual timescale
in the five sub-basins. This phenomenon is linked to the exe-
cution of the soil and water conservation project (large-scale
afforestation and reforestation) in the Wei River basin since
the 1950s, with extensive implementation in the 1970s (Chen
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Table 1. Non-stationary analysis and trend test results for hydrological-process datasets (q is the significant probability of non-stationary
analysis; a positive value of Z means that the series has an upward trend, a negative value of Z means that the series has a downward trend,
Y means that the trend is significant, and N means that the trend is not significant).

Stations R P T ET0 BF NDVI ISR NTL POP

q Abrupt shifts Z Sig. Z Sig. Z Sig. q Abrupt shifts Z Sig. Z Sig. Z Sig. Z Sig.

WR1 0.99 1992 −1.19 N 4.58 Y 0.20 N 0.99 1992 4.11 Y 7.98 Y 6.53 Y −5.89 Y
0.97 1970 0.98 1970

WR2 0.99 1993 −0.90 N 5.24 Y 3.54 Y 0.99 1993 4.17 Y 8.04 Y 6.74 Y 2.39 Y
0.97 1970 0.97 1970

WR3 0.99 2002 −0.90 N 5.17 Y 2.26 Y 0.99 2002 4.39 Y 8.07 Y 6.74 Y 4.74 Y
0.96 1993 0.96 1993
0.94 1968 0.95 1968

WR4 0.97 1996 −0.02 N 6.04 Y 1.56 N 0.98 1996 3.97 Y 7.89 Y 6.96 Y −5.34 Y

WR5 0.91 1994 −1.40 N 4.31 Y −0.22 N 0.85 1994 2.03 Y 7.73 Y 6.82 Y 4.20 Y

et al., 2007). Other satellite data representing the human pres-
sure on the river system of the Wei River basin, including
ISR, NTL, and POP, exhibit an overall significant upward
trend, apart from the population in WR1 and WR4. This is at-
tributed to the expansion of urbanization and the intensifica-
tion of human activities in relation to the water resource sys-
tem in the Wei River basin over the past few decades (Chang
et al., 2015).

4.2 Changes in the precipitation–runoff relationships

The monthly precipitation–runoff relationships of five sub-
basins within the Wei River basin were examined in non-
stationary hydrological processes using detrended cross-
correlation analysis (DCCA) (see Eq. 5). The results of
DCCA are presented in Fig. 4a. It is evident that WR2 and
WR3 exhibit the highest PRR values, concentrated around
0.8 and 0.87, respectively. These two sub-basins demonstrate
lower levels of uncertainty when compared to the other sub-
basins at different timescales. WR1 and WR4 display lower
PRR values, primarily centered around 0.6, with higher un-
certainties across different timescales. WR5 exhibits the low-
est PRR values, around 0.5, showing the highest uncertainty
when timescales vary. WR1 represents an upstream tribu-
tary with minimal anthropogenic impacts, while WR4 and
WR5 are downstream tributaries that are situated within the
semi-arid Loess Plateau. The heat map in Figure 4b illus-
trates the temporal variations in the PRR, providing insights
into the dynamic hydrological response of the PRR over time
according to the non-stationarity detection results (refer to
Sect. 4.1). WR2 and WR3 demonstrate stable PRR values,
even during non-stationarity in the hydrological processes.
In WR1, noticeable low values (close to 0) of the PRR are
observed in the middle timescales before and after the abrupt
hydrological shifts (e.g., in 1992 and 1970), indicating a
deteriorated PRR with the occurrence of hydrological non-
stationarity. Similarly, WR4 exhibits weaker precipitation–
runoff links in the middle timescales preceding the abrupt

hydrological shifts. WR5 shows a poor PRR throughout the
large and middle timescales of the hydrological processes.
The possible explanations are given in Sect. 5.1.

