Articles | Volume 28, issue 4
https://doi.org/10.5194/hess-28-989-2024
https://doi.org/10.5194/hess-28-989-2024
Technical note
 | 
28 Feb 2024
Technical note |  | 28 Feb 2024

Technical Note: Revisiting the general calibration of cosmic-ray neutron sensors to estimate soil water content

Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald

Related authors

The ability of a stochastic regional weather generator to reproduce heavy precipitation events across scales
Xiaoxiang Guan, Dung Viet Nguyen, Paul Voit, Bruno Merz, Maik Heistermann, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-143,https://doi.org/10.5194/nhess-2024-143, 2024
Preprint under review for NHESS
Short summary
Virtual joint field campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-106,https://doi.org/10.5194/gmd-2024-106, 2024
Revised manuscript under review for GMD
Short summary
Brief Communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Georgy Ayzel and Maik Heistermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1945,https://doi.org/10.5194/egusphere-2024-1945, 2024
Short summary
Brief Communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-119,https://doi.org/10.5194/nhess-2024-119, 2024
Revised manuscript accepted for NHESS
Short summary
A downward-counterfactual analysis of flash floods in Germany
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 2147–2164, https://doi.org/10.5194/nhess-24-2147-2024,https://doi.org/10.5194/nhess-24-2147-2024, 2024
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
High-resolution operational soil moisture monitoring for forests in central Germany
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024,https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Technical note: A fast and objective autosampler for direct vapor equilibration isotope measurements
Jonas Pyschik, Stefan Seeger, Barbara Herbstritt, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-528,https://doi.org/10.5194/egusphere-2024-528, 2024
Short summary
Effects of changes in climatic conditions on soil water storage patterns
Annelie Ehrhardt, Jannis S. Groh, and Horst H. Gerke
EGUsphere, https://doi.org/10.5194/egusphere-2024-118,https://doi.org/10.5194/egusphere-2024-118, 2024
Short summary
Coupled hydrogeophysical inversion of an artificial infiltration experiment monitored with ground-penetrating radar: synthetic demonstration
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023,https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary
Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023,https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary

Cited articles

Altdorff, D., Oswald, S. E., Zacharias, S., Zengerle, C., Dietrich, P., Mollenhauer, H., Attinger, S., and Schrön, M.: Toward Large-Scale Soil Moisture Monitoring Using Rail-Based Cosmic Ray Neutron Sensing, Water Resour. Res., 59, e2022WR033514, https://doi.org/10.1029/2022WR033514, 2023. a
Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., and Looms, M. C.: Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications, Vadose Zone J., 16, 1–11, https://doi.org/10.2136/vzj2017.04.0086, 2017. a
Andreasen, M., Jensen, K. H., Bogena, H., Desilets, D., Zreda, M., and Looms, M. C.: Cosmic Ray Neutron Soil Moisture Estimation Using Physically Based Site-Specific Conversion Functions, Water Resour. Res., 56, e2019WR026588, https://doi.org/10.1029/2019WR026588, 2020. a
Avery, W. A., Finkenbiner, C., Franz, T. E., Wang, T., Nguy-Robertson, A. L., Suyker, A., Arkebauer, T., and Muñoz Arriola, F.: Incorporation of globally available datasets into the roving cosmic-ray neutron probe method for estimating field-scale soil water content, Hydrol. Earth Syst. Sci., 20, 3859–3872, https://doi.org/10.5194/hess-20-3859-2016, 2016. a
Baatz, R., Bogena, H., Hendricks Franssen, H.-J., Huisman, J., Qu, W., Montzka, C., and Vereecken, H.: Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods, J. Hydrol., 516, 231–244, https://doi.org/10.1016/j.jhydrol.2014.02.026, 2014. a
Download
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive technique used to obtain estimates of soil water content (SWC) at a horizontal footprint of around 150 m and a vertical penetration depth of up to 30 cm. However, typical CRNS applications require the local calibration of a function which converts neutron counts to SWC. As an alternative, we propose a generalized function as a way to avoid the use of local reference measurements of SWC and hence a major source of uncertainty.