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Abstract. In this study, we investigate the use of ground-
penetrating radar (GPR) time-lapse monitoring of artificial
soil infiltration experiments. The aim is to evaluate this pro-
tocol in the context of estimating the hydrodynamic unsatu-
rated soil parameter values and their associated uncertainties.
The originality of this work is to suggest a statistical param-
eter estimation approach using Markov chain Monte Carlo
(MCMC) methods to have direct estimates of the parame-
ter uncertainties. Using the GPR time data from the moving
wetting front only does not provide reliable results. Thus, we
propose to use additional information from other types of re-
flectors to optimize the quality of the parameter estimation.
Water movement and electromagnetic wave propagation in
the unsaturated zone are modeled using a one-dimensional
hydrogeophysical model. The GPR travel time data are an-
alyzed for different reflectors: a moving reflector (the infil-
tration wetting front) and three fixed reflectors located at dif-
ferent depths in the soil. Global sensitivity analysis (GSA) is
employed to assess the influence of the saturated hydraulic
conductivity Ks, the saturated and residual water contents θs
and θr, and the Mualem–van Genuchten shape parameters α
and n of the soil on the GPR travel time data of the reflec-
tors. Statistical calibration of the soil parameters is then per-
formed using the MCMC method. The impact of the type of
reflector (moving or fixed) is then evaluated by analyzing the
calibrated model parameters and their confidence intervals
for different scenarios. GSA results show that the sensitivi-
ties of the GPR data to the hydrodynamic soil parameters are
different between moving and fixed reflectors, whereas fixed
reflectors at various depths have similar sensitivities. Ks has
a similar and strong influence on the data of both types of
reflectors. Concerning the other parameters, for the wetting

front, only θs and α have an influence, and only at long time
steps since the total variance is zero at the very beginning
of the experiment. On the other hand, for the fixed reflec-
tors, the total variance is not zero at the very start and the
parameters θs, θr, α and n can have an influence from the
very beginning of the infiltration. Results of parameter esti-
mation show that the use of calibration data from the moving
or fixed reflectors alone does not enable a good identification
of all soil parameters. With the moving reflector, the error
between the estimated mean value and the exact target value
for θr and α is 9 % and 45 %, respectively, and less than 3 %
for the other parameters. The best reduction of the size of
the parameter distribution is obtained for n, with a poste-
rior distribution 9 times smaller than the prior one. For the
others, this reduction ratio varies between 1 and 5. For the
fixed reflectors, the estimated mean values are far from the
target values for α, θr and n, representing for a reflector lo-
cated at 120 cm 15 %, 27 %, and 121 %, respectively. On the
other hand, when both data are combined, all soil parame-
ters can be well estimated with narrow confidence intervals.
For instance, when using both data from the moving wetting
front and a fixed reflector located at 120 cm for calibration,
the estimated mean values of the errors of all parameters are
less than 5 %. Moreover, all parameter distributions are well
reduced, with a maximum reduction forKs, leading to a pos-
terior distribution being 46 times smaller than the prior one,
and the worst but still satisfactory being for θr for which the
posterior distribution is 8 times smaller than the prior one.
The methodology was applied to fine, medium, and coarse
sands with very good results, particularly for the finest soil.
The thickness of the unsaturated zone was also tested (0.5, 1,
and 2 m) and a better estimation of the hydrodynamic param-
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eters is obtained when the water table is deeper. In addition,
the height of water applied in the infiltrometry test influences
the speed of the test without affecting the performance of the
proposed method.

1 Introduction

The vadose zone is defined by the region between the ground
surface and the groundwater table. Because of its location,
it is at the center of the interactive atmospheric–surface–
underground water system. Hence, understanding water flow
in the vadose zone is crucial for hydrological modeling and
forecasting, which can be useful for water resources man-
agement, agricultural practices optimization, or geotechni-
cal studies. The porous medium in the vadose zone is filled
by both water and air phases. The air phase is considered
infinitely mobile and remains at atmospheric pressure. The
movement of water has a non-linear behavior and is charac-
terized by two fundamental hydraulic relationships, namely,
the water retention and the hydraulic conductivity functions.
Various mathematical expressions can describe these func-
tions in terms of dependent variables and fitting parameters.
In this work, we use the Mualem–van Genuchten (Mualem,
1976, van Genuchten, 1980) hydraulic conductivity and wa-
ter retention models. These models include the following un-
saturated soil hydraulic parameters: the saturated hydraulic
conductivity, the saturated and residual water contents, and
the Mualem–van Genuchten shape parameters α and n.

Different approaches can be applied to estimate the unsat-
urated soil parameters. In soil physics, the reference method
relies on laboratory measurements conducted on soil core
samples. Such experiments can use various techniques such
as thermogravimetry or tensiometry, but common practices
rely on measurements of hydraulic fluxes (Vereecken et al.,
2008). Laboratory measurements can provide direct mea-
surements of the soil hydraulic properties or state variables
and can therefore be of great accuracy at the column scale.
On the other hand, they are prone to certain limitations when
the objective is to deduce the soil parameter values at larger
scales. Indeed, sample analysis through laboratory experi-
ments is unlikely to provide parameter estimates at field con-
ditions since the volume of the analyzed samples is often
not representative of the field heterogeneity at the mesoscale
(Scharnagl et al., 2011). In addition, the method is invasive
and can be labor-intensive for deep- or large-scale investi-
gations (Binley et al., 2015). Furthermore, the conservation
of collected samples can be challenging because of issues of
compaction and changes in porosity.

At the field scale, the soil hydraulic properties and state
variables can be estimated using numerous approaches. Mea-
surements of the soil water content, water pressure, and hy-
draulic conductivity can show significant variations because
of their sensitivity to different hydrological processes. As a

consequence, such measurements are convenient for the esti-
mation of soil parameters of the subsurface at the field scale
by inverse modeling. Measuring techniques for soil hydraulic
properties and state variables can be classified into two cat-
egories based on whether the measuring devices have to be
in direct contact with the soil or not. In the former, when
the measuring devices must be in direct contact with the soil,
measurements can present a spatial support around the micro
(mm–cm) and local scale (cm–m) with water content sensing
techniques (using thermal or electromagnetic sensors, e.g.,
capacitance or time domain reflectometry, Jones et al., 2005;
Belfort et al., 2019), water pressure measurements with ten-
siometers (Cassel and Klute, 1986) or psychrometers (Rawl-
ins and Campbell, 1986), and hydraulic conductivity mea-
surements with permeameters (Kodešová et al., 1998) and in-
filtrometers (Muntz et al., 1905). These techniques can yield
data with great resolution at one location and give infor-
mation on the dynamics at the field scale (Vereecken et al.,
2008). In addition, measurements taken at various locations
can help to describe the distribution of water content, and
thus allow for a good characterization of the state of the soil.
For measurements with sensors, however, their installation is
often laborious, time-consuming, and destructive (Huisman
et al., 2003; Dal Bo et al., 2019). Furthermore, their reliabil-
ity requires an accurate calibration (Robinson et al., 2008).

