Articles | Volume 27, issue 23
https://doi.org/10.5194/hess-27-4317-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-4317-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coupled hydrogeophysical inversion of an artificial infiltration experiment monitored with ground-penetrating radar: synthetic demonstration
Rohianuu Moua
CORRESPONDING AUTHOR
Université de Strasbourg, CNRS, ENGEES, EOST, ITES UMR 7063, 67000 Strasbourg, France
Nolwenn Lesparre
Université de Strasbourg, CNRS, ENGEES, EOST, ITES UMR 7063, 67000 Strasbourg, France
Jean-François Girard
Université de Strasbourg, CNRS, ENGEES, EOST, ITES UMR 7063, 67000 Strasbourg, France
Benjamin Belfort
Université de Strasbourg, CNRS, ENGEES, EOST, ITES UMR 7063, 67000 Strasbourg, France
François Lehmann
Université de Strasbourg, CNRS, ENGEES, EOST, ITES UMR 7063, 67000 Strasbourg, France
Anis Younes
Université de Strasbourg, CNRS, ENGEES, EOST, ITES UMR 7063, 67000 Strasbourg, France
Related authors
No articles found.
Adrien Saphy, Emilie Beaulieu, Marie-Noëlle Pons, Benjamin Belfort, and Marie-Claire Pierret
EGUsphere, https://doi.org/10.5194/egusphere-2025-4622, https://doi.org/10.5194/egusphere-2025-4622, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In 2022, France faced its driest year on record, severely affecting the forests of the Strengbach catchment. We observed unusual chemical changes in the soil, linked to drought stress. These included nutrient loss, soil acidification, and stress of soil organisms. Our findings show how drought harms soil health, especially in forests already lacking nutrients, and help predict how ecosystems may respond to future climate extremes.
Kaiyan Hu, Bertille Loiseau, Simon D. Carrière, Nolwenn Lesparre, Cédric Champollion, Nicolas K. Martin-StPaul, Niklas Linde, and Damien Jougnot
Hydrol. Earth Syst. Sci., 29, 2997–3018, https://doi.org/10.5194/hess-29-2997-2025, https://doi.org/10.5194/hess-29-2997-2025, 2025
Short summary
Short summary
This study explores the potential of the electrical self-potential (SP) method, a passive geophysical technique, to provide additional insights into tree transpiration rates. We measured SP and sap velocity in three tree species over a year in a Mediterranean climate. Results indicate SP may characterize transpiration rates, especially during dry seasons. Additionally, the electrokinetic coupling coefficients of these trees align with values typically found in porous geological media.
Nolwenn Lesparre, Sylvain Pasquet, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 28, 873–897, https://doi.org/10.5194/hess-28-873-2024, https://doi.org/10.5194/hess-28-873-2024, 2024
Short summary
Short summary
Vertical maps of seismic velocity reflect variations of subsurface porosity. We use such images to design the geometry of subsurface compartments delimited by velocity thresholds. The obtained patterns are inserted into a hydrogeological model to test the influence of random geometries, velocity thresholds, and hydraulic parameters on data estimated from the model: the depth of the groundwater and magnetic resonance sounding is a geophysical method sensitive to subsurface water content.
Anis Younes, Hussein Hoteit, Rainer Helmig, and Marwan Fahs
Hydrol. Earth Syst. Sci., 26, 5227–5239, https://doi.org/10.5194/hess-26-5227-2022, https://doi.org/10.5194/hess-26-5227-2022, 2022
Short summary
Short summary
Despite its advantages for the simulation of flow in heterogeneous and fractured porous media, the mixed hybrid finite element method has been rarely used for transport as it suffers from strong unphysical oscillations. We develop here a new upwind scheme for the mixed hybrid finite element that can avoid oscillations. Numerical examples confirm the robustness of this new scheme for the simulation of contaminant transport in both saturated and unsaturated conditions.
