Allègre, V., Jouniaux, L., Lehmann, F., and Sailhac, P.: Streaming
potential dependence on water-content in Fontainebleau sand, Geophys. J. Int., 182, 1248–1266,
https://doi.org/10.1111/j.1365-246X.2010.04716.x, 2010.

Archie, G. E.: The Electrical Resistivity Log as an Aid in Determining Some
Reservoir Characteristics, Transactions of the AIME, 146, 54–62,
https://doi.org/10.2118/942054-G, 1942.

Arora, B., Mohanty, B. P., and McGuire, J. T.: Uncertainty in dual
permeability model parameters for structured soils, Water Resour. Res., 48, https://doi.org/10.1029/2011WR010500, 2012.

Belfort, B., Ramasomanan, F., Younes, A., anf Lehmann, F.: An efficient Lumped
Mixed Hybrid Finite Element Formulation for variably saturated groundwater
flow, Vadoze Zone Journal, 8, 352–362, https://doi.org/10.2136/vzj2008.0108, 2009.

Blatman, G. and Sudret, B.: Efficient computation of global sensitivity
indices using sparse polynomial chaos expansions, Reliability Engineering
& System Safety, 95, 1216–1229, https://doi.org/10.1016/j.ress.2010.06.015,
2010.

Bogoslovsky, V. A. and Ogilvy, A. A.: Deformation of natural electric fields
near drainage structures, Geophys. Prospect., 21, 716–723.
https://doi.org/10.1111/j.1365-2478.1973.tb00053, 1973.

Bolève, A., Revil, A., Janod, F., Mattiuzzo, J. L., and Fry, J.-J.:
Preferential fluid flow pathways in embankment dams imaged by self-potential
tomography, Near Surf. Geophys., 7, 447–462, https://doi.org/10.3997/1873-0604.2009012,
2009.

Brown, P. N., Hindmarsh, A. C., and Petzold, L. R.: Using Krylov Methods in the
Solution of Large-Scale Differential-Algebraic Systems, SIAM J. Sci. Comp.,
15, 1467–1488, https://doi.org/10.1137/0915088, 1994.

Carsel, R. F. and Parrish, R. S.: Developing joint probability distributions
of soil water retention characteristics, Water Resour. Res., 24,
755–769, https://doi.org/10.1029/WR024i005p00755, 1988.

Christensen, S. and Cooley, R. L.: Evaluation of confidence intervals for a
steady-state leaky aquifer model, Adv. Water Res., 22,
807–817, https://doi.org/10.1016/S0309-1708(98)00055-4, 1999.

Cukier, R. I., Fortuin, C. M., Shuler, K. E., Petschek, A. G., and Schaibly, J.
H.: Study of the sensitivity of coupled reaction systems to uncertainties in
rate coefficients, I. theory, J. Chem. Phys., 59, 3873–3878, 1973.

Darnet, M., Marquis, G., and Sailhac, P.: Estimating aquifer hydraulic
properties from the inversion of surface Streaming Potential (SP) anomalies,
Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL017631, 2003.

Deng, B. and Wang, J.: Saturated-unsaturated groundwater modeling using 3D
Richards equation with a coordinate transform of nonorthogonal grids,
Applied Mathematical Modelling, 50, 39–52, doi10.1016/j.apm.2017.05.021;
2017.

Donaldson, J. R. and Schnabel, R. B.: Computational Experience with
Confidence Regions and Confidence Intervals for Nonlinear Least Squares,
Technometrics, 29, https://doi.org/10.2307/1269884, 1987.

Dostert, P., Efendiev, Y., and Mohanty, B.: Efficient uncertainty
quantification techniques in inverse problems for Richards' equation using
coarse-scale simulation models, Adv. Water Res., 32,
329–339, https://doi.org/10.1016/j.advwatres.2008.11.009, 2009.

Duan, Q. Y., Gupta, V. K., and Sorooshian, S.: Shuffled complex evolution
approach for effective and efficient global minimization, J. Optimiz. Theory App., 76, 501–521,
https://doi.org/10.1007/BF00939380, 1993.

Fahs, M., Younes, A., and Lehmann, F.: An easy and efficient combination of
the Mixed Finite Element Method and the Method of Lines for the resolution
of Richards' Equation, Environ. Modell. Soft., 24,
1122–1126, https://doi.org/10.1016/j.envsoft.2009.02.010, 2009.

Fahs, M., Younes, A., and Ackerer, P.: An Efficient Implementation of the
Method of Lines for Multicomponent Reactive Transport Equations, Water Air. Soil Pollut., 215, 273–283, https://doi.org/10.1007/s11270-010-0477-y,
2011.