Other techniques use non-invasive devices that do not have
to be in direct contact with the soil, such as remote sensing
and hydrogeophysical methods. Remote sensing techniques
use devices that operate remotely and relatively far from the
ground, such as unmanned aerial vehicle-based thermal in-
frared imagery (Zhang et al., 2019) or airborne ground pene-
trating radar (Edemsky et al., 2021). These methods provide
the mapping of water content at a large scale and in loca-
tions where contact-based sensing measurements cannot be
conducted. However, remote sensing methods exhibit a pen-
etration depth of only a few centimeters and are often limited
by the vegetation density (Vereecken et al., 2008; Robinson
et al., 2008).

Common hydrogeophysical methods include electromag-
netic induction (Doolittle and Brevik, 2014), direct current
resistivity (de Jong et al., 2020), nuclear magnetic resonance
(Costabel and Günther, 2014), and ground penetrating radar
(GPR) (Huisman et al., 2003; Klotzsche et al., 2018) meth-
ods. These techniques supply indirect information on hy-
draulic properties or states, at various scales, from estimated
geophysical properties. As mentioned by Binley et al. (2015),
such conversion from geophysical to hydraulic properties or
states requires the use of robust petrophysical relationships
to provide reliable estimates of hydraulic parameters.

Today, GPR is widely used in the field of hydrogeophysics.
Different techniques have been reviewed and discussed by
Huisman et al. (2003) and Klotzsche et al. (2018). Indeed,
GPR is highly sensitive to water content, and, as such, it can
close the gap between the spatial scales covered by direct
and remote sensing techniques (Klotzsche et al., 2018). Note,
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however, that the hydraulic properties estimated from GPR
data are subject to an inherent compromise between a deep
investigation and a fine spatial resolution. For instance, the
lowest frequencies (typically from 1 GHz down to 100 MHz)
enable deeper penetrations (until a maximum depth between
1 m and 3 m in most organic media). The temporal variability
of the soil water content can be characterized from time-lapse
GPR measurements. In this case, the GPR method is applied
in a static approach, where, instead of classically imaging the
spatial variation of the properties of the subsurface, the de-
vice is set immobile and captures how the properties of the
soil change over time. GPR data can be collected during arti-
ficial hydraulic processes (e.g., infiltration, runoff, drainage,
imbibition) that can provide valuable information on the flow
characteristics. Compared to other hydraulic processes, arti-
ficially forced infiltration is particularly fast. It also induces a
rapidly evolving transient hydraulic perturbation. Time-lapse
GPR is characterized by a high spatial and temporal resolu-
tion and is therefore well adapted for monitoring such a fast
hydraulic process. Artificial infiltration process is also easy
to establish since it only requires the application of a positive
water pressure head on the soil surface. Hence, time-lapse
GPR monitoring of artificial infiltration experiments is usu-
ally effortless and time-saving. Furthermore, except in the
case of borehole investigations, the GPR device can be laid
on or raised above the surface. For these reasons, time-lapse
GPR monitoring of artificial infiltration is fast as well as easy
to apply and repeat at multiple locations, and, when used on
or above the soil surface, it is non-destructive. Therefore, it is
one of the cheapest approaches that fits well into the context
of mapping the heterogeneity of unsaturated soil parameters
at a small catchment scale.

Various studies have investigated the monitoring of differ-
ent types of flow processes with time-lapse GPR in the con-
text of evaluating the soil hydraulic states, hydraulic prop-
erties, or unsaturated soil parameters (e.g., Saintenoy et al.,
2008; Moysey, 2010; Scholer et al., 2011; Busch et al., 2013;
Tran et al., 2014; Jonard et al., 2015; Jaumann and Roth,
2018; Léger et al., 2014; Léger et al., 2016; Léger et al.,
2020).

At the laboratory scale, Léger et al. (2020) have moni-
tored imbibition-drainage experiments using a single-offset
surface GPR. Jaumann and Roth (2018) conducted similar
experiments but at the test site scale, where they showed rea-
sonable results when estimating the soil unsaturated parame-
ters and the subsurface architecture. As already pointed out,
however, this hydraulic process can take longer than an infil-
tration to reach a steady state and is also practically harder to
conduct at the field scale. Busch et al. (2013) calibrated the
Mualem–van Genuchten parameters of their model by mon-
itoring natural precipitation and evapotranspiration events at
the field scale. Such slow hydraulic processes can last several
days or months and are therefore not suitable for easy and
fast characterization. Infiltration experiments have been con-
ducted at the laboratory scale by Moysey (2010), where they

Figure 1. Test case and experimental device illustration at an ad-
vanced time step (a). R50 and R120 are fixed reflectors consid-
ered in this experiment. Tx and Rx refer to the transmitter and re-
ceiver antennas, respectively, of the GPR system; effective satura-
tion Se (b) and reflection coefficient r (c) profiles with depth.

considered the GPR two-way travel time (TWT) from vari-
ous sources of reflection. They showed that the Mualem–van
Genuchten shape parameter n is the most poorly constrained
among all unsaturated soil parameters. On the field, infiltra-
tion processes have been monitored with borehole GPR (Sc-
holer et al., 2011), single-offset (Léger et al., 2014; Léger
et al., 2016) and multi-offset (Saito et al., 2018) surface GPR,
or off-ground GPR (Jadoon et al., 2008, Jadoon et al., 2012;
Jonard et al., 2015). For practicality, surface GPR is preferred
over off-ground and borehole GPR, the latter also being de-
structive by nature. Saito et al. (2018) used a more complex
multi-offset and multi-channel surface GPR to directly mon-
itor the wetting front progression. The mono-channel multi-
offset technique is usually not suited for monitoring experi-
ments with high temporal variability, as the offset must be ad-
justed between each measurement. The multi-channel tech-
nique has the advantage of being multi-offset and is, there-
fore, able to simultaneously determine the propagation speed
and the depths of reflectors.

In the present study, we are interested in using a quick,
easy-to-apply, and cheap field-scale method to characterize
the unsaturated soil parameters. To this end, time-lapse GPR
monitoring of artificial infiltration is a well-suited protocol.
It is similar to ring infiltrometry methods but with additional
information from GPR measurements. In the literature, the
work of Léger et al. (2014) is the closest one to consider this
protocol for parameter estimation. The authors demonstrated
the relevance of such a methodology in evaluating the hy-
draulic parameters of sandy soil. They investigated synthetic
and field examples and showed that the inverted parameters
were in agreement with the values obtained in the labora-
tory for soil samples and with disk infiltrometer measure-
ments. However, in their study, Léger et al. (2014) used an
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optimization-based inversion algorithm which did not make
it possible to assess the reliability of the estimated values
since the uncertainty associated with the calibrated parame-
ters was not evaluated. Furthermore, Léger et al. (2014) em-
ployed only the TWT data obtained from the GPR reflection
on the wetting front for the calibration of the soil parame-
ters, which was satisfactory enough for them to obtain such
remarkable results. The original work presented here aims to
extend the actual state of the art by:

– considering different reflectors at different depths: a
moving reflector which corresponds to the infiltration
dynamic wetting front and two fixed reflectors located
at different depths in the soil;

– investigating the influence of all soil parameters (the sat-
urated hydraulic conductivity, the saturated and residual
water contents, and the Mualem–van Genuchten shape
parameters α and n) on the GPR TWT data of the three
reflectors using global sensitivity analysis (GSA). The
GSA allows us to estimate the soil parameter range
where time-lapse GPR data monitoring is sensitive to
these parameters. It also provides some insights into
which parameter is more sensitive at the beginning of
the infiltration experiment or at the end of the infiltra-
tion;

– performing statistical calibration of soil parameters us-
ing the Markov chain Monte Carlo (MCMC) method
and evaluating the reliability of the estimated parame-
ters by analyzing not only the calibrated model param-
eters but also their associated uncertainty;

– evaluating the impact of the type of reflector (moving or
fixed) by analyzing the calibrated model parameters and
their confidence intervals for different scenarios.