Cited articles
Annan, P.: Ground penetrating radar: Principles, procedures and applications, Sensors and Software Inc, https://geolportal.sdsu.edu/jiracek/sage/documents/Sensors and Software GPR Manual.pdf (last access: 5 December 2023), 2003. a
Bano, M.: Effects of the transition zone above a water table on the reflection of GPR waves, Geophys. Res. Lett., 33, L13309, https://doi.org/10.1029/2006GL026158, 2006. a
Belfort, B., Toloni, I., Ackerer, P., Cotel, S., Viville, D., and Lehmann, F.: Vadose Zone Modeling in a Small Forested Catchment: Impact of Water Pressure Head Sampling Frequency on 1D-Model Calibration, Geosciences, 8, 72, https://doi.org/10.3390/geosciences8020072, 2018. a
Belfort, B., Weill, S., Fahs, M., and Lehmann, F.: Laboratory Experiments of Drainage, Imbibition and Infiltration under Artificial Rainfall Characterized by Image Analysis Method and Numerical Simulations, Water, 11, 2232, https://doi.org/10.3390/w11112232, 2019. a
Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., and Slater, L. D.: The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales, Water Resour. Res., 51, 3837–3866, https://doi.org/10.1002/2015WR017016, 2015. a, b
Birchak, J., Gardner, C., Hipp, J., and Victor, J.: High dielectric constant microwave probes for sensing soil moisture, P. IEEE, 62, 93–98, https://doi.org/10.1109/PROC.1974.9388, 1974. a
Busch, S., Weihermüller, L., Huisman, J. A., Steelman, C. M., Endres, A. L., Vereecken, H., and van der Kruk, J.: Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface, Water Resour. Res., 49, 8480–8494, https://doi.org/10.1002/2013WR013992, 2013. a, b
Cassel, D. K. and Klute, A.: Water Potential: Tensiometry, Chap. 23, in: Methods of Soil Analysis, edited by: Klute, A., John Wiley & Sons, Ltd, https://doi.org/10.2136/sssabookser5.1.2ed.c23, 563–596, 1986. a
Costabel, S. and Günther, T.: Noninvasive Estimation of Water Retention Parameters by Observing the Capillary Fringe with Magnetic Resonance Sounding, Vadose Zone J., 13, vzj2013.09.0163, https://doi.org/10.2136/vzj2013.09.0163, 2014. a
Dal Bo, I., Klotzsche, A., Schaller, M., Ehlers, T. A., Kaufmann, M. S., Fuentes Espoz, J. P., Vereecken, H., and van der Kruk, J.: Geophysical imaging of regolith in landscapes along a climate and vegetation gradient in the Chilean coastal cordillera, CATENA, 180, 146–159, https://doi.org/10.1016/j.catena.2019.04.023, 2019. a
de Jong, S. M., Heijenk, R. A., Nijland, W., and van der Meijde, M.: Monitoring Soil Moisture Dynamics Using Electrical Resistivity Tomography under Homogeneous Field Conditions, Sensors, 20, 5313, https://doi.org/10.3390/s20185313, 2020. a
Doolittle, J. A. and Brevik, E. C.: The use of electromagnetic induction techniques in soils studies, Geoderma, 223–225, 33–45, https://doi.org/10.1016/j.geoderma.2014.01.027, 2014. a
Dusek, J., Dohnal, M., Snehota, M., Sobotkova, M., Ray, C., and Vogel, T.: Transport of bromide and pesticides through an undisturbed soil column: A modeling study with global optimization analysis, J. Contam. Hydrol., 175–176, 1–16, https://doi.org/10.1016/j.jconhyd.2015.02.002, 2015. a
Edemsky, D., Popov, A., Prokopovich, I., and Garbatsevich, V.: Airborne Ground Penetrating Radar, Field Test, Remote Sens.-Basel, 13, 667, https://doi.org/10.3390/rs13040667, 2021. a
Fajraoui, N., Ramasomanana, F., Younes, A., Mara, T. A., Ackerer, P., and Guadagnini, A.: Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory-scale porous media, Water Resour. Res., 47, W02521, https://doi.org/10.1029/2010WR009639, 2011. a, b
Gelman, A. and Rubin, D. B.: Inference from Iterative Simulation Using Multiple Sequences, Stat. Sci., 7, 457–472, http://www.jstor.org/stable/2246093 (last access: 7 March 2023), 1992. a
Huisman, J. A., Hubbard, S. S., Redman, J. D., and Annan, A. P.: Measuring Soil Water Content with Ground Penetrating Radar: A Review, Vadose Zone J., 2, 476–491, https://doi.org/10.2136/vzj2003.4760, 2003. a, b, c
Jadoon, K. Z., Slob, E., Vanclooster, M., Vereecken, H., and Lambot, S.: Uniqueness and stability analysis of hydrogeophysical inversion for time-lapse ground-penetrating radar estimates of shallow soil hydraulic properties, Water Resour. Res., 44, W09421, https://doi.org/10.1029/2007WR006639, 2008. a