Fajraoui, N., Ramasomanana, F., Younes, A., Mara, T. A., Ackerer, P., and
Guadagnini, A.: Use of global sensitivity analysis and polynomial chaos
expansion for interpretation of nonreactive transport experiments in
laboratory-scale porous media, Water Resour. Res., 47,
https://doi.org/10.1029/2010WR009639, 2011.

Fajraoui, N., Mara, T. A., Younes, A., and Bouhlila, R.: Reactive Transport
Parameter Estimation and Global Sensitivity Analysis Using Sparse Polynomial
Chaos Expansion, Water Air. Soil Pollut., 223, 4183–4197,
https://doi.org/10.1007/s11270-012-1183-8, 2012.

Fajraoui, N., Fahs, M., Younes, A. and Sudret, B.: Analyzing natural
convection in porous enclosure with polynomial chaos expansions: Effect of
thermal dispersion, anisotropic permeability and heterogeneity,
Int. J. Heat Mass Trans., 115, 205–224,
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.003, 2017.

Gallagher, M. and Doherty, J.: Parameter estimation and uncertainty
analysis for a watershed model, Environ. Modell. Soft.,
22, 1000–1020, https://doi.org/10.1016/j.envsoft.2006.06.007, 2007.

Gelman, A., Carlin, J., Stern, H., and Rubin, D.: Bayesian Data Analysis, Second
Edition, London, Great Britain: Chapman Hall, 696 p., ISBN:0-158-48838-8,
1996.

Haario, H., Laine, M., Mira, A., and Saksman, E.: DRAM: Efficient adaptive
MCMC, Statist. Comput., 16, 339–354,
https://doi.org/10.1007/s11222-006-9438-0, 2006.

Hastings, W. K.: Monte Carlo Sampling Methods Using Markov Chains and Their
Applications, Biometrika, 57, https://doi.org/10.2307/2334940, 1970.

Hinnell, A. C., Ferré, T. P. A., Vrugt, J. A., Huisman, J. A., Moysey,
S., Rings, J., and Kowalsky, M. B.: Improved extraction of hydrologic
information from geophysical data through coupled hydrogeophysical
inversion, Water Resour. Res., 46, https://doi.org/10.1029/2008WR007060, 2010.

Ishido, T. and Mizutani, H.: Experimental and theoretical basis of
electrokinetic phenomena in rock–water systems and its applications to
geophysics, J. Geophys. Res., 86, 1763–1775, https://doi.org/10.1029/JB086iB03p01763,
1981.

Jardani, A., Revil, A., Bolève, A., Crespy, A., Dupont, J.-P., Barrash,
W., and Malama, B.: Tomography of the Darcy velocity from self-potential
measurements, Geophys. Res. Lett., 34,
https://doi.org/10.1029/2007GL031907, 2007.

Jougnot, D. and Linde, N.: Self-Potentials in Partially Saturated Media: The
Importance of Explicit Modeling of Electrode Effects, Vadose Zone J.,
12, https://doi.org/10.2136/vzj2012.0169, 2013.

Kahl, G. M., Sidorenko, Y., and Gottesbüren, B.: Local and global inverse
modelling strategies to estimate parameters for pesticide leaching from
lysimeter studies: Inverse modelling to estimate pesticide leaching
parameters from lysimeter studies, Pest Manage. Sci., 71, 616–631,
https://doi.org/10.1002/ps.3914, 2015.

Kayshap, R. L.: Optimal choice of AR and MA parts in autoregressive moving
average models, IEEE T. Pattern Anal., 4, 99–104,
1982.

Kool, J. B., Parker, J. C., and van Genuchten, M. T.: Parameter estimation
for unsaturated flow and transport models – A review, J. Hydrol., 91, 255–293, https://doi.org/10.1016/0022-1694(87)90207-1, 1987.

Laloy, E. and Vrugt, J. A.: High-dimensional posterior exploration of
hydrologic models using multiple-try DREAM _{(ZS)} and high-performance
computing, Water Resour. Res., 48, https://doi.org/10.1029/2011WR010608, 2012.

Linde, N., Jougnot, D., Revil, A., Matthäi, S. K., Arora, T., Renard, D.,
and Doussan, C.: Streaming current generation in two-phase flow conditions,
Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL028878, 2007.

Mara, T. A. and Tarantola, S.: Application of global sensitivity analysis of
model output to building thermal simulations, Build. Sim., 1,
290–302, https://doi.org/10.1007/s12273-008-8129-5, 2008.