The plan of the paper is as follows: Sect. 2 describes the
test case as well as the mathematical and numerical hydro-
geophysical models. Section 3 reports on the GSA results of
the different TWT signals. Then, Sect. 4 discusses the re-
sults of the soil parameter estimation with MCMC for differ-
ent scenarios including varying soil types, water table depths,
and surface boundary conditions.

2 Test case description and numerical solution

2.1 Test case description

In this work, we conduct a synthetic study on the time-lapse
GPR monitoring of artificial infiltration protocol, prior to
applying it in real conditions. The idea is to perform syn-
thetic experiments under the same conditions as real exper-
iments so as to better understand the pertinence of the in-
vestigated protocol when used for estimating the unsaturated
soil parameters. The test case considered is a hypothetical

one-dimensional experiment of water infiltration in a ho-
mogeneous sandy soil of 150 cm (Fig. 1a). The approach
used to drive the artificial infiltration is comparable to other
techniques commonly used to estimate the properties of the
porous medium, such as single- or double-ring infiltrome-
try. As evidenced in other studies (e.g., Léger et al., 2014),
the idea is to add information from the GPR data monitored
during the infiltration to have access to more of the hydro-
dynamic parameters. In the present synthetic case, a constant
pressure head of 10 cm is applied at the surface of the soil
(i.e., a 10 cm water ponding Dirichlet-type boundary con-
dition is maintained at the top). The medium is initially at
the hydrostatic equilibrium with a water table maintained at
100 cm below the soil surface (Fig. 1b). The domain is ini-
tially formed by an unsaturated zone of 100 cm thickness
above a saturated zone of 50 cm thickness. We assume the
experiment to be monitored with a surface GPR. The prop-
agating time (i.e., the TWT) of the GPR waves reflected by
two types of reflectors are considered (Fig. 1c): (i) the mov-
ing infiltration wetting front and (ii) two fixed reflectors cor-
responding to a local heterogeneity at two different depths.
For instance, these can be small objects that are artificially
buried (e.g., moisture sensing probes) or naturally embedded
(such as small rocks) in the porous medium. The fixed reflec-
tors are supposed to be small enough compared to the section
of the infiltrated area, so they do not significantly perturb the
vertical flow. The upper fixed reflector, R50, is located in the
initially unsaturated zone at 50 cm depth. The reflector R120
is located in the saturated zone, under the water table, at a
distance of 120 cm from the soil surface (Fig. 1a). In the fol-
lowing, the time-lapse TWT signal for reflection caused by
the infiltration wetting front is noted TWTf and that from the
two immovable diffracting points R50 and R120 are, respec-
tively, noted TWT50 and TWT120.

2.2 The mathematical model

2.2.1 Unsaturated flow model

Water infiltration in unsaturated or saturated soils is governed
by the one-dimensional Richards equation (Richards, 1931):

∂θ

∂t
=
∂

∂z

[
K(θ)

(
∂h

∂z
− 1

)]
, (1)

where h (cm) is the pressure head; z is the depth (cm), taken
as positive in the downward direction; t is the time (s), θ
(cm3 cm−3) is the actual water content, and K(θ) (cms−1)
is the hydraulic conductivity which is a function of water
content. The initial condition is a hydrostatic pressure dis-
tribution corresponding to a water table at 100 cm depth. The
boundary condition at the top of the domain is a fixed Dirich-
let condition of 10 cm maintained during the experiment. The
boundary condition at the bottom is a piezometric head fixed
at −100 cm which corresponds to the water table position
(Fig. 1).
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The interdependencies of the pressure head, conductivity,
and water content are described using the standard models of
Mualem, 1976 and van Genuchten (1980):

Se(h)=
θ(h)− θr

θs− θr
=

{
[1+ (α|h|)n]−m if h < 0

1 if h≥ 0
(2)

K(h)=

{
Ks× Se(h)

L
[1− (1− Se(h)

1/m)m]2 if h < 0
Ks if h≥ 0,

(3)

where Se(h) (–) is the effective saturation, θs and θr
(cm3 cm−3) are the saturated and residual water contents, re-
spectively,Ks (cms−1) is the saturated conductivity,m= 1−
1/n, α (1cm−1), and n (–) are the Mualem–van Genuchten
shape parameters, and L (–) is a parameter characterizing the
tortuosity of the flow paths of moving water in the intercon-
nected pores of the soil. It is set at L= 0.5 here, following
the works of Mualem (1976) and van Genuchten (1980).

2.2.2 Petrophysical and geophysical relationships

In GPR sounding, pulses of radiofrequency (MHz to GHz)
electromagnetic waves are emitted from a transmitting an-
tenna through the sounded medium. The electromagnetic re-
sponse is then acquired with a receiving antenna. With a sur-
face GPR, both antennas are installed at the surface of the
soil (Fig. 1). To monitor the experiment of water infiltration
with time-lapse GPR, the sounding system is set immobile
above the infiltration zone in order to capture the time vari-
ation of the electromagnetic response due to the change of
saturation.

To describe the dependency of the dielectric permittivity
on the water content, we use the complex refractive index
model (Birchak et al., 1974). This petrophysical relationship
relates the dielectric constant ε (–) of a three-phase (water–
solid–air) medium to its water content by:√
ε(z, t)= θ(z, t)

√
εw+ (1−φ)

√
εs+[φ−θ(z, t)]

√
εa, (4)

where φ (–) is the porosity, considered equal to the saturated
water content θs, and εw = 80, εs = 2.5 (Léger et al., 2014),
and εa = 1 are the dielectric constants of water, silica (sand),
and air, respectively.

In this work, the soil is considered as a linear and isotropic
non-magnetic medium. When working with frequencies be-
low 1 GHz, the soil electrical conductivity can be neglected.
In this case, the electromagnetic waves propagate at speed V
(cmns−1) (Annan, 2003):

V =
c
√
ε
, (5)

where c ≈ 30 cmns−1 is the speed of electromagnetic waves
in air, and ε (–) is the dielectric constant of the porous
medium.