4.3 Driving levels and directions of potential
influencing factors in changes in
precipitation–runoff relationships

The driving levels and directions of potential influencing fac-
tors in precipitation–runoff relationships are quantified using
DPRR, illustrated through the implementation of violin plots
with maximum kernel density values (Fig. 5a). To facilitate
the comparison of the magnitudes of driving forces, the abso-
lute values of DPRR are further depicted in Fig. 5b. The re-
sults illustrate that baseflow is the primary driving force pos-
itively influencing the PRR in four out of the five sub-basins,
excluding WR5. This finding aligns with the dominance of
groundwater in the hydrological processes of the Wei River
basin (Miao et al., 2020). However, the influence of baseflow
on the PRR exhibits significant uncertainty across various
timescales. In WR5, the dominant factor affecting the PRR
is potential evapotranspiration, which negatively impacts (or
reduces) the precipitation–runoff dependency. Conversely,
the influence of potential evapotranspiration on the PRR is
small in other sub-basins, with less uncertainty in driving
forces across different timescales. Vegetation dynamics neg-
atively affect the PRR in all five sub-basins, ranking second
in impact after baseflow in WR1, WR2, and WR3, with lower
uncertainty compared to baseflow. In WR4, although the in-
fluence of vegetation dynamics on the PRR is small, it ex-
hibits higher uncertainty. Notably, the impact of vegetation
dynamics on the relationships is smaller in WR4 compared
to in WR5, which is consistent with Wu et al. (2023). Imper-
meability (ISR) has a stronger direct influence on the PRR
compared to the other two indicators of urbanization, such as
NTL and POP, and weakens the precipitation–runoff depen-
dency in all sub-basins. Furthermore, their direction (positive
or negative) is inconsistent as their effects on the catchment’s
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Figure 3. Time series and their abrupt shifts or gradual trends of interest variables.

hydrological cycle are indirect and complex. The impact of
NTL and POP on the PRR remains stable across different
timescales. When comparing WR3 and WR4, as the urban
cluster expands along the main stem of the Wei River basin,
the three indicators of anthropogenic influences, including
ISR, NTL, and POP, have a greater driving effect on the PRR
in WR4 compared to in WR3, with smaller urban agglom-
erations. More detailed explanations of these results are pro-
vided in Sect. 5.1.

4.4 Hydrological response to temporal dynamics of the
driving factors

According to Fig. 5c, in WR1, baseflow initially exhibits neg-
ative driving at the small timescales (3–13 years) after the hy-
drological regime shift in 1992, followed by a lack of driv-
ing force at the medium timescales before 1970. WR2 and
WR3 show similar baseflow variability, with a transient neg-
ative driving at the small timescale around 2007. In WR4,
baseflow contributes significantly to a negative driving force
on the PRR at the medium timescale prior to the hydrologi-
cal shift point. In WR5, overall, baseflow variations exhibit a
negative driving force at both large and medium timescales.
The impact of potential evapotranspiration on the PRR is lit-
tle in WR1–WR4, remaining constant over time. However,
in WR5, potential evapotranspiration shows a stronger nega-
tive driving force at the large and medium timescales before
1980. Vegetation dynamics have a negligible negative influ-
ence on the precipitation–runoff dependence in WR1, WR2,
and WR3, with insignificant temporal changes. In WR4, veg-
etation dynamics exhibit a more significant positive driving
at the medium and small timescales before and after the hy-
drological regime shift (1996). WR5 shows a significant pos-
itive driving force at the medium and small scales following
the regime shift (1994). Overall, ISR, representing anthro-
pogenic influence, predominantly exerts a negative impact
on the PRR. However, ISR irregularly exhibits slight positive

driving forces at the medium timescale, which are not well-
aligned with the hydrological regime shifts. NTL and POP
have a smaller overall driving force compared to ISR in the
five sub-basins. However, due to the limitations of the time
series length, they do not correspond well with the hydro-
logical regime shifts. Possible process explanations for these
results are provided in Sect. 5.1.