Mara, T. A., Belfort, B., Fontaine, V., and Younes, A.: Addressing factors
fixing setting from given data: A comparison of different methods,
Environ. Modell. Soft., 87, 29–38,
https://doi.org/10.1016/j.envsoft.2016.10.004, 2017.

Mboh, C. M., Huisman, J. A., Zimmermann, E., and Vereecken, H.: Coupled
Hydrogeophysical Inversion of Streaming Potential Signals for Unsaturated
Soil Hydraulic Properties, Vadose Zone J., 11, https://doi.org/10.2136/vzj2011.0115, 2012.

Mertens, J., Kahl, G., Gottesbüren, B. and Vanderborght, J.: Inverse
Modeling of Pesticide Leaching in Lysimeters: Local versus Global and
Sequential Single-Objective versus Multiobjective Approaches, Vadose Zone J.,
8, 793, https://doi.org/10.2136/vzj2008.0029, 2009.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953.

Miller, C. T., Williams, G. A., Kelley, C. T., and Tocci, M. D.: Robust
solution of Richards' equation for nonuniform porous media, Water Resour. Res., 34, 2599–2610, https://doi.org/10.1029/98WR01673, 1998.

Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976.

Nützmann, G., Thiele, M., Maciejewski, S., and Joswig, K.: Inverse
modelling techniques for determining hydraulic properties of coarse-textured
porous media by transient outflow methods, Adv. Water Res.,
22, 273–284, https://doi.org/10.1016/S0309-1708(98)00009-8, 1998.

Patella, D.: Introduction to ground surface self-potential tomography,
Geophys. Prospect, 45, 653–681, https://doi.org/10.1046/j.1365-2478.1997.430277, 1997.

Rajabi, M. M., Ataie-Ashtiani, B., and Simmons, C. T.: Polynomial chaos
expansions for uncertainty propagation and moment independent sensitivity
analysis of seawater intrusion simulations, J. Hydrol., 520,
101–122, https://doi.org/10.1016/j.jhydrol.2014.11.020, 2015.

Revil, A., Linde, N., Cerepi, A., Jougnot, D., Matthäi, S., and
Finsterle, S.: Electrokinetic coupling in unsaturated porous media, J. Colloid Interface Sci., 313, 315–327,
https://doi.org/10.1016/j.jcis.2007.03.037, 2007.

Richards, K., Revil, A., Jardani, A., Henderson, F., Batzle, M., and Haas,
A.: Pattern of shallow ground water flow at Mount Princeton Hot Springs,
Colorado, using geoelectric methods, J. Volcanol. Geotherm. Res., 198, 217–232, https://doi.org/10.1016/j.jvolgeores.2010.09.001, 2010.

Riva, M., Guadagnini, A., and Dell'Oca, A.: Probabilistic assessment of
seawater intrusion under multiple sources of uncertainty, Adv. Water Res., 75, 93–104, https://doi.org/10.1016/j.advwatres.2014.11.002, 2015.

Sailhac, P. and Marquis, G.: Analytic potentials for the forward and inverse
modeling of SP anomalies caused by subsurface fluid flow, Geophy. Res. Lett., 28, 1851–1854, https://doi.org/10.1029/2000GL012457, 2001.

Saltelli, A., Tarantola, S., and Chan, K. P.-S.: A Quantitative
Model-Independent Method for Global Sensitivity Analysis of Model Output,
Technometrics, 41, 39–56, https://doi.org/10.1080/00401706.1999.10485594, 1999.

Shao, Q., Younes, A., Fahs, M., and Mara, T. A.: Bayesian sparse polynomial
chaos expansion for global sensitivity analysis, Comput. Method Appl. M., 318, 474–496, https://doi.org/10.1016/j.cma.2017.01.033,
2017.

Sobol', I. M.: Global sensitivity indices for nonlinear mathematical
models and their Monte Carlo estimates, Math. Comput. Sim., 55, 271–280, https://doi.org/10.1016/S0378-4754(00)00270-6, 2001.

Sobol', I. M.: Sensitivity estimates for nonlinear mathematical
models, Math. Model. Comput. Exp., 407–414, 1993.

Sudret, B.: Global sensitivity analysis using polynomial chaos expansions,
Reliab. Eng. Syst. Safe., 93, 964–979,
https://doi.org/10.1016/j.ress.2007.04.002, 2008.

ter Braak, C. J. F.: A Markov Chain Monte Carlo version of the genetic
algorithm differential evolution: Easy Bayesian computing for real parameter
spaces, Stat Comput., 16, 239–249, https://doi.org/10.1007/s11222-006-8769-1, 2006.

ter Braak, C. J. F. and Vrugt, J. A.: Differential Evolution Markov Chain
with snooker updater and fewer chains, Statist. Comput., 18,
435–446, https://doi.org/10.1007/s11222-008-9104-9, 2008.

van Dam, J. C., Stricker, J. N. M., and Droogers, P.: Inverse Method to
Determine Soil Hydraulic Functions from Multistep Outflow Experiments, Soil
Sci. Soc. Am. J., 58,
https://doi.org/10.2136/sssaj1994.03615995005800030002x, 1994.

van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.

