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Abstract. Weather radar is a crucial tool for rainfall observa-
tion and forecasting, providing high-resolution estimates in
both space and time. Despite this, radar rainfall estimates are
subject to many error sources – including attenuation, ground
clutter, beam blockage and drop-size distribution – with the
true rainfall field unknown. A flexible stochastic model for
simulating errors relating to the radar rainfall estimation pro-
cess is implemented, inverting standard weather radar pro-
cessing methods and imposing path-integrated attenuation
effects, a stochastic drop-size-distribution field, and sam-
pling and random errors. This can provide realistic weather
radar images, of which we know the true rainfall field and
the corrected “best-guess” rainfall field which would be ob-
tained if they were observed in a real-world case. The struc-
ture of these errors is then investigated, with a focus on the
frequency and behaviour of “rainfall shadows”. Half of the
simulated weather radar images have at least 3 % of their
significant rainfall rates shadowed, and 25 % have at least
45 km2 containing rainfall shadows, resulting in underesti-
mation of the potential impacts of flooding. A model frame-
work for investigating the behaviour of errors relating to the
radar rainfall estimation process is demonstrated, with the
flexible and efficient tool performing well in generating real-
istic weather radar images visually for a large range of event
types.

1 Introduction

Precipitation is challenging to measure accurately, due to its
intermittent nature, spatio-temporal variability and sensitiv-

ity to environmental conditions (Savina et al., 2012). For ur-
ban hydrology, weather radar plays an increasingly important
role in quantitative precipitation estimation, due to the high
spatio-temporal resolution of the information needed (Thorn-
dahl et al., 2017). The small sizes of urban catchments and
the intended hydrological applications – particularly for real
time or near real time – require information about precip-
itation fields at small temporal and spatial scales, from 1–
10 min and 1–5 km, respectively (Berne et al., 2004; Ochoa-
Rodriguez et al., 2015; De Vos et al., 2017; Thorndahl et al.,
2017; Shehu and Haberlandt, 2021).

Despite the suitability of weather radar for obtaining high-
resolution rainfall estimates, there are many sources of er-
ror in the estimation process, with different sources of uncer-
tainty reviewed in numerous studies (Michelson et al., 2005;
Meischner, 2005; Villarini and Krajewski, 2010; Ośróka
et al., 2014; Ciach and Gebremichael, 2020). Errors in-
clude radar calibration and stability problems, contamina-
tion by clutter and anomalous propagation, occultation, a
beam-broadening effect with non-uniform beam filling, at-
tenuation and assumptions made about the drop-size distri-
bution (DSD) (Marshall and Palmer, 1948; Harrison et al.,
2000). Some error sources can be corrected for, such as bias
and systematic errors, ground clutter (Gabella and Notarpi-
etro, 2002; Ventura and Tabary, 2013; Li et al., 2013) and
attenuation (Nicol and Austin, 2003; Krämer, 2008; Jacobi
and Heistermann, 2016), resulting in significantly improved
reliability. Correction procedures are often limited due to the
cumulative nature of errors from a superposition of different
sources, with complex approaches showing only modest im-
provements to estimates. Information on the rainfall field is
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lost, irretrievable, and we do not even know how often this
happens.

There is therefore an ongoing need to account for errors
in the radar rainfall estimation process (Villarini and Kra-
jewski, 2010; Seo et al., 2018), and uncertainties should be
acknowledged and modelled (Ciach et al., 2007; Gires et al.,
2012; Villarini et al., 2014; Rico-Ramirez et al., 2015). The
poor quantification of uncertainties was highlighted as a fun-
damental issue in AghaKouchak et al. (2010a) and expanded
in AghaKouchak et al. (2010b). An error model described
in Hasan et al. (2014) found that uncertainties were easily
identifiable for unbiased reflectivity–rainfall (Z–R) relation-
ships, incorporating radar reflectivity uncertainties in Hasan
et al. (2016). Variograms were used to represent radar rain-
fall uncertainties (Cecinati et al., 2017), eliminating the need
for a covariance matrix for faster and more flexible calcula-
tion of the spatial correlation of errors. Uijlenhoet and Berne
(2008) created a stochastic model of range profiles for the
DSD, using a Monte Carlo framework (Berne and Uijlen-
hoet, 2006) to estimate uncertainties using two attenuation
correction schemes. Yan et al. (2021) imposed random and
non-linear radar errors on simulated rainfall fields, with Z–R
relationship errors appearing to have little influence overall.

Error quantification is challenging, and errors propagate
into future estimates for any model which requires rainfall
as an input. The fundamental limitation in radar correction
is that the “true” rainfall field is not available for compar-
isons. In this study, the aim is to work backwards to obtain
an estimate of the uncertainty in the radar rainfall estimation
process. Using a new model for simulating realistic space–
time rainfall event fields with high resolution (matching that
of a UK standard C-band weather radar) (Green et al., 2024),
a clustered parameterization based on radar rainfall events
from High Moorsley weather radar operated by the UK Met
Office was extracted. These simulation outputs are treated as
the true rainfall field. Errors relating to each step of the radar
rainfall estimation process are then imposed on the simulated
rainfall field to obtain an ensemble of spatio-temporal error
fields for each event in a stochastic manner, forming a super-
position of different error sources. This is done by inverting
standard radar processing methods, allowing identification of
the frequency of the occurrence and extent of the loss of im-
portant information.

In this study, the data and study area are first discussed
in Sect. 2, together with the simulation methods applied to
obtain realistic space–time rainfall fields. The methodology
for the radar error model is then outlined in detail in Sect. 3,
with detailed explanations for each step of the model. Exam-
ple event results are discussed in Sect. 4.2–4.5, with more
general results based on event images given in Sect. 4.6–4.9.
A discussion and conclusions are given in Sect. 5, with model
limitations, potential for generalization and future work also
discussed.

2 Data

An ensemble of realistic rainfall events is used, generated
using the clustered rainfall model outlined in Green et al.
(2024). This model uses fast Fourier transform (FFT) meth-
ods to efficiently generate three-dimensional rainfall event
fields with a high resolution matching that of radar data
(1 km, 5 min) for a 200× 200 km domain. Events have pre-
scribed properties, including the correlation structure, spa-
tial anisotropy, spatio-temporal anisotropy, marginal distri-
bution, non-zero rainfall proportions and advection. The
model is used with multi-dimensional scaling and hierarchi-
cal clustering to parameterize rainfall event simulations for
100 rainfall events.