4.5 Nonlinear and intricate interplay among driving
factors

4.5.1 Nonlinear correlation among driving factors

The maximal information coefficient (MIC) metric provides
a measure of both linear and nonlinear correlations among
driving factors (Zhang et al., 2014), as shown in Fig. 4c.
The interconnected network illustrates that the three driv-
ing factors (POP, NTL, ISR) related to anthropogenic influ-
ences in five sub-basins exhibit significant linear or nonlin-
ear correlations. However, the correlation between POP and
ISR in WR1 and WR4 is weak. This was attributed to the
migration of rural populations to urban regions in these two
sub-basins (refer to Fig. 3). Baseflow exhibits weak correla-
tions with other factors. Moreover, potential evapotranspira-
tion displays relatively weak correlations with other factors,
likely due to the integrated effect of climate forcing asso-
ciated with the reorganization of global-scale and regional-
scale climate processes. In WR5, NDVI demonstrates strong
associations with POP, NTL, and ISR, which may be at-
tributed to the simultaneous implementation of soil and wa-
ter conservation projects and urbanization processes in this
sub-basin. For detailed information on MIC, please refer to
Sect. S6.

4.5.2 Other anthropogenic influences

The study investigates further the significant anthropogenic
interference, specifically the regulations imposed on reser-
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Figure 4. (a) Precipitation–runoff relationships of five sub-basins within the Wei River basin in non-stationary environments, investigated
using DCCA values. (b) DCCA values at various periods and timescales in the five basins (temporal variations in the PRR and the dynamic
hydrological response of the PRR over time, examined through DCCA values). (c) Interconnected network of the nonlinear relationships
(maximal information coefficient, MIC, values) among the candidate driving factors. The edges correspond to the MIC values occurring for
any two variables (minimum is red, maximum is blue). (d) Completion time and storage capacities of main reservoirs in the Wei River basin.
(e) Total water use in the Wei River basin, including agricultural, industrial, and domestic water usage.

voirs and their impact on the PRR in the Wei River basin,
due to large-scale surface water withdrawals from the reser-
voirs primarily employed for irrigation in agricultural fields
(Zhan et al., 2014b). Notably, the main reservoirs in the
Wei River basin are commonly associated with correspond-
ing irrigation districts. The size of these districts is corre-
lated with the scale of the reservoirs. Therefore, the con-
struction of reservoirs not only redistributes seasonal water
discharge within a given year but also substantially modifies
the inter-annual distribution. However, the collection of data
on reservoir storage variations presented challenges in this
study. Therefore, the study primarily relies on the construc-

tion dates and storage capacities of the reservoirs (depicted in
Fig. 4d) to assess their impact on the PRR. In WR1, the Xi-
azhai Reservoir, with a small-scale capacity, was built in the
1970s. In WR2, the largest reservoir, Fengjiashan Reservoir,
was constructed in 1974. A significant concentration of reser-
voirs with large capacities is observed between WR2 and
WR3 in the Wei River basin. These include Zhangjiazuitou
Reservoir, Shitouhe Reservoir, Xinyigou Reservoir, Yang-
maowan Reservoir, Dabeigou Reservoir, Laoyaju Reservoir,
and Shibianyu Reservoir. Based on the colors of the bubble
chart, most of them were built simultaneously in the early
1970s. In WR4, the Xijiao Reservoir, with a large-scale ir-
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Figure 5. (a) Driving levels and directions of potential influencing factors in changes in precipitation–runoff relationships within the Wei
River basin, as indicated by DPRR values. (b) Absolute values of DPRR of potential influencing factors. (c) Hydrological response to
temporal dynamics of the driving factors based on the D-DPRR values.
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rigation district, was constructed in 1997. It directly con-
trols the downstream streamflow volume at the Zhangjiashan
gauge. In WR5, Zhengjiahe Reservoir and Linfu Reservoir,
with minor capacities, were built in the 1970s. In addition,
a large-scale irrigation area of Shibaochuan Reservoir is lo-
cated downstream of WR5, regulating the streamflow at the
Zhuangtou hydrological station. As a result, the timing of in-
terference from the main reservoir regulations in the study
cases closely aligns with hydrological regime shifts.

Analysis of the comprehensive water use data in the Wei
River basin (Fig. 4e) reveals a significant trend. Since the
1950s, the total water usage in the basin, including by agri-
cultural, industrial, and domestic sectors, has shown a dis-
tinctive stair-step pattern of increase. This observed trend is
consistent with the rapid urbanization process and the inten-
sification of anthropogenic activities in the Wei River basin
(Chang et al., 2015).