Jadoon, K. Z., Weihermüller, L., Scharnagl, B., Kowalsky, M. B., Bechtold, M., Hubbard, S. S., Vereecken, H., and Lambot, S.: Estimation of Soil Hydraulic Parameters in the Field by Integrated Hydrogeophysical Inversion of Time-Lapse Ground-Penetrating Radar Data, Vadose Zone J., 11, vzj2011.0177, https://doi.org/10.2136/vzj2011.0177, 2012. a
Jaumann, S. and Roth, K.: Soil hydraulic material properties and layered architecture from time-lapse GPR, Hydrol. Earth Syst. Sci., 22, 2551–2573, https://doi.org/10.5194/hess-22-2551-2018, 2018. a, b
Jonard, F., Weihermüller, L., Schwank, M., Jadoon, K. Z., Vereecken, H., and Lambot, S.: Estimation of Hydraulic Properties of a Sandy Soil Using Ground-Based Active and Passive Microwave Remote Sensing, IEEE T. Geosci. Remote Sensing, 53, 3095–3109, https://doi.org/10.1109/TGRS.2014.2368831, 2015. a, b
Jones, S. B., Blonquist Jr., J. M., Robinson, D. A., Rasmussen, V. P., and Or, D.: Standardizing Characterization of Electromagnetic Water Content Sensors: Part 1. Methodology, Vadose Zone J., 4, 1048–1058, https://doi.org/10.2136/vzj2004.0140, 2005. a
Klotzsche, A., Jonard, F., Looms, M., van der Kruk, J., and Huisman, J.: Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress, Vadose Zone J., 17, 180052, https://doi.org/10.2136/vzj2018.03.0052, 2018. a, b, c
Kodešová, R., Gribb, M. M., and Šimůnek, J.: Estimating soil hydraulic properties from transient cone permeameter data, Soil Sci., 163, 436–453, 1998. a
Laloy, E. and Vrugt, J. A.: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing, Water Resour. Res., 48, W01526, https://doi.org/10.1029/2011WR010608, 2012. a
Léger, E., Saintenoy, A., Tucholka, P., and Coquet, Y.: Hydrodynamic Parameters of a Sandy Soil Determined by Ground-Penetrating Radar Monitoring of Porchet Infiltrations, IEEE J. Sel. Top. Appl., 9, 188–200, https://doi.org/10.1109/JSTARS.2015.2464231, 2016. a, b
Léger, E., Saintenoy, A., Coquet, Y., Tucholka, P., and Zeyen, H.: Evaluating hydrodynamic parameters accounting for water retention hysteresis in a large sand column using surface GPR, J. Appl. Geophy., 182, 104176, https://doi.org/10.1016/j.jappgeo.2020.104176, 2020. a, b
Mara, T. and Tarantola, S.: Application of Global Sensitivity Analysis of Model Output to Building Thermal Simulations, Build. Simul.-China, 1, 290–302, https://doi.org/10.1007/s12273-008-8129-5, 2008. a
Moysey, S. M.: Hydrologic trajectories in transient ground-penetrating-radar reflection data, GEOPHYSICS, 75, WA211–WA219, https://doi.org/10.1190/1.3463416, 2010. a, b
Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522, https://doi.org/10.1029/WR012i003p00513, 1976. a, b, c
Muntz, A., Faure, L., and Laine, E.: Études sur la perméabilité des terres, faites en vue de l'arrosage, Ann. de la Direction de l'Hydraulique, f33, 45–53, 1905. a
Rawlins, S. L. and Campbell, G. S.: Water Potential: Thermocouple Psychrometry, Chap. 24, in: Methods of Soil Analysis, edited by: Klute, A., John Wiley & Sons, Ltd, 597–618, https://doi.org/10.2136/sssabookser5.1.2ed.c24, 1986. a
Richards, L. A.: CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS, Physics, 1, 318–333, https://doi.org/10.1063/1.1745010, 1931. a
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., Ogden, F., Selker, J., and Wendroth, O.: Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review, Vadose Zone J., 7, 358–389, https://doi.org/10.2136/vzj2007.0143, 2008. a, b
Saintenoy, A. and Hopmans, J. W.: Ground Penetrating Radar: Water Table Detection Sensitivity to Soil Water Retention Properties, IEEE J. Sel. Top. Appl., 4, 748–753, https://doi.org/10.1109/JSTARS.2011.2171920, 2011. a
Saintenoy, A., Schneider, S., and Tucholka, P.: Evaluating Ground-Penetrating Radar use for water infiltration monitoring, Vadose Zone J., 7, 208–214, https://hal.archives-ouvertes.fr/hal-00831408 (last access: 7 March 2023), 2008. a
Saito, H., Kuroda, S., Iwasaki, T., Fujimaki, H., Nagai, N., and Sala, J.: Tracking Infiltration Front Depth Using Time-lapse Multi-offset Gathers Collected with Array Antenna Ground Penetrating Radar, JoVE-J. Vis. Exp., 2018, https://doi.org/10.3791/56847, 2018. a, b
