Articles | Volume 28, issue 20
https://doi.org/10.5194/hess-28-4539-2024
https://doi.org/10.5194/hess-28-4539-2024
Research article
 | 
23 Oct 2024
Research article |  | 23 Oct 2024

Assessing rainfall radar errors with an inverse stochastic modelling framework

Amy C. Green, Chris Kilsby, and András Bárdossy

Related authors

Technical note: A guide to using three open-source quality control algorithms for rainfall data from personal weather stations
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024,https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Probabilistic downscaling of EURO-CORDEX precipitation data for the assessment of future areal precipitation extremes of different durations
Abbas El Hachem, Jochen Seidel, and András Bárdossy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-288,https://doi.org/10.5194/hess-2023-288, 2024
Revised manuscript accepted for HESS
Short summary
Non-asymptotic distributions of water extremes: Superlative or superfluous?
Francesco Serinaldi, Federico Lombardo, and Chris G. Kilsby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-234,https://doi.org/10.5194/hess-2023-234, 2023
Revised manuscript accepted for HESS
Short summary
Why do our rainfall–runoff models keep underestimating the peak flows?
András Bárdossy and Faizan Anwar
Hydrol. Earth Syst. Sci., 27, 1987–2000, https://doi.org/10.5194/hess-27-1987-2023,https://doi.org/10.5194/hess-27-1987-2023, 2023
Short summary
Intercomparison of global reanalysis precipitation for flood risk modelling
Fergus McClean, Richard Dawson, and Chris Kilsby
Hydrol. Earth Syst. Sci., 27, 331–347, https://doi.org/10.5194/hess-27-331-2023,https://doi.org/10.5194/hess-27-331-2023, 2023
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024,https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024,https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024,https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024,https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024,https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary

Cited articles

AghaKouchak, A., Bárdossy, A., and Habib, E.: Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula, Adv. Water Resour., 33, 624–634, https://doi.org/10.1016/j.advwatres.2010.02.010, 2010a. a
AghaKouchak, A., Habib, E., and Bárdossy, A.: A comparison of three remotely sensed rainfall ensemble generators, Atmos. Res., 98, 387–399, https://doi.org/10.1016/j.atmosres.2010.07.016, 2010b.  a
Atlas, D. and Banks, H. C.: The Interpretation of Microwave Reflections From Rainfall, J. Meteorol., 8, 271–282, https://doi.org/10.1175/1520-0469(1951)008<0271:tiomrf>2.0.co;2, 1951. a
Battan, L. J. and Theiss, J. B.: Wind Gradients and Variance of Doppler Spectra in Showers Viewed Horizontally, J. Appl. Meteorol., 12, 688–693, https://doi.org/10.1175/1520-0450(1973)012<0688:wgavod>2.0.co;2, 1973. a
Berne, A. and Uijlenhoet, R.: Quantitative analysis of X-band weather radar attenuation correction accuracy, Nat. Hazards Earth Syst. Sci., 6, 419–425, https://doi.org/10.5194/nhess-6-419-2006, 2006. a
Download
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.