Equations (4) and (5) evidence that GPR waves propagate
at a much lower speed in wet conditions. Any source of re-
flection in the sounded soil produces a reflected wave that is

recorded at a time corresponding to the duration of its prop-
agation, from the transmitting antenna, down to the source
of reflection, then back up to the receiving antenna, i.e., the
TWT of the reflected wave.

We consider a one-dimensional scenario (the offset be-
tween the antennas is null) and discretize the domain into
N cells i, centered at a depth zi , with element boundaries at
zi−1/2 and zi+1/2. The TWT for the reflection occurring at
the interface (i− 1/2) between the elements i− 1 and i can
be expressed as the sum of the vertical TWT in each element
above i:

TWT(zi−1/2)= 2
i−1∑
j=1

|lj |

Vj
, (6)

in which |lj | (cm) is the length of the element j above i, and
Vj (cmns−1) is the GPR propagation speed in the element j .

A reflection occurs at the interface between two successive
elements if the reflection coefficient is not zero. The reflec-
tion coefficient expresses the contrast of dielectric constant
(due to the contrast of water content) at the interface between
the two elements i−1 and i. When the offset between trans-
mitting and receiving antennas is null, the reflection coeffi-
cient at interface (i− 1/2) is defined by:

r(zi−1/2)=
ε(zi)− ε(zi−1)

ε(zi)+ ε(zi−1),
(7)

where ε(zi) is the dielectric constant of the element i.
For an 800 MHz antenna, the wavelength can typically

vary from 6 cm in a wet medium to around 18 cm in a dry
medium. The abrupt change in the reflection coefficient at
the wetting front makes it easily detectable. This statement
is true in the presented test case and for any parameter value
taken from the prior distributions tested (Table 1). On the
contrary, the water table may be hidden due to the softer
change in the reflection coefficient at the capillary fringe
(Bano, 2006; Saintenoy and Hopmans, 2011).

Note that one could easily consider a non-perpendicular
incidence of the GPR wave at the interface, introducing the
incidence angle in Eq. (7). Nevertheless, the offset between
the TX and RX antenna for a 800 MHz GPR system is typ-
ically around 10 cm. By simple trigonometry, the incidence
angle is 5◦ at 50 cm depth, 2◦ at the deeper reflector, the re-
flection coefficient is then very close to the normal incidence,
and Eq. (7) is considered in the following. Considering more
closely the physics of the radar wave emission and propa-
gation in porous media, if one needs to consider precisely
the wave amplitude (such as in full waveform inversion), one
should consider the radiation pattern of the antenna. The lat-
ter is linked to the dielectric contrast at the surface and the
antenna characteristics. Whether one needs to calculate it
precisely or one should consider specific acquisition config-
urations to handle this effect (generally normalization of the
signal by a reference signal), we choose to keep our approach
as simple as possible, to be applicable to any system easily,
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Table 1. Prior intervals of the unsaturated soil parameters for both GSA and Bayesian estimation.

Ks (cms−1) θs (cm3 cm−3) θr (cm3 cm−3) α (1cm−1) n (–)

[xmin–xmax] [0.001–0.15] [0.32–0.48] [0.01–0.13] [0.01–0.28] [1.5–10]

Figure 2. Hydrogeophysical model responses for Ks =
0.08 cms−1, θs = 0.4 (–), θr = 0.07 (–), α = 0.145 cm−1, n= 2.68
(–). TWTf corresponds to the TWT signal for the wetting front,
while TWT50 and TWT120 are the TWT signals for fixed objects
located at 50 and 120 cm below the surface, respectively.

without the need for calibration. Hence, we have chosen to
consider only the travel time, and not to use the amplitude.
Note that the latter is more sensitive to attenuation (electrical
conductivity) than to the hydraulic parameters.

2.3 The numerical model

The variation of the water content in the soil during the in-
filtration is computed using the WAMOS-1D code (Belfort
et al., 2018). The model describes the water movement in
the porous medium using the Richards equation (Eq. 1), and
the constitutive relationships between the pressure, the hy-
draulic conductivity, and the volumetric water content given
by Eqs. (2) and (3). The domain of 150 cm depth is dis-
cretized with uniform elements 1 cm thick with homoge-
neous properties. Such discretization enables an appropri-
ate model precision and a low enough computation time.
The WAMOS-1D code solves the system of Eqs. (1)–(3) and
yields the vertical distribution of water content at each time
step. This distribution is then converted into a vertical dielec-
tric permittivity profile ε using the petrophysical relationship
in Eq. (4) and into a GPR wave propagation speed profile V
using Eq. (5). Then, the time-lapse TWT signals for the fixed
objects, TWT50 and TWT120, are calculated at each time step
using Eq. (6) (dashed and dotted curves in Fig. 2).

The time-lapse signal TWTf, induced by wave reflection
on the wetting front because of the sharp water content vari-

ation at the front position, is calculated in two steps. First,
we search for the wetting front position z∗i−1/2, which corre-
sponds to the interface position having the maximum reflec-
tion coefficient from Eq. (7) as illustrated in Fig. 1. Then, the
TWT signal of the wetting front is obtained using TWTf =

TWT(z∗i−1/2) from Eq. (6) (solid curve Fig. 2).
Note that TWT50 and TWT120 signals are induced by fixed

objects; thus, these signals exist regardless of the position of
the infiltration front. On the other hand, TWTf is induced by
the infiltration wetting front whose position varies over time.
Besides, contrarily to TWT50 and TWT120, the TWTf signal
disappears when the wetting front reaches the water table. To
avoid numerical issues when simulations are performed with
different soil parameter sets, the value of TWTf when the wa-
ter table is reached is artificially maintained for the remaining
time steps until the end of the simulation time. The water ta-
ble is assumed to be reached when the maximum reflection
coefficient of Eq. (7) is below a threshold of 10−2. This re-
flects a fully saturated domain with an almost uniform water
content distribution (solid curve Fig. 2). An explanation of
the computation of all TWT signals is summarized in Fig. 3.

3 Global sensitivity analysis of TWT signals

3.1 GSA method

The GSA method evaluates how the outputs of a model are
influenced by the variation of the input parameters (Mara
and Tarantola, 2008). Among the various forms of GSA, a
variance-based sensitivity analysis, allowing for the calcula-
tion of Sobol sensitivity indices (Sobol’, 2001), is employed.
Such indices depict the contribution of the variation of any
input variable x to the total variance of an output variable y.
In our case, the input variables are the unsaturated soil pa-
rameters (Ks, θs, θr, α, n) and the output variables are the
TWT signals (TWTf, TWT50, TWT120).

Given a model with a set of p independent random pa-
rameters X = {x1,x2, . . .,xp} that yields a random response
y(X), the two variance-based sensitivity measures, also
called Sobol indices (Sobol’, 2001), are

– the first-order sensitivity index:

Si =
Var

[
E[y(X)|xi]

]
Var[y(X)]

∈ [0,1] (8)

– the total sensitivity index:

STi =
E
[
Var[y(X)|x−i]

]
Var[y(X)]

∈ [0,1], (9)
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Figure 3. Summary of the working process of the forward hydrogeophysical model and how it is used to build the PCE surrogate model.

where x−i =Xr xi is the set of all parameters except xi ,
E() and E(.|.) are the expectation and the conditional expec-
tation operators, respectively, and Var() and Var(.|.) are the
variance and the conditional variance, respectively. The first-
order index Si quantifies the contribution of the parameter xi
alone to the total variance of y(X), while STi also includes
all interactions of xi with the other parameters x−i .