A year of processed dual-polarization C-band weather
radar data is used to parameterize simulations of realistic
space–time rainfall fields. This is obtained from weather
radar from High Moorsley (Met Office, 2003), which is lo-
cated near Durham, England (54°48′20′′ N, 001°28′32′′W),
with a wavelength and frequency of 5.3 cm and 5.6 GHz, re-
spectively. This operates between five elevation angles from
0.5 to 2° with 1° beam width, taking a scan at each elevation
approximately every 5 min.

3 Radar error model

This section outlines a novel model for imposing errors in the
radar rainfall estimation process on a rainfall field, focusing
on four main error sources: random noise effects, attenuation
effects, DSD error and sampling through estimation variance.
Section 3.1–3.3 describe the error model in more detail, out-
lined in Fig. 1 and written in Python. While the model is by
no means comprehensive, random error is included. This is
designed to provide a framework for investigating the impact
of these errors, improving understanding of the estimation
process.

3.1 Re-projecting to polar coordinates

The simulated rainfall fields are given on a regular three-
dimensional Cartesian grid. To apply radar processing meth-
ods in reverse, the data must be re-projected into a polar coor-
dinate system. Using nearest-neighbour interpolation meth-
ods, the Cartesian grid is converted into polar data

Z(t,x,y)→ Z(t,θ,r) (1)

for ray angles θ = 1, 2, . . .360 with ray bins r = 1, 2, . . .167
of width 600 m and average elevation angle 1°. This mirrors
the radar configuration of the High Moorsley weather radar
used for parameterization. The different elevation angles and
the differences in the sampling sizes of the pixels are incor-
porated through the use of estimation variance in Sect. 3.5.
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Figure 1. Schematic for imposing the radar error model on simu-
lated rainfall fields, outlined in more detail in Sect. 3.1–3.5.

3.2 Attenuation effects

A constrained gate-by-gate approach is applied to estimate
the path-integrated attenuation (PIA) for each radar ray by
inverting standard forward-attenuation models (Krämer and
Verworn, 2008; Jacobi and Heistermann, 2016). Inverting the
process gives an estimated attenuated reflectivity Zi rate for
the ith bin of width 1r as

Ẑi = Zi,corr−

i−1∑
j=0

k̂j and

k̂i = c

[
Zcorr,i + (21r − 1)

i−1∑
j=0

k̂j

]d
(2)

for constants c and d . This results in a realistic radar image
of attenuated reflectivity in a polar coordinate system at each
time step of the event, denoted by Zcorr(t,θ,r). Using the
scheme described above, for rainfall intensity R(t) at time t ,
we get a PIA estimate PIA(t) of

R̃(t)=

{
R(t)−PIAR(t)(t) if R(t)≥ PIAR(t)(t),

0 otherwise, (3)

where PIA(t)= f {R(t)} is a function based on the estima-
tion algorithm outlined in Jacobi and Heistermann (2016).

3.3 Random noise effects

When considering empirical variograms for weather radar
images, Pegram and Clothier (2001) found that 10 % of the

Figure 2. Histograms of an example dry radar image (blue) and
all radar pixels above −32 dBZ (orange) for the High Moorsley
weather radar for the year 2019, where unz is the reflectivity rate
corresponding to the non-zero rainfall threshold of 0.1 mm h−1.

variability in images corresponded to nugget effects, high-
lighting the need for random noise effects in radar pixel sim-
ulations. This noise is also evident in the marginal distribu-
tions of radar images, with the full year and an example “dry”
day image for the High Moorsley weather radar given in
Fig. 2, showing a large number of values in the range −32 to
0 dBZ. Although rainfall rates of less than 0.01 mm h−1 are
hardly noticeable in terms of rainfall accumulations, this high
density of low-reflectivity rates in radar images may have
a significant effect on attenuation estimates along the radar
rays. This noise may be attributed to the measuring appa-
ratus, non-meteorological echoes or most likely a combina-
tion of various different sources. Errors are treated as random
noise, representing a combination of errors from unknown
sources clearly evident in real radar images.

The random noise field is added to rainfall values to pre-
vent numerical instabilities, with the marginal distribution
from Fig. 2 converted to rainfall rates in Fig. 3. When con-
sidering the logarithm of weather radar noise (i.e. dry day
images and values (dBZ) corresponding to rainfall rates less
than 0.1 mm h−1), these are sufficiently Gaussian to satisfy
the assumption of a log-normal marginal distribution for ran-
dom noise effects. A log-normal marginal distribution al-
lows for a simple and easy transformation when simulating
the field using Gaussian random field theory. Empirical var-
iograms of these values were estimated to identify an appro-
priate correlation structure, which has a very short correla-
tion range of around 5 km. The optimal spatial transforma-
tion for minimizing least squares between the marginal var-
iogram values of the two spatial dimensions is used to esti-
mate field anisotropy from empirical variogram fields, with
estimates suggesting that isotropy of random noise fields is
a valid assumption in this case. The three-dimensional noise
field denoted by ε(t,x,y) is assumed to be log-normal, with
a marginal distribution of

ε ∼ LN
(
µε,6

2
ε

)
, (4)

where µε =−5.3 and σε = 1.7. A Gaussian random field
is simulated with an exponential correlation structure of
ρε(h)= exp{−h/rε} for a short range with rε = 5 and a
nugget effect of nε = 0.35. This is transformed using an in-
verse Gaussian score transformation and then exponentiated,
resulting in a random noise field with the desired marginal
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Figure 3. Histograms of low rainfall rates (and logarithms) corre-
sponding to empirical random noise (i.e. in the range −32< Z ≤
10) obtained from High Moorsley weather radar for the year 2019
(blue), together with an example simulated noise field (orange).

distribution and correlation structure. An example field is in-
cluded in Fig. 3, from which we can see that the variability
is slightly higher than in existing images. This is however
selected to preserve the proportion of −32 dBZ reflectivity
rates in images, with any values less than −32 dBZ treated
as −32 dBZ.