5 Discussion

5.1 Potential process controls

Figure 6 illustrates the causal-loop-based process explana-
tions derived from the investigation results of the candidate
driving factors within the five sub-basins of the Wei River
basin. Using WR3 as a representative case, the changes in po-
tential process controls under non-stationary conditions are
further elucidated. It is important to highlight that the causal-
loop-based process explanations are generally applicable to
other catchments, with the generalized conceptual model be-
ing illustrated in Fig. 2.

5.1.1 Climate forcing

Potential evapotranspiration (ET0) provides valuable insights
into the integrated impact of meteorological factors on the
PRR. Temperature, in particular, serves as a direct indica-
tor of evaporation dynamics and exerts a primary influence
on the magnitude of ET0. In the five sub-basins, significant
temperature increases have been observed (Fig. 3). These in-
creases may be attributed to the concurrent rise in sunshine
hours, resulting in increased surface energy input that pro-
motes evapotranspiration. Higher wind speed and tempera-
ture facilitate the movement of water molecules, favoring the
transition of water from a liquid to gaseous state. Conversely,
high relative humidity limits evaporation by increasing the
moisture content in the air. Despite the significant increase
in temperature across the five sub-basins, the heterogeneous
characteristics within each sub-basin led to diverse effects of
ET0 on PRR (Fig. 5).

The relationships between ET0 and the management and
irrigation practices in irrigated areas are closely intertwined.
Large-scale irrigation areas have been established in WR2,
WR3, and WR5 (Fig. 4d). ET0 is associated with irrigation
management (Tu et al., 2023; Berghuijs et al., 2017), affect-

ing processes such as groundwater extraction, river water ab-
straction, vegetation cover, and infiltration, thereby produc-
ing complex effects on the PRR. Rapid urbanization in the
regions WR2, WR3, and WR4, such as the construction of
high-rise buildings, affects regional wind speed and wind di-
rection, thus altering the effect pattern of ET0 on the PRR. In
WR5, the influence of ET0 on the PRR exhibits significant
variations at different timescales (Fig. 5c), likely attributable
to the impact of large-scale afforestation on the local cli-
mate, subsequently affecting the PRR of sub-basins (Mu et
al., 2007). The observed variations indicate a complex pro-
cess, which may be influenced by various factors related to
the alteration of land cover and land use patterns resulting
from afforestation.

5.1.2 Groundwater

According to the identification results of driving levels and
directions, it was observed that baseflow had the most sig-
nificant influence on the PRR compared to other factors. In
WR5, BF was identified as the second most influential factor
in relation to the PRR, closely following potential evapotran-
spiration. Five sub-basins are situated in the Loess Plateau,
which falls in the continental-monsoon-climate region and
experiences an uneven distribution of precipitation through-
out the year. The study area is characterized by high tem-
peratures and abundant rainfall in summers, while winters
are cold and dry. Baseflow contributes to runoff consistently
throughout the year. During the dry season with minimal or
no precipitation, the low soil moisture content leads to a sig-
nificant portion of the precipitation being absorbed by the
soil or stored in water storage facilities within the basin,
resulting in minimal surface runoff. At this time, baseflow
becomes the primary contributor to runoff. As precipitation
increases, soil moisture approaches saturation, and surface
runoff generated by infiltration becomes the primary contrib-
utor to runoff, gradually reducing the contribution of base-
flow (Miao et al., 2020).

The contribution of baseflow to runoff varies in different
regions due to differences in groundwater depth (Huang et
al., 2020). The results from the DPRR analysis of WR4 and
WR5 (Fig. 5) indicate that baseflow exhibits significant un-
certainty at different timescales, which is more evident in
the D-DPRR results. The D-DPRR analysis of WR4 and
WR5 reveals significant differences between large and mi-
nor timescales, with a prominent negative response at long
timescales. These findings suggest that deep groundwater has
a greater impact on the PRR in these two sub-basins, and
there are potentially negative effects on the PRR due to an-
thropogenic activities such as groundwater extraction. The
impact of baseflow on the PRR in the other three sub-basins
(WR1, WR2, and WR3) also displays some uncertainty with
respect to timescales, although it is not statistically signifi-
cant.
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Figure 6. Causal-loop diagram elucidating possible explanations of candidate driving factors in five sub-basins based on the driving levels
and directions of factors influencing the PRR.