To perform a variance-based GSA, a practical approach
(to save computational time) is to use polynomial chaos ex-
pansion (PCE; Wiener, 1938). The PCE approach consists in
developing any signal y(X) as a set of orthonormal multi-
variate polynomials of a degree not exceeding D:

y(X)=
∑
|β|≤D

sβ9β(X), (10)

where β = β1,β2, . . .,βp ∈ Rp is a pth-dimensional index,
sβ are the PC coefficients, and 9β are the generalized poly-
nomial chaos of degree |β| =

∑p

i=1βi .
In this work, Legendre polynomials are used since uniform

distributions are assumed for all uncertain parameters. Uni-
form distributions express the absence of prior information.
This makes all parameter values in the given prior intervals
equally likely. Large prior distribution intervals are consid-
ered for all unsaturated soil parameters (Table 1). This com-
bination of parameters investigated in the GSA is exhaustive
and allows one to consider a large panel of soil types. Note
that while simulations with values of n between 1 and 1.5
would allow us to investigate a wider range of porous media,
they also take much longer to end.

The number of coefficients for a full PCE representation
is P = (p+D)!/p!D!. A training dataset of M realizations

of the forward coupled hydrogeophysical model is used to
build the PCE surrogate model of order D (Fajraoui et al.,
2011; Shao et al., 2017; Younes et al., 2013). The coefficients
of the PCE are obtained by searching for the best fit (in the
least square sense) of the PCE surrogate model to the hy-
drogeophysical model for the M realizations. To work with
low-discrepancy sets, the M realizations correspond to sets
of input parameters sampled from their prior probability dis-
tributions, using quasi-random Sobol sequences (Shao et al.,
2017). Because each parameter varies in its own range and
has a proper unit, the parameter prior intervals are normal-
ized to [−1,1] during PCE computation. We illustrate the
principle of the construction of the PCE with our hydrogeo-
physical model in Fig. 3.

A PCE is constructed at each time step for all model re-
sponses (TWTf, TWT50, and TWT120) since we deal with
transient simulations. In this work, M = 2048 hydrogeo-
physical model realizations are employed to obtain PCEs
of degrees D = 5 containing P = 252 coefficients. The ob-
tained PCEs are sufficiently accurate as the variance of the
TWT output signals is calculated with the surrogate PCE
model and the forward hydrogeophysical model at three dif-
ferent times, t = 50 s, 150 s, and 2000 s. The results of Ta-
ble 2 show that the relative difference between the two vari-
ances is very small for all investigated times. Note that al-
though the relative variance error for the TWT50 at t = 2000 s
is the largest (around 7 %), it remains insignificant since the
total variance of the signal at this time is negligible (less than
2 ns2). The variance of the forward hydrogeophysical model
is therefore well reproduced by the PCE surrogate model,
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Table 2. Variance of TWTf, TWT50, and TWT120 signals at t = 50,
150, and 2000 s calculated with the PCE surrogate model and with
the hydrogeophysical model.

TWTf TWT50 TWT120

t = 50 s

Var_HYD_model 14 5 15.9
Var_PCE_model 13.4 5 15.8
Var_error 4.3 % 0.9 % 0.5 %

t = 150 s

Var_hyd_model 54.6 5.5 23.3
Var_PCE_model 53.9 5.4 23.2
Var_error 1.3 % 1.4 % 0.4 %

t = 2000 s

Var_hyd_model 28.8 1.5 9.9
Var_PCE_model 27.1 1.4 9.3
Var_error 5.7 % 7.4 % 5.2 %

which will be employed for the GSA of the TWT signals us-
ing the variance decomposition.

3.2 GSA results

The temporal distribution of the output variance of the three
TWT signals (TWTf, TWT50, and TWT120) is represented
Fig. 4. For each TWT signal, the variance is represented by
the black curve and the relative contributions of the uncer-
tain parameters to the variance are represented by the shaded
area. The blank region between the variance curves and the
shaded area represents interactions between parameters.

TWTf has a different behavior from the TWT signals of
fixed reflectors TWT50 and TWT120 (Fig. 4). Although the
TWT signals of fixed reflectors have different variance mag-
nitudes, they exhibit similar behavior (Fig. 4b and 4c). The
variance of the TWT signal is 5 times more significant for
TWT120 than for TWT50. This is in agreement with the
physics since the zone of the porous medium affecting the
GPR wave is more important for the TWT120 signal than
for the TWT50. In addition, the period of influence of the
unsaturated parameters (θr, α, n) is also more important for
TWT120 than for TWT50 since saturated conditions for the
reflector R120 are reached much later than for R50. Since
fixed reflectors exhibit similar behavior, in the following, we
comment on the results of TWTf and TWT120 signals.

3.2.1 GSA of the TWTf signal

TWTf variance is zero at the beginning of the infiltration
(Fig. 4a), which means that the TWTf signal is not affected
by the initial conditions. Indeed, the infiltration wetting front
and the TWTf signal start at zero for all parameter sets.
Then, the variance of the signal increases until a maximum

of 60 ns2, reached at around 3 min. After that, the variance
decreases, but maintains a significant value of around 25 ns2

(Fig. 4a). Concerning parameter sensitivities, at the begin-
ning, the TWTf signal is mainly affected by Ks. The influ-
ence of this parameter decreases over time and reaches zero
for long times when steady-state conditions (corresponding
to a fully saturated soil) are reached. The parameter θs has a
moderate influence on the TWTf signal. Its influence is not
observable at short times since unsaturated conditions occur.
Overall, the most influential parameter on the TWTf signal
is the van Genuchten parameter α. This parameter seems in-
fluential even for saturated conditions. Note that this numer-
ical artifact is observed because the value of TWTf is artifi-
cially maintained when the infiltration wetting front reaches
the water table, while physically the signal disappears. The
effects of the parameters θr and n are not observable (Fig. 4a).
The blank region between the variance curve and the shaded
area in this figure is due to the interaction between the pa-
rameters. To estimate this interaction, we plot the difference
between the total (STi) and the first-order (Si) sensitivity in-
dices for all parameters (Fig. 5a). This difference reflects
the interaction between the parameters over time. Interac-
tions between parameters are negligible for all parameters
(STi ≈ Si), except forKs and α (Fig. 5a). Hence, the interac-
tion between these two parameters affects the variance of the
TWTf signal as represented by the blank region between the
variance curve and the shaded area (Fig. 4a).