3.4 Drop-size-distribution errors

Attenuated rainfall rates R̃(t) can then be added to the three-
dimensional noise field ε(t,x,y), which can then be con-
verted into a reflectivity field. AZ–R relationship is typically
used, of the form Z = 10log10(aR

b) for reflectivity Z (dBZ),
rainfall R (mm h−1) and constants a and b, which typically
take the values a = 200 and b = 1.6 (Harrison et al., 2000).
Constant values for a and b are based on the assumption that
the DSD varies spatially and temporally in a way character-
istic of a particular rainfall or weather type. Despite this, a
fixed Z–R relationship results in a severe underestimation
of peak rainfall intensities due to the failure to account for
natural variations in the DSD with intensity (Schleiss et al.,
2020). Lee et al. (2007) indicated that the overall DSD vari-
ability cannot be adequately explained by a single parame-
ter. In Libertino et al. (2015), a varying Z–R relationship in
space and time improved rainfall accumulations at the event
scale when compared to a fixed relationship.

A large amount of scatter around the average power-law
relationship is related to the various microphysical processes
that are responsible for the DSD variability. To account
for this variability, in an attempt to generate more realistic
reflectivity images, we assume that a = A(x,y) is a two-
dimensional field varying in space. As the simulated rainfall
events all have a fairly short duration (6 h or less), a constant
DSD in time is initially used. This assumes that A is fairly
constant over the time period considered, although the model
is flexible and the dimensions of A can easily be extended to
include time.

Figure 4. Schematic of a radar ray sampling volume for an example
pixel, denoted as a vertical column.

Parameters in the Z–R relationship typically take values
in the ranges a ∈ (30,1000) and b ∈ (0.8,2) (Battan and
Theiss, 1973; Smith and Krajewski, 1993), and so parame-
ter b is still treated as constant but is sampled from a Gaus-
sian distribution with a low variance centred around a value
of µb = 1.6. This gives attenuated reflectivity estimates of

Z̃(t)= 10log10

{
A
[
R̃(t)+ ε(t)

]b}
(5)

for

A(x,y)∼N2 (µa, {1+ g(x,y)}6a) b ∼N
(
µb,σ

2
b

)
(6)

for correlation structure ρa = σa exp{−h/ra}, where µa =
220, σa = 2, ra = 30, µb = 1.6 and σb = 0.02. The function
g(x,y)=6E(x,y) is the estimation variance based on the
pixel location (x, y) and on the proportion of the rainfall vol-
ume that the radar can see for a given distance, which is dis-
cussed further in Sect. 3.5. Attenuated reflectivity fields are
rounded to one decimal place and are limited by a minimum
value of −32 dBZ, as is the case for actual reflectivity data.

3.5 Radar sampling

Due to the nature of weather radar sampling, polar observa-
tions close to the receiver sample from a much smaller vol-
ume than those further away, as can be seen for an exam-
ple pixel in Fig. 4. Earth curvature effects, cloud height and
bright band effects also impact the sampling volume, and fur-
thermore radar observations above the freezing level are un-
available due to the high reflectivity of melting precipitation
(Hooper and Kippax, 1950; Kitchen et al., 1994; Hall et al.,
2015).

To address this, sampling errors are included as part of
the DSD model designed to increase uncertainty in the DSD
where the volume of rainfall sampled by the radar beam is
lower. Areas where it is unrealistic for the radar beam to be
sampling rainfall (e.g. above the bright band level or out-
side the base and top of the cloud) are removed with flexi-
ble model parameters which can be adjusted. In this case, the
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Figure 5. Example of variogram contributions for a discretized vol-
ume V . A given volume ν is sampled, highlighting an example of
discretized blocks contributing to empirical variogram estimation
for each of the terms in Eq. (7).

configuration of High Moorsley weather radar is used (see
Sect. 2).

The radar sampling error is defined using estimation vari-
ance principles by representing the change in uncertainty be-
tween the actual and sampled volumes. Assuming a pixel is a
vertical column denoted by V dependent on the radar config-
uration and the distance of the pixel from the weather radar,
parts of this vertical column will be sampled by the radar,
denoted by ν (see Fig. 6). The estimation variance σE can be
defined as

σE = 2γ (V,ν)− γ (ν,ν)− γ (V,V ), (7)

where γ is the mean variogram and V and ν are the total and
sampled volumes, respectively. By discretizing the vertical
pixel into small blocks, we can estimate the empirical vari-
ograms in Eq. (7), with an example of discretized blocks con-
tributing to each term in Fig. 5 based on a variogram model
for the vertical distribution of the DSD.

We consider a vertical column of rainfall, assuming that
the cloud base, bright band and cloud top are 1, 4 and 10 km
and assuming an exponential variogram model for below the
bright band level. Discretizing the vertical column of rain-
fall into blocks of height 10 m (see Fig. 6), the empirical dis-
tances for each discretized block are calculated using the var-
iogram model. Parameterization is based on analyses of ver-
tical weather radar data (Berne et al., 2005), considering the
vertical raindrop volume distribution for a range of rainfall
rates and heights. The variance of sampling volumes in dif-
ferent ranges supported the concept, with simulations com-
pared to vertical radar images for validation.

4 Results

In this section, the performance of the model is considered
by looking at example fields for each step of the simulation
process. We consider 100 rainfall events simulated using the
methods outlined in Green et al. (2024) and parameterized by

Figure 6. Example of the vertical structure of a rainfall pixel, with
discretized blocks representing the volume V and the volume sam-
pled by the radar beam ν highlighted in yellow.

radar rainfall events from High Moorsley weather radar (see
Sect. 2). For each event, the model was run n= 100 times to
obtain an ensemble of weather radar images. To enable di-
rect comparisons, each radar image is corrected using a stan-
dard radar rainfall estimation process resulting in corrected
rainfall for each ensemble member, similar to what would
be obtained from a radar rainfall image. This includes an at-
tenuation correction (Jacobi and Heistermann, 2016), a Z–R
relationship (Harrison et al., 2017) and re-projection onto a
Cartesian grid to allow for direct comparisons with the orig-
inal simulated rainfall field R.

Defining the difference between the simulated true rainfall
field (R) and the corrected rainfall field (Rcorr,i) after apply-
ing the radar error model as the error, we consider specific
events R, individual event time steps R(t) throughout the en-
semble (i.e. image-based) and the behaviour of all events. To
investigate the capacity of the radar error model to capture
uncertainty, we consider the error metrics outlined below.