The groundwater system is closely interconnected and
is not confined by surface topography, leading to frequent
groundwater exchange between adjacent basins. Further-
more, human activities such as increased domestic, agricul-
tural, and industrial water use can affect baseflow generation
and thus influence the PRR (Huang et al., 2020). WR2 and
WR3 flow through the largest urban cluster centered in the

Wei River basin. They have high levels of economic devel-
opment, resulting in rapid growth in water consumption and
increased groundwater extraction. In this urban cluster, ex-
cessive deep-well pumping caused the confined water level
to drop by approximately 100 m until 1988 (Huang et al.,
2017a). Additionally, with urbanization processes and popu-
lation growth, the agricultural land area within the basin has
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increased, leading to a higher demand for irrigation water.
WR2, WR3, and WR5 support massive irrigation projects,
such as the Shitouhe Reservoir irrigation area, Baojixia irri-
gation area, Fengjiashan Reservoir irrigation area, and Shi-
bochuan Reservoir irrigation area, all of which increase the
amount of groundwater extraction (Huang et al., 2017a).

5.1.3 Vegetation dynamics

The DPRR results in terms of NDVI (Fig. 5) reveal a clear
negative influence of vegetation dynamics on the PRR. In-
creased vegetation coverage enhances the interception capac-
ity of vegetation canopies, resulting in more precipitation be-
ing stored and evaporated within the vegetation canopy. This
reduces the amount of water available for infiltration and
surface runoff generation, thereby negatively affecting the
precipitation–runoff dependencies. Furthermore, increased
vegetation coverage leads to higher plant transpiration rates,
where plants absorb soil moisture and release it into the at-
mosphere. As a result, there is a decrease in the soil moisture
available for baseflow generation, which contributes to the
runoff. During precipitation events, drier soil retains more
precipitation, leading to a reduction in surface runoff genera-
tion. Additionally, increased vegetation strengthens the inter-
ception of median and low surface runoff in vegetated areas,
resulting in a decrease in the amount of water contributing to
runoff during the flow-routing process (Buechel et al., 2022).
Although vegetation interception of surface runoff increased
infiltration to some extent, this increase is small compared to
the reduction in runoff caused by increased vegetation. More-
over, vegetation interception of surface runoff also prolongs
the flow-routing time. With increased vegetation, the flow-
routing process is altered, and the same precipitation event
may yield different runoff processes, thereby impacting the
PRR (Wang et al., 2009; Chang et al., 2015).

The temperature in each sub-basin shows a significant up-
ward trend (Fig. 3), which is beneficial to vegetation growth.
WR1, located in the upstream headwater area of the Wei
River basin, is characterized by its higher elevation and del-
icate ecological conditions, resulting in lower precipitation
compared to in the other sub-basins (Fig. 3). Hence, vege-
tation has a more significant influence on intermediate- and
low-timescale surface runoff. In these regards, the impact of
NDVI on the PRR is more significant in WR1 (Fig. 5).

In the Wei River basin, the scale of soil and water conser-
vation projects has progressively expanded since the 1950s
(Chang et al., 2015). These projects have been accompanied
by the implementation of policies involving the conversion
of farmland to forest and grassland (Feng et al., 2016; Zhang
et al., 2008), resulting in a substantial increase in NDVI over
time. The large-scale soil and water conservation projects in
WR4 and WR5 lead to a greater increase in vegetation cover-
age compared to in WR2 and WR3. However, the impact of
these projects has diminished due to vegetation destruction
associated with economic development since the 1990s (Wu

et al., 2023), as evidenced by the results of the D-DPRR anal-
ysis (Fig. 5c). Additionally, WR3 has a higher proportion of
irrigated areas compared to WR2, and the planting patterns
in these sub-basins typically involve winter wheat and sum-
mer corn. The planting patterns have an immediate effect on
NDVI, thereby contributing to an important impact of NDVI
on the PRR in WR3.