Scharnagl, B., Vrugt, J. A., Vereecken, H., and Herbst, M.: Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters, Hydrol. Earth Syst. Sci., 15, 3043–3059, https://doi.org/10.5194/hess-15-3043-2011, 2011. a
Scholer, M., Irving, J., Binley, A., and Holliger, K.: Estimating vadose zone hydraulic properties using ground penetrating radar: The impact of prior information, Water Resour. Res., 47, W10512, https://doi.org/10.1029/2011WR010409, 2011. a, b
Shao, Q., Younes, A., Fahs, M., and Mara, T. A.: Bayesian sparse polynomial chaos expansion for global sensitivity analysis, Comput. Method. Appl. M., 318, 474–496, https://doi.org/10.1016/j.cma.2017.01.033, 2017. a, b
Sobol', I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulat., 55, 271–280, https://doi.org/10.1016/S0378-4754(00)00270-6, 2001. a, b
Tran, A. P., Vanclooster, M., Zupanski, M., and Lambot, S.: Joint estimation of soil moisture profile and hydraulic parameters by ground-penetrating radar data assimilation with maximum likelihood ensemble filter, Water Resour. Res., 50, 3131–3146, https://doi.org/10.1002/2013WR014583, 2014. a
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. a, b, c
Vereecken, H., Huisman, J., Bogena, H., Vanderborght, J., Vrugt, J., Hopmans, J., and Vereecken, C.: On the value of soil moisture measurements in vadose zone hydrology: A review, Water Resour. Res., 44, W00D06, https://doi.org/10.1029/2008WR006829, 2008. a, b, c
Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation, Environ. Model. Softw., 75, 273–316, https://doi.org/10.1016/j.envsoft.2015.08.013, 2016. a
Vrugt, J. A. and Bouten, W.: Validity of First-Order Approximations to Describe Parameter Uncertainty in Soil Hydrologic Models, Soil Sci. Soc. Am. J., 66, 1740–1751, https://doi.org/10.2136/sssaj2002.1740, 2002. a
Vrugt, J. A., Stauffer, P. H., Wöhling, T., Robinson, B. A., and Vesselinov, V. V.: Inverse Modeling of Subsurface Flow and Transport Properties: A Review with New Developments, Vadose Zone J., 7, 843–864, https://doi.org/10.2136/vzj2007.0078, 2008. a
Wiener, N.: The Homogeneous Chaos, Am. J. Math., 60, 897–936, http://www.jstor.org/stable/2371268 (last access: 29 August 2022), 1938. a
Younes, A., Mara, T. A., Fajraoui, N., Lehmann, F., Belfort, B., and Beydoun, H.: Use of Global Sensitivity Analysis to Help Assess Unsaturated Soil Hydraulic Parameters, Vadose Zone J., 12, vzj2011.0150, https://doi.org/10.2136/vzj2011.0150, 2013. a
Younes, A., Delay, F., Fajraoui, N., Fahs, M., and Mara, T.: Global sensitivity analysis and Bayesian parameter inference for solute transport in porous media colonized by biofilms, J. Contam. Hydrol., 191, 1–18, https://doi.org/10.1016/j.jconhyd.2016.04.007, 2016. a
Younes, A., Mara, T., Fahs, M., Grunberger, O., and Ackerer, P.: Hydraulic and transport parameter assessment using column infiltration experiments, Hydrol. Earth Syst. Sci., 21, 2263–2275, https://doi.org/10.5194/hess-21-2263-2017, 2017. a
Younes, A., Zaouali, J., Lehmann, F., and Fahs, M.: Sensitivity and identifiability of hydraulic and geophysical parameters from streaming potential signals in unsaturated porous media, Hydrol. Earth Syst. Sci., 22, 3561–3574, https://doi.org/10.5194/hess-22-3561-2018, 2018. a
Zhang, L., Niu, Y., Zhang, H., Han, W., Guang, L., and Xingshuo, P.: Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring, Front. Plant Sci., 10, 1270, https://doi.org/10.3389/fpls.2019.01270, 2019. a
Short summary
Hydraulic properties of soil include the ability of water to move through the soil and the amount of water that is held in the soil in dry or wet conditions. In this work, we further investigate a protocol used to evaluate such hydraulic properties. We propose a modified version of the protocol, with which we show (i) how the data obtained with this protocol are influenced by the soil hydraulic properties and (ii) how one can use it to estimate these properties.
Hydraulic properties of soil include the ability of water to move through the soil and the...