1. The mean bias between corrected ensemble members
and original simulated rainfall

BIAS(R)=
1
n

n∑
i=1

(
R−Rcorr,i

)
(8)

for ensemble members i = 1, . . . , 100

2. The root-mean-square error (RMSE) across the ensem-
ble

RMSE(R)=

√√√√1
n

n∑
i=1

(
R−Rcorr,i

)2 (9)

3. The pixel variability throughout the ensemble, using the
standard deviation

SD(Rcorr)=

√√√√√ n∑
i=1

(
Rcorr,i −Rcorr,i

)2
n

(10)
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Figure 7. Step-by-step error model fields, including the (a) simulated rainfall field R(t), (b) attenuation PIA, (c) attenuated rainfall R̃(t),
(d) random noise field ε(t), (e) attenuated rainfall with random noise R̃(t)+ ε(t) and (f) attenuated reflectivity Z̃(t) for a single time step of
an example simulated event.

4. The minimum and maximum RMSE values across the
ensemble

RMSEmin(R)=mini=1, ..., n

{√(
R−Rcorr,i

)2}and

RMSEmax(R)=maxi=1, ..., n

{√(
R−Rcorr,i

)2}
(11)

5. The average error across the ensemble, as a percentage
of the original simulated rainfall field for all non-zero
simulated rainfall pixels

pR =
1
n

n∑
i=1

(
1−

Rcorr,i

R

)
× 100% (12)

where R > 0.

Additional metrics are defined to identify cases where sig-
nificant amounts of rainfall are missing in corrected rainfall
fields. Crane (1979) referred to distortions in storm struc-
tures, as a result of attenuation, as shadows. In this study we
define rainfall shadows as areas where information about the
rainfall field is lost from a simulated weather radar image af-
ter correction methods have been applied. A formal definition
of a rainfall shadow in this case is taken to be a pixel where
the simulated rainfall is significant (i.e. R > 1 mm h−1) but
the corrected rainfall is much lower (less than 10 %) than the
original simulated rate (i.e. Rcorr/R ≤ 0.1|R > 1).

We first consider example fields for each stage of the er-
ror model in Sect. 4.1 and then three events which show high
bias and low and high variability in Sect. 4.2–4.4, quantified
based on the above metrics at an event level. The behaviour
of individual radar images is considered by looking at the av-
erage, minimum and maximum behaviours over the ensem-
ble, including the variability. Attempts are made to find met-
rics and properties of rainfall images with the aim of iden-
tifying instances where there is a very high level of uncer-
tainty or error arising from the rainfall estimation process.
The impact of the rainfall location with respect to the radar
is considered, together with identifying how often significant
information on the rainfall field is lost. For individual image-
based errors, we introduce three image metrics below relating
to rainfall shadows:

1. ARS is the actual area (km2) of the radar image that
contains rainfall shadows.

2. LARS is the largest single area (km2) of rainfall shad-
ows in a radar image.

3. PRS is the proportion of significant rainfall (i.e. R >
1 mm h−1) that is shadowed.

4.1 Example fields

For an example time step of a simulated event, each stage
of the radar error model process is given in Fig. 7. The fi-
nal radar image (Fig. 7f) appears realistic, with clear areas of
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Figure 8. (a) Simulated rainfall field, (b) example reflectivity and (c) corrected rainfall field for simulated event A (video link at https:
//zenodo.org/record/8029394/files/true_sim_rainfall_133.mp4?download=1, last access: 16 October 2024).

Figure 9. (a) Average bias, (b) average RMSE, (c) pixel variability (SD), (d) maximum RMSE, (e) minimum RMSE and (f) average
proportional error for simulated event A (video link at https://zenodo.org/record/8029394/files/errors_and_var133.mp4?download=1, last
access: 16 October 2024).

rainfall similar to raw radar images obtained from the High
Moorsley weather radar. A significant proportion of the sig-
nal is attenuated towards the edge of the domain, particularly
in the top right of the image.

4.2 Event A: high bias

The event shown in Fig. 8a has an area of moderate-intensity
rainfall in the centre of the image with a large extent, re-
sulting in high bias. The simulated radar image for an en-
semble member associated with the event looks realistic,

with the reflectivity and corrected rainfall rates (see Fig. 8b
and c) showing significant rainfall amounts missing through-
out. The average bias, RMSE and pixel variability corre-
sponding to the event in Fig. 8 are given in Fig. 9. The aver-
age bias and RMSE are very high (see Fig. 9a and b), taking
values over 5 mm h−1.

Figure 9c shows very low pixel variability for most of
the image, which is reflected in the range of RMSE values
throughout the ensemble given in Fig. 9d and e, with a large
area in the centre of the image showing a bias and RMSE
greater than 5 mm h−1, suggesting that the rainfall is consis-
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Figure 10. (a) Percentage of corrected rainfall that is less than 10 % of the original simulated field and (b) frequency of shadowed pixels
over the ensemble for simulated event A (video link at https://zenodo.org/record/8029394/files/shadowed_133.mp4?download=1, last access:
16 October 2024).

Figure 11. (a) Simulated rainfall field, (b) example reflectivity and (c) corrected rainfall field for simulated event B (video link at , last
access: 16 October 2024).

tently underestimated throughout the ensemble. A large area
of moderate-intensity rainfall on top of the radar is overcor-
rected, mimicking effects resulting from full attenuation of
the radar signal by intervening rainfall. In this case, the cor-
rection techniques will not improve the image significantly,
and so information on a large portion of the rainfall field is
lost, particularly when forward-attenuation correction algo-
rithms are implemented.

This result is reiterated when looking at the rainfall shad-
ows in Fig. 10b, where around one-fourth of the image is
shadowed for 100 % of the ensemble members. This event
has a very high average bias, with pixel variability varying
drastically throughout the image. Large areas of rainfall are
missing, and the differing variability throughout and spatial
distribution of the error structure suggest that a mean field
bias or multiplicative correction would not improve the esti-
mates significantly. The information on the rainfall structure
and rates would be lost in this case.

4.3 Event B: low variability

Figure 11a shows a rainfall event with a small extent of light
rainfall and mostly dry conditions throughout the image, re-
sulting in low variability throughout the simulated ensem-
ble. There is a small amount of light rainfall in the centre
left of the radar domain, with the corrected rainfall image in
Fig. 11c exhibiting lower rainfall rates here than the original
simulated rainfall. The radar image in Fig. 11 appears realis-
tic, with a small amount of signal damping towards the left
of the image in a range beyond the rainfall seen in Fig. 11a.