The impact of NDVI on the PRR varies depending on the
timescale, particularly in WR4 and WR5 (Fig. 5c). This vari-
ation arises from the differential effects of changes in veg-
etation coverage between urban and rural regions. In urban
regions, vegetation is often introduced for urban greening,
with plants being transplanted from other regions. Once the
planting is completed, the PRR exhibits a rapid response to
changes in vegetation coverage. However, in rural regions,
plant seedlings are typically planted, resulting in a slower
impact on the PRR. The growth of planted vegetation in non-
urban regions takes several years (depending on the vegeta-
tion type), and soil and water conservation projects are usu-
ally implemented in stages. Therefore, the influence of NDVI
on the PRR in non-urban regions has higher uncertainty over
longer timescales.

5.1.4 Anthropogenic influences

ISR, NTL, and POP are interconnected factors that repre-
sent the intensity of anthropogenic influences (Fig. 4c). Im-
pervious surface area is a crucial element of human settle-
ments, directly indicating urbanization processes (Gong et
al., 2020). With economic development, urban areas expand,
infrastructure improves, production scales up, and the pursuit
of a higher standard of living increases, leading to an increase
in ISR and NTL (Ceola et al., 2019). While urban expansion
generally accompanies population growth, particularly in the
case of small cities surrounding central cities, the opposite
phenomenon may occur. Residents of small cities often mi-
grate to central cities, seeking a more convenient living envi-
ronment or higher economic income. As a result, an increase
in ISR and NTL, along with a decrease in population (POP),
can be observed in WR1 and WR4 (Fig. 3). These differences
have complex effects on the regional PRR. In addition, Yang
et al. (2024) investigated the impact of anthropogenic factors
on water resources in China’s nine major river basins, inte-
grating data on domestic, industrial, and irrigation water use.
Wu et al. (2024) analyzed the effects of anthropogenic factors
on water resources in the Yangtze River basin, focusing on
domestic, industrial, livestock, and irrigation activities. The
findings of these studies indicate that population growth and
urban expansion, along with behaviors such as local water
extraction and inter-basin water transfers, significantly influ-
ence the PRR.

ISR exhibits a negative impact on the PRR in all five sub-
basins (Fig. 5a and b). In WR4, the impact of ISR on the PRR
is second only to that of BF. This is because ISR alters the
underlying surface conditions in the region, directly affect-
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ing multiple aspects of runoff generation in the hydrological
cycle. Additionally, ISR exhibits similar levels of influence
on PRR across different timescales, indicating consistent ef-
fects across varying timescales (Fig. 5c). In the 1990s, the
impact of ISR on the PRR reached its highest level, possibly
due to the development of infrastructure (Zhao et al., 2013).

In the five sub-basins, NTL exhibits similar levels of im-
pact on the PRR, except for WR4, where it shows a negative
effect, while WR1, WR2, WR3, and WR5 show a positive ef-
fect (Fig. 5a). This abnormal phenomenon may be attributed
to the complex influence of NTL on the PRR. NTL gradually
increases with economic development and intensifies human
activities, reflecting the intensity of night-time human activi-
ties and energy consumption (Liao et al., 2017). Similarly to
ISR, NTL had a higher impact during the 1990s compared to
other periods, as revealed by the D-DPRR results (Fig. 5c).