Volkova, E., Iooss, B., and Van Dorpe, F.: Global sensitivity analysis for a
numerical model of radionuclide migration from the RRC “Kurchatov
Institute” radwaste disposal site, Stoch. Env. Res. Risk A., 22, 17–31, https://doi.org/10.1007/s00477-006-0093-y, 2008.

Vrugt, J. A., Gupta, H. V., Bouten, W. and Sorooshian, S.: A Shuffled Complex Evolution Metropolis algorithm for optimization
and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39, doi:10.1029/2002WR001642,
2003.

Vrugt, J. A. and Bouten, W.: Validity of First-Order Approximations to
Describe Parameter Uncertainty in Soil Hydrologic Models, Soil Sci. Soc. Am. J., 66, https://doi.org/10.2136/sssaj2002.1740, 2002.

Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M., and Robinson,
B. A.: Treatment of input uncertainty in hydrologic modeling: Doing
hydrology backward with Markov chain Monte Carlo simulation: FORCING DATA
ERROR USING MCMC SAMPLING, Water Resour. Res., 44,
https://doi.org/10.1029/2007WR006720, 2008.

Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, J.
M., and Higdon, D.: Accelerating Markov chain Monte Carlo simulation by
differential evolution with self-adaptive randomized subspace sampling, Int.
J. Nonlinear Sci. Numer. Simul., 10, 273–290, https://doi.org/10.1515/IJNSNS.2009.10.3.273, 2009a.

Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software
package: Theory, concepts, and MATLAB implementation, Environ. Modell. Soft., 75, 273–316, https://doi.org/10.1016/j.envsoft.2015.08.013,
2016.

Vrugt, J. A., Robinson, B. A., and Hyman, J. M.: Self-adaptive multimethod search
for global optimization in real parameter spaces, IEEE Trans. Evol. Comput., 13, 243–259, https://doi.org/10.1109/TEVC.2008.924428, 2009b.

Vugrin, K. W., Swiler, L. P., Roberts, R. M., Stucky-Mack, N. J., and
Sullivan, S. P.: Confidence region estimation techniques for nonlinear
regression in groundwater flow: Three case studies, Water Resour. Res., 43,
W03423, https://doi.org/10.1029/2005WR004804, 2007.

Wiener, N.: The Homogeneous Chaos, Am. J. Math., 60, https://doi.org/10.2307/2371268, 1938.

Younes, A., Fahs, M., and Ahmed, S.: Solving density driven flow problems
with efficient spatial discretizations and higher-order time integration
methods, Adv. Water Res., 32, 340–352,
https://doi.org/10.1016/j.advwatres.2008.11.003, 2009.

Younes, A., Fahs, M., and Belfort, B.: Monotonicity of the cell-centred
triangular MPFA method for saturated and unsaturated flow in heterogeneous
porous media, J. Hydrol., 504, 132–141,
https://doi.org/10.1016/j.jhydrol.2013.09.041, 2013.

Younes, A., Mara, T. A., Fajraoui, N., Lehmann, F., Belfort, B., and Beydoun,
H.: Use of Global Sensitivity Analysis to Help Assess Unsaturated Soil
Hydraulic Parameters, Vadose Zone J., 12, https://doi.org/10.2136/vzj2011.0150, 2013.

Younes, A., Delay, F., Fajraoui, N., Fahs, M., and Mara, T. A.: Global
sensitivity analysis and Bayesian parameter inference for solute transport
in porous media colonized by biofilms, J. Contam. Hydrol.,
191, 1–18, https://doi.org/10.1016/j.jconhyd.2016.04.007, 2016.

Younes, A., Mara, T., Fahs, M., Grunberger, O., and Ackerer, P.: Hydraulic
and transport parameter assessment using column infiltration experiments, Hydrol.
Earth Syst. Sci., 21, 2263–2275, https://doi.org/10.5194/hess-21-2263-2017, 2017.

Zablocki, C. J.: Streaming potentials resulting from the descent of meteoric
water: A possible source mechanism for Kilauean self-potential anomalies,
Trans. Geotherm. Resour. Counc., 2, 747–748, 1978.