The corresponding bias and RMSE for this event are given
in Fig. 12, together with the pixel variability and maximum
and minimum RMSEs over the ensemble and the average
proportional error. Over the ensemble, the average bias (see
Fig. 12a) is close to zero, except for the low-intensity rainfall
areas (with at most 0.5 mm h−1), with low average, minimum
and maximum RMSEs in Fig. 12b, d and e. The pixel vari-
ability is slightly higher in the rainfall area (see Fig. 12c),
with pixels at a larger distance from the transmitter in this
area showing lower pixel variability (less than 0.02 mm h−1)
and the remaining variability appearing uniform. In Fig. 13b,
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Figure 12. (a) Average bias, (b) average RMSE, (c) pixel variability (SD), (d) maximum RMSE, (e) minimum RMSE and (f) average pro-
portional error for simulated event B (video link at https://zenodo.org/record/8029394/files/errors_and_var49.mp4?download=1, last access:
16 October 2024).

Figure 13. (a) Percentage of corrected rainfall that is less than 10 % of the original simulated field and (b) frequency of shadowed pixels
over the ensemble for simulated event B (video link at https://zenodo.org/record/8029394/files/shadowed_49.mp4?download=1, last access:
16 October 2024).

the rainfall is shadowed in 100 % of the rainfall ensemble
(i.e. all the ensemble members) in the area of low-intensity
rainfall identified in Fig. 11. The frequency of shadows over
the ensemble mostly has values of either zero or one. This
event has very low variability between the ensemble mem-
bers, likely due to (mostly) non-zero rainfall amounts in the
images.

4.4 Event C: high variability

Figure 14 shows an event with a small area of heavy rain-
fall rates, which results in high variability in event errors.
Most of the radar domain shows zero rainfall rates, except
for a very small area of high-intensity rainfall (greater than
100 mm h−1) towards the top of the domain. The example
radar image (see Fig. 14b) is again realistic, showing mostly
noise. Radial lines in the top right past a small amount of
high-intensity rainfall suggest that attenuation effects have
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Figure 14. (a) Simulated rainfall field, (b) example reflectivity and (c) corrected rainfall field for simulated event C, with high-intensity
rainfall (average throughout the event over 10 mm h−1) highlighted in red (video link at https://zenodo.org/record/8029394/files/true_sim_
rainfall_64.mp4?download=1, last access: 16 October 2024).

Figure 15. (a) Average bias, (b) average RMSE, (c) pixel variability (SD), (d) maximum RMSE, (e) minimum RMSE and (f) average
proportional error for simulated event C, with high-intensity rainfall (average throughout the event over 10 mm h−1) highlighted in red
(video link at https://zenodo.org/record/8029394/files/errors_and_var64.mp4?download=1, last access: 16 October 2024).

not been sufficiently corrected. In Fig. 14c the corrected
rainfall image has areas of high-intensity rainfall which are
overestimated due to cumulative errors introduced as part of
forward-attenuation correction procedures. Although there is
no large area of high-intensity rainfall, the rainfall field’s spa-
tial distribution has still been significantly impacted by the
errors caused by attenuation.

From Fig. 15a and b, these radial lines show a positive av-
erage. However, none of these exceeds 0.2 mm h−1. Errors
are not noticeable from the maximum RMSE field but have

a much higher minimum RMSE than the rest of the image
(see Fig. 15d and e). In this case, it appears that the attenu-
ated high-intensity rainfall has been overcorrected, showing
an average proportional error greater than one. Pixels within
the affected rays at distances further from the radar transmit-
ter are underestimated. Although these are mostly light rain-
fall rates, the rays have been significantly impacted, show-
ing a clear gap when comparing the simulated and corrected
rainfall fields.
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Figure 16. (a) Percentage of corrected rainfall less than 10 % of the original simulated field and (b) frequency of shadowed pixels over the
ensemble for simulated event C, with high-intensity rainfall (average throughout the event over 10 mm h−1) highlighted in red (video link at
https://zenodo.org/record/8029394/files/shadowed_64.mp4?download=1, last access: 16 October 2024).

The shadowed pixels in Fig. 16 show radial lines in areas
where the corrected rainfall is less than 10 % of the simulated
rainfall. Most of these pixels do not have significant rainfall
rates and so are not classed as shadowed, with only a handful
of pixels showing shadows and none for 100 % of the ensem-
ble, resulting in high variability within the ensemble.

From the videos of event errors, this high-intensity rain-
fall moves across the image, affecting different rays, with
some pixels showing rainfall shadows past the high-intensity
rainfall. This is not consistent throughout the ensemble, with
most pixels showing shadows in less than 100 % of the en-
semble members. This small area of high-intensity rainfall
has resulted in high variability across the ensemble, which
is impacted significantly by the overestimation of high-
intensity rainfall rates, with the DSD error also contributing
to the variability for such a high rainfall rate.

4.5 Specific events: summary

In cases where the absolute bias is low, rainfall shadows may
still exist, suggesting that average bias is a poor metric to
use when identifying event errors. Even with a low absolute
bias, the rainfall could be overestimated for pixels closer to
the radar and underestimated past these pixels (which is very
common along radar rays where attenuation has been over-
estimated). In these cases, the spatial distribution of rainfall
is often incorrect, which could have detrimental effects when
using the rainfall fields for any quantitative modelling. Typ-
ically, events with high bias correspond to events with large
rainfall shadows, with shadow frequencies close to either
zero or one, suggesting that, in cases where there is high bias,
the model uncertainty is low. Simulated rainfall events which
exhibited high ensemble variability resulted from potential
interactions between small areas of high-intensity rainfall
and DSD errors, which corresponded to higher variability in
shadows throughout the ensemble. Videos of all the simu-
lated events (and the corresponding errors) are available in
Green (2023).

4.6 Individual image-based errors: average ensemble
behaviour

The relationship between the average rainfall rate and the
proportion of rainfall in an image with the image RMSE
is shown in Fig. 17a, showing that events with high aver-
age rainfall rates and large, heavy rainfall proportions have
the highest RMSE. Images showing fairly low proportions
(i.e. 5 %–10 %) of heavy rainfall still exhibit a fairly high
RMSE. Figure 17b shows the relationship between the mean
and standard deviation of non-zero rainfall rates with the im-
age RMSE, showing a higher RMSE for events with a high
average and standard deviation in non-zero rainfall rates.
This may be due to the large errors resulting in large gra-
dients between pixels, where a large rainfall rate along a ray
damps the signal so that subsequent observations are much
lower, increasing the pixel variability in images.