The impact of POP on PRR primarily manifests through
water consumption. WR1 and WR5 have a lower level of im-
pact on the PRR due to their smaller populations (Figs. 3 and
5). However, WR5 has reservoirs such as Tuojiahe Reservoir
and Zhengjiahe Reservoir (Fig. 4d), where water in rivers
is stored for agricultural irrigation and industrial and do-
mestic use, resulting in reduced runoff. WR2 and WR4 ex-
hibit higher levels of impact from POP on the PRR (Fig. 5).
When water demand population aggregation exceeds the sup-
ply from rivers, groundwater is extracted to meet the de-
mand, reducing baseflow generation and subsequently de-
creasing runoff formation. Additionally, the growth in wa-
ter consumption drives the construction of reservoirs, affect-
ing the total volume of runoff. Constructing reservoirs in-
creases regional infiltration, thereby increasing groundwater
recharge, although this volume is small. WR3 has the largest
population among the five sub-basins, but its impact level
from population on the PRR is low (Fig. 3). Inter-catchment
water transfer projects alleviate the increase in water demand
caused by population growth, leading to a lower impact level
of POP on the PRR in WR3 (Zhang et al., 2011).

5.1.5 Potential processes controlling changes in
non-stationary conditions

Taking WR3 as an illustrative case (Fig. 7), the potential pro-
cesses controlling changes in precipitation–runoff relation-
ships were investigated during two distinct sub-periods, de-
noted as sub-period 1 and sub-period 2, which correspond
to periods before and after the hydrological regime shift in
2002. In accordance with the results of D-DPRR (Fig. 5c),
the impact of ET0 on the PRR is similar in sub-period 1 and
sub-period 2. However, in sub-period 1, the impact of ET0 on
the PRR exhibits a complex pattern, with alternating positive
and negative effects. This complexity arises due to the poten-
tial process controls associated with various meteorological
elements (e.g., temperature, relative humidity, and wind) that
influence ET0. These meteorological elements are impacted
by both global climate change and anthropogenic activities,

such as the urban-heat-island effect, which affects local at-
mospheric circulation (Wai et al., 2017; Zhang et al., 2020a).
As a result, the temporal effects of ET0 on the PRR become
intricate and multifaceted. The impact of BF on the PRR is
the most significant compared to other factors. BF consti-
tutes a crucial component of runoff, particularly during dry
seasons in WR3 (Wang et al., 2009). During sub-period 1,
BF exerts a high-level and positive impact on the PRR. How-
ever, at the small timescale of sub-period 2, the impact of
BF on the PRR becomes low level and negative. This shift
may be attributed to regional urbanization processes, leading
to increased water consumption and large-scale groundwater
extraction that alters BF’s influence on the PRR (Huang et al.,
2017a). NDVI consistently exerted a negative impact on the
PRR in both sub-period 1 and sub-period 2. The increase in
vegetation coverage led to heightened canopy interception,
thereby reducing surface precipitation. However, the water
storage capacity of the vegetation canopy is limited, and the
transpiration process is constrained by the soil moisture con-
tent. Therefore, during sub-period 2, the impact of NDVI on
precipitation–runoff relationships (PRRs) exhibits a slight in-
crease compared to sub-period 1. ISR and NTL serve as the
indicators for assessing urbanization development and ex-
pansion (Gong et al., 2020). As such, their impact on the
PRR is significant during sub-period 1, peaking around 1990
(see Fig. 5c). This phenomenon can be attributed to the rapid
growth of real estate and infrastructure in WR3 during the
1990s (Zhao et al., 2013). However, due to data limitations,
we were only able to evaluate the influence of POP on the
PRR during sub-period 2, and its effect was found to be low.

5.2 Comparison with previous literature

There are numerous studies on the impact of various factors
on runoff changes in the Wei River basin. Gao et al. (2013)
found that human activities contributed as much as 82.80 %
to the reduction in streamflow in the Wei River basin. Zhan et
al. (2014a) used the SIMHYD model to partition the effects
of climate change and human activities on surface runoff in
the Wei River basin and found that the contribution of human
activities to streamflow change was more than 65 %. Zhan et
al. (2014b) proposed the improved climate elasticity method
to investigate the contributions of climate change and human
activities to runoff changes in the Wei River basin, with re-
sults showing a climatic contribution to runoff decrease of
22 %–29 % and a human contribution of 71 %–78 %. Chang
et al. (2015), using the VIC model, found that the percentages
in runoff change due to climate change were 36 %, 28 %,
53 %, and 10 % in the 1970s, 1980s, 1990s, and 2000s, re-
spectively. The percentages in runoff change caused by hu-
man activity were 64 %, 72 %, 47 %, and 90 %, respectively.
It can thus be concluded that human activity has a greater
impact on basin runoff than climate change factors. He et
al. (2019), based on the Budyko framework, found that, for
the upper reaches of the Beiluo River, the contribution of
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Figure 7. Causal-loop diagram elucidating the potential processes controlling changes in WR3.