To evaluate further the effect of the unsaturated soil pa-
rameters on the TWTf, we plot the marginal effect of each
parameter (Fig. 6). The marginal effect can be easily derived
from the PCE coefficients and reflects the effect of one pa-
rameter on the output signal. Figure 6 depicts the marginal
effects of each hydraulic parameter, i.e., their influence on
the TWT signals as a function of their value when they
vary over the range of their prior distribution interval, while
the other hydraulic parameters are kept fixed at their cen-
ter value. This representation allows us to determine the re-
gions of influence of the hydraulic parameters, given that the
stronger the slope of the marginal effect curve, the higher the
influence of the parameter. These marginal effects can vary
over time, and therefore we represent them at the three time
steps (t1= 1 min, t2= 5 min, and t3= 200 min) highlighted
with dashed black lines in Fig. 4. The oscillations are caused
by numerical artifacts related to the degree of the polynomi-
als used in the PCE model. From Fig. 6a, the following can
be noted:

– Ks is highly influential at the beginning of the experi-
ment. At t1= 1 min, the TWTf signal varies almost lin-
early with Ks. Indeed, at the beginning of the experi-
ment, when Ks increases, the wetting front is more ad-
vanced, thus, the GPR wave propagates at a lower speed
and the TWTf signal increases. At t2= 5 min, the TWTf
signal is sensitive only for small Ks values. Indeed, for
high Ks values, the soil is fully saturated and the per-
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Figure 4. Time distribution of the variance of TWTf (a), TWT50 (b) and TWT120 (c). The shaded area under the variance curve represents
the partial marginal contributions of the uncertain parameters; the blank region between the shaded area and the variance curves represents
the contribution of interactions between the parameters. The marginal effects shown in Fig. 6 are represented at three time steps, t1= 1 min,
t2= 5 min, and t3= 200 min, highlighted here (dotted black lines).

Figure 5. Difference between the total (STi) and the first-order (Si) sensitivity indices for all parameters for the TWTf (a) and the TWT120 (b)
signals.

turbation of the high value of Ks does not change the
TWTf signal. At t3= 200 min, the soil is fully saturated
for almost allKs values, thus, the TWTf signal becomes
insensitive to Ks.

– θs has no influence at the first times (t1= 1 min) since
unsaturated conditions occur. For long times, the TWTf
signal is very sensitive to θs with an almost linear be-
havior. Indeed, when the soil is fully saturated, the di-
electric permittivity and thus the TWTf signal is almost
proportional to θs.

– The sensitivity of TWTf to θr is moderate and can be ob-
served only at the beginning of the experiment (unsatu-

rated conditions) with an almost linear behavior observ-
able at t = 1 min and 5 min. The positive slope of the
curve is consistent with the physics of the process (when
θr increases, the speed of the electromagnetic wave de-
creases, and the TWTf signal increases).

– The van Genuchten parameter α is highly influential no-
tably for long times (t3= 200 min). A small variation
of the parameter α can induce a strong variation of the
TWTf signal. Notably, the sensitivity of α is very high
for α ≤ 0.05 cm−1.

– The sensitivity of TWTf to the parameter n is almost
zero (flat curves) at all times (t = 1 min, 5 min, and
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Figure 6. Marginal effects of the unsaturated soil parameters Ks, θs, θr, α, and n on the TWTf and TWT120 signals at three different times,
t1= 1 min, t2= 5 min, and t3= 200 min, highlighted in Fig. 4.

200 min). The parameter n has therefore a negligible
effect on the TWTf signal and, as a consequence, it is
expected to be poorly identifiable from the TWTf data.
TWTf is sensitive to all Ks , θs and θr values tested (see
Table 1), but is also sensitive to α < 0.05 cm−1 and
n < 2. This means a wide range of soil types.

3.2.2 GSA of the TWT120 signal

The variance of the TWT120 signal is nonzero at the begin-
ning of the experiment which means that the TWT120 sig-
nal is affected by the initial conditions (Fig. 4c). Indeed, at
the very beginning, the pressure distribution is hydrostatic
and the water content distribution in the column is obtained
from Eq. (2), which depends on all soil parameters except
Ks. Therefore, the speed of the GPR wave depends on the
initial water content distribution, which is dependent on the
unsaturated soil parameters θs, θr, α, and n. The most influ-
ential parameter at the beginning of the experiment is the pa-
rameter α. Over time, the effect of this parameter decreases,
whereas the effect of θs increases. For long times, θs becomes
the only sensitive parameter. The parameter Ks is also very
sensitive. Its effect starts at zero, and increases until a max-
imum is reached at around 3 min, after which it slowly de-
creases and becomes negligible after 100 min. As with the
TWTf signal, interactions between parameters are moderate.
The difference between the total and first-order Sobol indices
is negligible for all parameters except after 1 min for the pa-
rameters Ks, α, and θs (see Fig. 5b). This interaction corre-
sponds to the blank region, between the variance curve and
the shaded area in Fig. 4c. The marginal effects of the soil
parameters on the TWT120 signal are plotted in Fig. 6b for
t = 1 min, 5 min, and 200 min. The curves in this figure show
the following:

– As for the TWTf signal, Ks is highly sensitive, espe-
cially for t = 1 min and 5 min.

– The saturated water content θs is very influential for all
times. The TWT120 varies almost linearly with θs even
at the beginning (t1= 1 min), since the fixed reflector is
located in the lower saturated region.

– As for the TWTf signal, θr is sensitive only at the be-
ginning of the experiment (unsaturated conditions) with
an almost linear behavior at t = 1 min and 5 min. When
θr increases, the water content increases and, hence, the
TWT120 increases.

– The van Genuchten parameter α is highly sensitive.
However, contrarily to the TWTf signal where α is
highly sensitive at long times (t3= 200 min), the sen-
sitivity of α for the TWT120 signal is high at short
times (t1= 1 min). For long times, the influence of α
disappears since the soil becomes fully saturated. The
negative slope of the curve of the TWT120 signal as a
function of α observed at the beginning of the experi-
ment is consistent with the physics of the process. In-
deed, when α increases, the capillary fringe thickness
decreases, hence, the water content in the unsaturated
zone decreases, and thus the TWT120 signal decreases.

– Surprisingly, and contrarily to the TWTf signal which
showed a flat curve for the marginal effect of the pa-
rameter n for all parameter values and at all investigated
times, the TWT120 signal is sensitive to n at the begin-
ning of the experiment (t1= 1 min) with a high sensi-
tivity for n< 3.5 and a moderate sensitivity (the curve
has a small slope) for n≥ 3.5. Finally, TWT120 shows
similar sensitivity for Ks , θs and θr but slightly higher
than TWTf. For α, they show complementarity, which
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makes the procedure very efficient for α < 0.05 using
all the infiltration experiments (early time for TWTf and
late time for TWT120). TWT120 is more sensitive to n,
but only until values of 3.5. The GSA study shows that
the monitoring of the infiltration using both the TWT
from the infiltration front and (at least) a fixed reflec-
tor displays a significant sensitivity for a wide range of
soil types (see in Table 1 the hydraulic parameters range
tested). The next section demonstrates the use of this
sensitivity to calibrate these parameters.