Figure 18 shows the average rainfall rate (see Fig. 18a–
e) and the proportion of non-zero rainfall (see Fig. 18f–j) in
event images for the average bias, RMSE, ARS, PRS and
LARS. For higher rainfall rates and proportions of rainfall,
the bias increases, with low proportions of low rainfall rates
exhibiting a negative average bias. This is also the case for
the average non-zero rainfall rates. However, the relationship
between the proportion of non-zero rainfall and the RMSE
is less distinct, highlighting the significant impact of very
small areas of intense rainfall rates on the image’s RMSE.
Figure 18 also shows that there are some low average rainfall
rates and proportions of non-zero rainfall which correspond
to high areas of the shadowed rainfall. This may be attributed
to noise. However, this does suggest again that events do
not need to include intense large-scale rainfall areas to result
in significant rainfall shadows. The proportion of shadowed
rainfall also appears to increase exponentially as the average
non-zero rainfall rate increases, which is not the case with
the proportion of rainfall in the images.
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Figure 17. (a) Average rainfall rate and proportion of significant rainfall and (b) average and standard deviation of non-zero rainfall, coloured
according to the image RMSE for event images.

Figure 18. Average rainfall rate (a–e) and proportion of non-zero rainfall (f–j) for metrics including average bias, RMSE, area of rainfall
shadowed (ARS), proportion of rainfall shadowed (PRS) and largest rainfall shadow area (LARS) for ensemble images of all events.

The relationships in Fig. 18 are heavily skewed by a high
density of images with low average rainfall rates and pro-
portions. For a clearer image of the behaviour for event im-
ages, see the average rainfall rates of 0.1, 0.5 and 1 mm h−1 in
Fig. 19. This shows a much clearer relationship between the
corrected rainfall field and the rainfall shadows, with strong
correlations between the average bias and the average rain-
fall rate (see Fig. 19a, f and k). The relationship becomes less
clear for higher rainfall thresholds for conditional averages,
with the strongest correlation between the non-zero rainfall
average and the RMSE (see Fig. 19b).

From Fig. 19c, h and d, the ARS in the images may in-
crease exponentially with increasing average rainfall rates.
However, this may be skewed by the small number of im-
ages with very high ARS values (larger than 1000 km2). For
the thresholded rainfall rates, most correspond to a low ARS
value but appear to increase exponentially, particularly in
Fig. 19c. There are some images with low ARS values which
have high-threshold rainfall rates, which may be a result of
small areas of high-intensity rainfall, where there are no re-

sulting shadows as there are no other areas of significant rain-
fall rates (R(t)). The relationship between the proportion of
rainfall is more complex (see Fig. 19d, i and n), with two dis-
tinct types of image behaviour. While a correlation is evident
between the conditional average rainfall rates and the PRS
values, there is clearly a large number of images with low
average rainfall rates and large PRS values. These high PRS
values with low average rainfall rates most likely correspond
to images with a very low proportion of rainfall rates large
enough to be classed as shadows. If just 1 rainfall pixel is
shadowed, there would be a large increase in the PRS value
in this case, highlighting the impact that shadows have on im-
ages with low rainfall extents, with fairly low average rainfall
rates.

From Fig. 19e, j and o the LARS values appear to have
a similar relationship with the ARS values. However, these
are again skewed by very high ARS values, and so the re-
lationship is less clear. Considering that the overall average
behaviour of the ensemble does not take full advantage of the
model framework and different ensemble member properties,
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Figure 19. Average thresholded rainfall rate for R(t) > 0.1 mm h−1 (a–e), R(t) > 0.5 mm h−1 (f–j) and R(t) > 1 mm h−1 (k–o) for metrics
including average bias, RMSE, ARS, PRS and LARS for ensemble images of all events.

Figure 20. Standard deviation of the ensemble bias (a) and RMSE (b) for average non-zero rainfall rates of ensemble images for all events.

important variation information is lost, which may have in-
creased understanding of the uncertainty associated with the
radar rainfall estimation process.

4.7 Individual image-based errors: ensemble
variability

The variability between the ensemble members for each
event image is considered using the ensemble standard de-
viation to identify areas where the event errors have a high
level of uncertainty in image properties. Figure 20a shows
the relationship between the average non-zero rainfall rate
and the standard deviation of the image bias, showing rain-
fall images with an average non-zero rainfall rate of less
than 0.5 mm h−1. There is no clear relationship between
the average rainfall and variability in the bias of estimates.
For images with an average non-zero rainfall rate above

0.5 mm h−1, there appears to be a strong positive correlation
between the two, suggesting that, past this image threshold,
the uncertainty in the image bias is directly proportional to
the average non-zero rainfall rate.

The relationship between the average non-zero rainfall rate
and the image’s RMSE variability in Fig. 20b is very differ-
ent, appearing to be inversely proportional to the variabil-
ity in the image’s RMSE. This may be attributed to the fact
that, for higher rainfall rates, there are more rainfall shadows.
In areas where there are rainfall shadows, the variability be-
tween the ensemble members decreases significantly due to
the effects of the radar ray signal being fully damped. There
is a moderate relationship between the variability PRS and
the average non-zero rainfall. However, this is less distinct.

The standard deviations of the ARS, PRS and LARS are
given in Fig. 21. From Fig. 21a we can see that the uncer-
tainty in the ARS increases with an increasing average rain-
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Figure 21. Standard deviation of the ARS (a), PRS (b) and LARS (c) for average non-zero rainfall rates of ensemble images for all events.

Figure 22. Schematic of the different effects high-intensity rainfall
has on radar rays based on its location within the domain.

fall rate, with similar behaviour for the LARS in the images
(see Fig. 21c). However, there are a lot of images with no
ARS skewing the relationship. Again, the relationship be-
tween the average non-zero rainfall rate and the variability
of the PRS is not clear (see Fig. 21b).

4.8 Rainfall location: second moment of area

The location of rainfall with respect to the radar location will
also impact the error structure, which is reflected in the vari-
ability in the PRS for different average rainfall rates. Atlas
and Banks (1951) stated that distortion due to range attenu-
ation includes displacement towards the radar of maximum
intensity, packing contours on the near side of the storm and
suggesting that the location of high-intensity rainfall will also
have an impact on errors. The amount of rainfall lost to at-
tenuation effects is likely to be higher for images with high-
intensity rainfall in a more central location, due to the cu-
mulative nature of attenuation effects along a radar ray. As
illustrated in Fig. 22, the occurrence of rainfall close to the
radar transmitter affects more rays, and its attenuation af-
fects more “downstream” pixels. There is evidence of this
in Fig. 9, where high-intensity rainfall occurred in the centre
of the image, resulting in very high errors.