land use change variations to runoff reduction was 95.3 %.
Gao et al. (2020), using the SWAT model, found that, in the
Jing River basin, the influence of climatic factors decreased
from 85.70 % to 42.43 % while that of anthropogenic factors
increased from 14.3 % to 57.57 % between 1961 and 2015.
These studies indicate that human activities are the primary
factor influencing PRR in the Wei River basin, which is con-
sistent with the findings of this study. However, most exist-
ing research broadly categorizes influencing factors into cli-
matic and anthropogenic factors, with some studies consid-
ering changes in potential evapotranspiration and land use as
influencing factors. The quantitative assessment of human-
induced impacts is often derived from the results of climatic
factors without using specific data on human activities. In
contrast, the method proposed in this study enables the ex-
ploration of the impact of individual factors on the PRR.

5.3 Limitations and future research

Due to the intricate interplay of climate forcing, groundwa-
ter, vegetation dynamics, and anthropogenic influences on
catchments, as well as the challenges associated with data
collection relation to anthropogenic activities, this study may
not comprehensively account for all-inclusive or exhaustive
driving factors in the changes in the PRR. In addition, the
complex nonlinear interrelationships among the driving fac-
tors make it challenging to quantify synergistic nonlinear ef-
fects of various factors on the PRR. In addition, the possible
process explanations were verified by logical evidence and
comparison with the findings in previous literature. In our
subsequent investigation, we applied mutual information to
validate the driving levels of the influencing factors of the

PRR. However, due to space limitations, a comprehensive
elucidation of this index is elaborated upon in Sect. S7.

6 Conclusions

This study develops an integrated framework to explore
the controls for changes in precipitation–runoff relationships
(PRRs) in non-stationary environments. The introduction of
the novel Driving index for changes in Precipitation–Runoff
Relationships (DPRR) helps identify potential driving mech-
anisms influencing the PRR within non-stationary hydrolog-
ical processes. Taking the Wei River basin as an example,
by investigating candidate driving factors and incorporating
computed driving levels and directions from DPRR and D-
DPRR (dynamic) into a comprehensive conceptual model,
possible explanations for PRR changes in this basin were de-
rived as follows.

Baseflow was identified as a predominant factor positively
influencing the PRR, with significant uncertainty across var-
ious temporal scales. Potential evapotranspiration is a major
driver of negative changes in the PRR within sub-basins char-
acterized by semi-arid climates and minimal human interfer-
ence. Vegetation dynamics negatively impact the PRR, with
the extent of influence correlating directly with the scale of
soil and water conservation efforts, displaying lower uncer-
tainty.

The impacts of urbanization, measured by the impervi-
ous surface ratio (ISR) and night-time light (NTL), along
with population density (POP), were found to vary, with ISR
showing the most significant direct impact on PRR. These
influences highlight the complex interplay between human
activities and hydrological responses.
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The temporal analysis of DPRR values aligned well with
historical shifts in hydrological regimes, suggesting that the
proposed index can effectively capture the dynamics of PRR
in response to non-stationary conditions. The possible pro-
cess explanations offered by the proposed index were sup-
ported by logical evidence and comparison with the findings
in previous literature. Moreover, mutual information theory
was applied to validate the main findings.

The proposed DPRR index provides a robust tool for com-
paring the influence of different drivers across varied catch-
ment conditions and data sequence lengths, offering a more
nuanced understanding of hydrological responses. Thus, the
integrated framework is able to provide a comprehensive
understanding of hydrological processes, enabling informed
decision-making for sustainable water resource management
in a basin. While this study is based on catchments in the
Wei River basin, it is expected that the issues discussed will
be relevant to catchments in other parts of the world, partic-
ularly in areas with climate change and increasing anthro-
pogenic pressures.
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