4 Bayesian soil parameter estimation from the TWT
signals

In this section, we estimate the unsaturated soil parameters in
a Bayesian framework using the Markov chain Monte Carlo
(MCMC) sampler (Vrugt and Bouten, 2002; Vrugt et al.,
2008). The statistical calibration is performed for a GPR-
monitored infiltration experiment in order to address the fol-
lowing questions:

1. Can we obtain an appropriate estimation of all unsatu-
rated soil parameters from TWT data?

2. What is the impact of the kind of TWT data (moving/-
fixed reflectors) and of the number of reflectors on the
calibrated model parameters and their confidence inter-
vals?

3. What is the optimal set of TWT measurements that
yields good reliability of all unsaturated soil parame-
ters?

The MCMC method has been successfully employed in
various inverse hydrological problems (e.g., Fajraoui et al.,
2011; Younes et al., 2016; Younes et al., 2017; Younes et al.,
2018). The method generates random sequences of parame-
ter sets that asymptotically converge toward the target joint
posterior distribution by searching for the ensemble of possi-
ble parameter sets that satisfactorily fit the observations. The
converged sets can then be used to assess the quality of the
parameter estimation such as the optimal parameter values
and the 95 % confidence intervals (CIs), which make it pos-
sible to evaluate the reliability of the parameters via uncer-
tainty quantification.

In the sequel, the MCMC method is performed with
the DREAM(ZS) (DiffeRential Evolution Adaptive Metropo-
lis) software (Laloy and Vrugt, 2012; Vrugt, 2016). This
software samples the posterior probability density function
(pdf) by running multiple Markov chains simultaneously for
global exploration of the parameter space. The prior distri-
butions of the parameters are the same as in the GSA (Ta-
ble 1). The DREAM(ZS) then automatically tunes the scale
and orientation of the proposal distribution until we get the
posterior target pdf. A MATLAB toolbox of the DREAM(ZS)

algorithm is available for Bayesian inference in fields rang-
ing from physics, chemistry, and engineering to ecology, hy-
drology, and geophysics. The vector of unknowns is formed
by the five unsaturated soil parameters (Ks, θs, θr, α, n).
Compared to the GSA, which enables investigation of a large
panel of soil types, the parameter estimation is demonstrated
on a single synthetic case. A reference solution is generated
by simulating the hydrogeophysical problem formed by the
system of Eqs. (1)–(6) using the following reference param-
eter values, K∗s = 0.08 cms−1, θ∗s = 0.4, θ∗r = 0.07, α∗ =
0.145 cm−1, n∗ = 2.68, as shown in Table 3. These param-
eter values correspond to those of a sandy porous medium
present in an experimental platform where we test the pro-
tocol under real conditions. The modeled TWTf, TWT50,
and TWT120 signals used as synthetic calibration data are
deduced from the results of the simulation using the refer-
ence parameter values. These TWT signals are then indepen-
dently corrupted using a normally distributed noise with a
standard deviation σ = 0.5 ns. This error corresponds to an
uncertainty of 1 ns, which is realistic in the instance of an
800 MHz GPR antenna.

The TWTf, TWT50, and TWT120 calibration signals, il-
lustrated before noise corruption in Fig. 2, increase almost
linearly until reaching a plateau. For the TWT50 signal, the
plateau is reached when the infiltration front attains the R50
reflector and the value of the plateau corresponds to the time
needed by the electromagnetic wave to make a round trip
from the surface to a 50 cm depth of a full saturated porous
medium. For the TWT120 signal, the plateau signal is reached
when the infiltration front reaches the water table (the do-
main becomes fully saturated) and the value of the plateau
corresponds to the time needed by the electromagnetic wave
to make a round trip from the surface to a 120 cm depth of a
fully saturated porous medium. For TWTf, the plateau value
is also reached when the infiltration front reaches the water
table and the value of the plateau corresponds to the time
needed by the electromagnetic wave to make a round trip
from the surface to the water table at 100 cm depth.

The reliability of the unsaturated soil parameters is as-
sessed for five different scenarios of measurement sets. In
the first scenario, only data of the wetting-front TWTf signal
are used for the calibration. The second and third scenarios
use only the TWT50 and TWT120 signal, respectively, ob-
tained from reflection on the fixed reflector R50 and R120.
The fourth scenario uses both data of TWTf and TWT120
as fitting data. The last scenario investigates the benefit of
adding a fixed reflector by using data of the TWTf, TWT50,
and TWT120 signals as conditioning information.

In the five scenarios, the MCMC sampler uses three paral-
lel chains and a total number of 50 000 runs. The last 25 % of
the runs that adequately fit the model onto observations are
used to estimate the joint posterior distribution.

The MCMC results of the five studied scenarios are given
in Table 3 which depicts, for each parameter, the mean es-
timated value, its posterior CI size, and the ratio of prior to
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Table 3. Reference values used to build the synthetic calibration data for the different scenarios (estimated mean values in bold, size of the
posterior confidence intervals between parentheses, and ratio of prior to posterior intervals in italics)

Ks (cms−1) θs (–) θr (–) α (1cm−1) n (–)

X∗ 0.08 0.40 0.07 0.145 2.68

Scenario 1 0.081 0.39 0.076 0.211 2.75
TWTf (0.037) (0.031) (0.14) (0.167) (0.93)

4 5 1 2 9

Scenario 2 0.074 0.4 0.081 0.173 5.79
TWT50 (0.023) (0.008) (0.061) (0.269) (9.99)

6 19 2 1 1

Scenario 3 0.078 0.4 0.089 0.167 5.93
TWT120 (0.011) (0.007) (0.053) (0.195) (9.36)

13 24 2 1 1

Scenario 4 0.08 0.4 0.074 0.151 2.72
TWTf, (0.003) (0.004) (0.015) (0.029) (0.5)
TWT120 46 37 8 9 17

Scenario 5 0.079 0.4 0.073 0.149 2.68
TWTf, (0.003) (0.004) (0.015) (0.027) (0.49)
TWT50, 49 44 8 10 17
TWT120

posterior intervals. Note that the CI and the last indicator are
calculated from the standard deviation by assuming a Gaus-
sian posterior distribution. A small CI indicates an accurate
estimation of the parameter. A significant difference between
the prior and posterior intervals is a sign of the high sensitiv-
ity of the model to that parameter (Dusek et al., 2015). The
posterior histograms and the derived statistics are obtained
from the last 12 500 simulations, as mentioned earlier, for
which the Gelman–Rubin (Gelman and Rubin, 1992)) crite-
rion is verified and the chains are stable and not autocorre-
lated.

The results in Table 3 for scenario 1 using only data of
the TWTf signal for the estimation of the unsaturated soil
parameters show the following:

– An accurate estimation ofKs, the most sensitive param-
eter (Fig. 4a), is obtained with a CI of 0.037 cm s−1 and
a variation interval reduced by 4.

– A fair estimate of the parameters θs with a standard de-
viation of 0.031 (–) and a reduction of the interval of
variation by 5 is obtained. This result is relatively sur-
prising as this parameter did not show a strong influence
on TWTf sensitivity (Fig. 4a).