To formally investigate this, we introduce the second mo-
ment of area of a rainfall (or reflectivity) image, estimated
by considering the centroid of each image using the second
areal moment. For the rainfall field R(t) on a Cartesian grid

with dimensions (Nx , Ny), the second moment of area can
be estimated as

MR(t)=

Nx∑
x=1

Ny∑
y=1

R(x,y, t)d(x,y)2

=

Nx∑
x=1

Ny∑
y=1

R(x,y, t)
{
(x− rx)

2
+
(
y− ry

)2}
, (13)

where d(x,y)=
√
(x− rx)2+ (y− ry)2 is the distance of a

pixel from the radar location (rx , ry). Both the actual and nor-
malized rainfall fields are used to see the different impacts
between the shapes of the field, with and without consider-
ing the actual magnitudes of the estimates. The normalized
image moments M̃R(t) are defined as

M̃R(t)=

Nx∑
x=1

Ny∑
y=1

R(x,y, t)

Rtot(t)

{
(x− rx)

2
+
(
y− ry

)2}
, (14)

where Rtot(t)=
∑
x

∑
y

R(x,y, t) is the total rainfall (R(t)).

Figure 23 shows the relationship between the second mo-
ment of area MR(t) and the normalized second moment of
area M̃R(t) for event images and corresponding ensemble
metrics including the average bias, RMSE, ARS, LARS and
PRS. There are significant differences between the moments
and normalized moments, with positive correlations for im-
age moments and an inverse relationship for normalized im-
age moments, which is particularly prominent when consid-
ering the RMSE. There is a significant positive correlation
between image moment and RMSE, ARS and PRS, with the
relationship for LARS being less clear.

This suggests that, for the second moment of area calcu-
lated on rainfall rates, the strong non-linear dependence on
absolute rainfall amount overrides all other information on
the field, such as rainfall location. For the normalized second
moment of area, this dependence has been removed, and so
the relationship is solely based on the impact of the rainfall
location. In this case, a smaller second moment of area (cor-
responding to a more central rainfall location) suggests larger
rainfall shadows.
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Figure 23. Second moment of area (a–e) and normalized second moment of area (f–j) for metrics including average bias, RMSE, ARS, PRS
and LARS for ensemble images of all events.

Figure 24. Second moment of area (a–e) and normalized second moment of area (f–j) for ensemble metric variability (standard deviation),
including average bias, RMSE, ARS, PRS and LARS for ensemble images.

Figure 24 shows the relationship between the second mo-
ment of area and the normalized second moment of area for
events, together with the ensemble uncertainty for the im-
age metrics given in Fig. 23. This shows that images with
a larger image moment have a lower RMSE standard devia-
tion. The normalized image moments appear to be positively
correlated with the standard deviation of the bias and RMSE
and negatively correlated with the ARS, PRS and LARS. The
variability in rainfall shadows, for both the ARS and PRS,
appears to decrease with increasing normalized image mo-
ments.

Image moments could be a key piece of information when
attempting to identify radar images with high uncertainty in
estimates, particularly when using moments calculated from
normalized rainfall rates across an image. In conclusion, this
analysis suggests that a second moment of area has the po-
tential to identify high uncertainty and missing information.

4.9 Rainfall shadow frequency

The aim of this section is to identify how often rainfall shad-
ows occur. Due to ensemble variability, to ensure that fre-
quencies are not overestimated, we consider the “best-case
scenario” over the ensemble. In terms of the ensemble, for
each image the ensemble member with the lowest errors is
selected. This prevents overestimation, and as rainfall fields
are parameterized with existing corrected radar rainfall im-
ages that may themselves be subject to rainfall shadows, the
simulations may inherently underestimate the frequencies, so
considering the minimum likelihood of occurrence makes in-
tuitive sense. Percentiles are given for the minimum LARS,
PRS and ARS in Table 1.

The empirical cumulative distribution functions for the
minimum LARS, PRS and ARS are estimated for simulated
events, with attenuation estimated from rainfall and reflectiv-
ity and given in Fig. 25. From the median of the proportion
of the rainfall images simulated, half of the images have at
least 3 % of their significant rainfall rates shadowed. When
considering the ARS in the images, we see that 25 % of the
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Table 1. Percentiles for the empirical cumulative distribution func-
tions (ECDFs) for the minimum ensemble rainfall shadow propor-
tions, largest shadowed areas and actual rainfall shadowed for all
events.

Percentile Proportion Largest Actual
(%) shadowed shadow shadow

25 0.01 0 0
50 0.03 10.1 15.2
75 0.06 20.2 45.5
90 0.09 30.3 90.9
95 0.13 50.5 136.4

Figure 25. Empirical cumulative distribution functions (ECDFs) for
the minimum ensemble proportion, together with the largest and
actual areas of image-containing rainfall shadows for all events.

images have an ARS of 45 km2 and that 5 % have a LARS
of over 50 km2. A missing area of significant rainfall of this
size, particularly for small or urban catchments, constitutes
a major underestimation of flood risk, resulting in incorrect
information provided in flood warnings. This highlights the
importance of gaining an improved understanding of rain-
fall shadows and provides a motivation for this project and
future research in this area. Gaps caused by the rainfall shad-
ows identified would result in underprediction of flooding,
impacting both flood warnings and flood defence designs.

5 Discussion and conclusions

Errors relating to several different aspects of the radar rain-
fall estimation process are considered, using a radar error
model outlined in detail. This model is applied to realistic
simulated rainfall events in a stochastic manner, generating
an ensemble of radar images corresponding to each time step
of a rainfall event. A log-normal random noise field was im-

posed on rainfall estimates to account for underlying non-
specific noise. The DSD uncertainty is included by replacing
the multiplicative parameter a in the Z–R relationship with
a two-dimensional spectral random field, with field variabil-
ity determined by radar sampling volumes. Attenuation ef-
fects are imposed by inverting standard gate-by-gate correc-
tion algorithms (Jacobi and Heistermann, 2016). To enable
direct comparison between the simulated rainfall before and
after imposing the radar error model, each radar image is cor-
rected using a standard radar rainfall estimation process. This
results in a corrected rainfall field for each ensemble mem-
ber, similar to what would be obtained from real radar rainfall
images, allowing us to identify when and where significant
and/or systematic errors may occur.

This concept provides a methodology for developing a bet-
ter understanding of errors related to the radar rainfall esti-
mation process. By generating a true rainfall field and sub-
sequently imposing errors to allow for comparison with cor-
rect best-guess stochastic radar rainfall estimates, we can ad-
dress the fundamental limitation of weather radar correction
schemes – that the real rainfall field is not known for com-
parison. An investigation of the spatio-temporal behaviour of
the error structure is then possible, which provides key infor-
mation on the radar rainfall estimation process.

A relationship between rainfall shadows, high bias and un-
certainty related to the amount of rainfall (i.e. proportions
and rates) in images was found. The impact of the rainfall
location with respect to the weather radar is considered by
introducing the second moment of area, showing that more
central rainfall in the radar domain results in higher errors
and variability. The minimum likelihood of rainfall shadows
showed that 50 % of the simulated images have at least 3 %
of their significant rainfall shadowed. In addition, 25 % of
the images had an ARS of over 45 km2, with the minimum
LARS of 5 % of the images exceeding an area of 50 km2.
This gap would result in underestimation of potential impacts
of flooding. This highlights the importance of gaining an im-
proved understanding of rainfall shadows and provides the
motivation for this project and future research in this area.
Weather radar alone cannot be used for rainfall estimation,
as information is regularly missed.

5.1 Impact and transferability

Improved high-resolution rainfall estimates are needed for
flood forecasting by stakeholders and water managers, par-
ticularly in (near) real time, for nowcasting and probable en-
semble forecasting. The radar error model outlined in this
study produces visually realistic radar images, capturing key
properties of radar images, with many potential uses for the
model framework, some of which are outlined below:

1. Identification of radar rainfall properties which corre-
spond to high errors and uncertainties could be extended
and used in a probabilistic manner to better condition
merged rainfall fields. Identify areas where the spatial
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distribution of the rainfall cannot be trusted (i.e. occa-
sions where rainfall shadows are likely, such as areas
past high-intensity rainfall). This includes information
on the frequency and location of rainfall shadows as a
merging criterion (i.e. putting more weight on rainfall
information from other sources when rainfall shadows
are likely to occur at a given location).

2. Apply the model to gridded rain gauge fields or fore-
casts, for comparison with the corresponding weather
radar images, to better identify and understand radar
rainfall errors.

3. The importance of complex and efficient radar gauge
merging methods is emphasized in this study. These
methods do not trust the spatial distribution of rainfall
provided by weather radars alone. Additional informa-
tion from other sensors is needed, such as opportunis-
tic sensors, citizen science data, rain gauges and mi-
crowave links. This study has provided a framework
for methods assessing the performance of these merg-
ing techniques.

4. Determine the optimal locations for weather radars or
rain gauges, such as establishing rain gauge networks
in areas where rainfall shadows are more likely and not
in densely populated areas (e.g. cities), where it may be
too late for warnings on missing information.

5. Assess how radar rainfall errors propagate into hydro-
logical and hydrodynamic modelling, considering the
impact that the incorrect distribution of rainfall has on
discharge and flood depths.

5.2 Limitations and future work

A powerful framework for investigating radar rainfall errors
has been developed and demonstrated, with model design
allowing for a high degree of flexibility and several natu-
ral extensions. The influence of different correction methods
for the radar rainfall estimation process and the impact this
has on the error structure should be investigated using the
methodology in this study.

Some error sources in radar rainfall estimation are not in-
cluded in the radar error model, as they were beyond the
scope of this study. To improve the model, additional sources
of error could easily be included (e.g. radar calibration errors
using an additive error (dBZ) and bright-band effects using a
vertical representation of different weather types and seasons
of events). Mountainous regions are typically subject to more
errors due to beam blockage from topography. However, this
could quite easily be included in the model through an ad-
ditive error based on existing clutter maps from the weather
radar of interest. It would be interesting to repeat the study
with different DSD structures, changing the correlation struc-
ture and marginal distribution of this (previously Gaussian)

field. A dependence between DSD parameters could be im-
posed, as a varying Z–R relationship in space and time im-
proved rainfall accumulations at the event scale (Libertino
et al., 2015).

Close to the radar, measurement volumes are small, sys-
tematically increasing in size with distance from the radar.
Although as part of the radar error model the spatial sam-
pling aspect is considered through the estimation variance,
radar measurements are taken to be instantaneous (as op-
posed to rain gauge measurements, which are temporal ag-
gregations by definition). The implications of these space–
time sampling properties mean that temporally we only have
a snapshot of the pixel behaviour at a given time. Correla-
tion structure variability in space and time was incorporated
through a spatio-temporal anisotropy factor, without explic-
itly accounting for the different data sampling between the
two dimensions. The simulation environment could be modi-
fied to account for the temporal sampling issue by simulating
temporally at a higher resolution than existing radar images
and sampling these to reproduce the snapshot effect. Methods
could also be developed within an inverse modelling frame-
work (Grundmann et al., 2019) to obtain field uncertainty in
(near) real time.

5.3 Concluding remarks

The overarching aim of this study is to contribute towards im-
provements in the radar rainfall estimation process by gain-
ing an improved understanding of the frequency and loca-
tion of the error structure relating to the process. With this in
mind, we explore and exploit space–time properties of rain-
fall and reflectivity to gain an improved understanding of the
error structure between the two, investigating the extent of
uncertainties in the radar rainfall estimation process. This
study has presented an innovative model for investigating un-
certainties in the radar rainfall estimation process, providing
a flexible tool that has many potential future applications.
The radar error model, outlined in detail, generates a stochas-
tic ensemble of radar images corresponding to an existing
rainfall field by inverting the radar rainfall estimation pro-
cess. This model incorporates many different error sources,
including the drop-size distribution, attenuation effects, ran-
dom noise and radar sampling. This provides a method for
identifying when and where radar errors are likely to oc-
cur and how often information about the rainfall field is lost,
significantly impacting the spatial rainfall field. The insights
from this study provide an improved understanding of the er-
ror structure between rainfall and reflectivity, together with
the extent of uncertainties in the radar estimation process.
A framework has been provided to investigate the impact of
errors relating to the radar rainfall estimation process, with
many potential hydrological applications.
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