– The parameter θr is not well estimated. Indeed, although
its mean estimated value is very close to its reference
value, the associated uncertainty of 0.14 is large and the
posterior interval is as large as the prior one, which in-
dicates the low reliability of the estimation.

– There is a poor estimation of α, while the sensitiv-
ity analysis showed it has a strong influence on TWTf
(Fig. 4a). Its CI is large, with a value of 0.167 cm−1 and
its posterior interval size is half the prior one.

– The TWTf signal yields a mean estimated value n=
2.75± 0.47 which is close to the reference value n∗ =
2.68. The parameter n is quite well identified since its
posterior interval is 9 times smaller than the prior inter-
val. This is relatively surprising since the sensitivity of
n is negligible (Figs. 4a and 6a5). n values between 1.5
and 3 could represent silty loam, sandy loam, or sand.
Therefore, it is not obvious to consider this result as a
good identification. We have performed another estima-
tion (the results are not presented here) with a target
value of the n parameter equal to 6, which is located
in the low sensitivity region of the parameter. In this
case, the inversion led to a relatively good estimation
(estimated mean value of 6.97). However, the parame-
ter was poorly identified since its posterior interval was
still large, although it was a bit smaller than the prior
parameter interval.

In summary, using only data of the TWTf signal as con-
ditioning information for the hydrogeophysical model cali-
bration yielded well estimated mean values of the parame-
ters, close to the reference values for all unsaturated soil pa-
rameters. However, the examination of the associated uncer-
tainties showed that only Ks, θs, and n are correctly identi-
fied (with narrow posterior intervals with respect to the prior
ones). This highlights the importance of statistical calibra-
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tion methods for highly nonlinear problems for investigating
not only estimated parameter values but also the associated
uncertainties.

The estimation of the unsaturated soil parameters for sce-
narios 2 and 3, using only data of the TWT50 or TWT120
signal for the calibration, shows the following:

– The parameters Ks and θs, which are the most sensi-
tive parameters during most of the experiment (Fig. 4b
and c), are well identified with small CI size and strong
reductions by at least 6 for Ks, and 19 for θs, of their
intervals of variation. We note that the TWT120 signal
allows for a much better estimate of both Ks and θs
as their CIs are smaller than the ones estimated with
TWT50. It is especially true for Ks where there is al-
most a factor of 2 between the reduction ratios.

– The soil parameters θr, α, and n, although sensitive
(Fig. 4b and c), cannot be identified from the TWT50
and TWT120 signals since their posterior intervals are
as large as, or at best 2 times smaller than, their prior
intervals.

The results of scenario 4, which combines data of TWTf
and TWT120 signals, show the following:

– Parameters Ks, θs, and n are very well identified, with
very narrow posterior intervals showing a strong reduc-
tion of 46, 37, and 17 times of their prior intervals, re-
spectively.

– Parameters θr and α are reasonably well estimated with
mean values very close to their reference and intervals
of variation reduced by 8 and 9, respectively.

Figure 7 shows the posterior histograms obtained from
scenarios 1, 3, and 4. For all parameters, the displayed in-
tervals correspond to the prior upper and lower limits of Ta-
ble 1.

Finally, the results of the last scenario, which combines
data of TWTf, TWT50 and TWT120 signals, show perfor-
mances very similar to scenario 4. Additional information
from TWT50 helped to reduce slightly the posterior intervals
of Ks, θs, and α, which in that case show a reduction of 49,
44, and 10 times their prior intervals, respectively.

The results of MCMC for this last scenario are shown in
Fig. 8 where diagonal plots depict the inferred posterior pa-
rameter distributions and the off-diagonal scatterplots repre-
sent the pairwise correlations in the MCMC draws. Almost
bell-shaped posterior distributions are obtained for all unsat-
urated soil parameters. Negligible correlations are observed
between the parameters, except moderate correlations ob-
served between Ks and θr (r =−0.78) and between n and
θr (r = 0.64) .

Note that the parameter n is relatively well estimated as
the target reference value 2.68 is located in the high sensitiv-
ity region (n < 3.5) (Fig. 6). In the case of a reference value

located in the low sensitivity region (n≥ 3.5), the calibra-
tion of the hydrogeophysical model using TWTf and TWT120
signals yields a much poorer identification of the parame-
ter n. For instance, using scenario 5 with a reference value
n∗ = 4.25, the estimated mean value is 4.84 with a posterior
CI size of 3.6, which corresponds to a reduction of the inter-
val of variation by only 2.

To complete the numerical study, the protocol was tested
varying the boundary conditions. One may wonder how
much the thickness of the vadose zone would impact the cal-
ibration of the hydraulic parameters. For that purpose, three
scenarios were considered, varying the water table depth
from 50 cm to 1 and 2 m, and assuming a hydrostatic initial
profile. Results of the MCMC calibration depicted in Fig. 9
show that the five parameters are even better estimated when
the water table is deeper. We explain this result as follows:
when the vadose zone is thicker, then the initial water con-
tent profile highlights a larger variation with depth, which is
perturbed when the infiltration propagates. In the shallowest
case, with a 50 cm deep water table, α and n could not be re-
covered because the water content (which directly affects the
radar propagation) in the vadose zone is already close to the
saturation conditions. One should note that in this case, we
maintained the fixed reflector at 120 cm depth, which means
it is above the water table in the 2 m case. In this latter case,
a deeper fix reflector would enhance the result (as seen in
previous scenarios), but in field conditions, a deeper fixed
reflector would be harder to be reliably detected. Neverthe-
less, we show here that it is not necessary to have a reflector
below the water table to obtain an accurate calibration. We
also vary the surface boundary conditions by using different
heights of water ponding at the surface, which would practi-
cally mean varying the height of the infiltration ring, from 5
to 10 and 20 cm. As one would expect, it only affects the du-
ration of the infiltration experiment without impacting on the
accuracy of the hydraulic parameter calibration. The infiltra-
tion duration could be divided by 2 if the pressure head is
doubled. This is worth noting, especially for a medium with
low permeability, in order to speed up the experiment.

Last, the efficiency of the protocol was numerically tested
on three types of soils used in the experimental platform
SCERES in Strasbourg (Bohy et al., 2006). A coarse, a
medium, and a fine sand are considered (see Table 4). The
permeability varies over 2 orders of magnitude, and θr and α
are, respectively, multiplied by 4 and 10, and n varies from
2.0 to 2.7. The results of the calibration using the TWTf and
TWT120 summarized in Table 4 show that the parameters
for the three materials are well estimated, even better when
the sand is finer. All five hydraulic parameters are recovered
here, considering a water table at 1 m depth.

These results evidence that the GPR signal data of both
the wetting front and a fixed reflector can provide very dif-
ferent but complementary information for the identification
of the unsaturated soil parameters. They also point to the sig-
nificant benefit of combining the GPR signal data of a fixed
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Figure 7. MCMC solutions using scenarios 1 (a1–a5), 3 (b1–b5), and 4 (c1–c5) for calibrating the hydrogeophysical model. The histograms
are built from the posterior distributions. The estimated mean values are represented as a dashed black line and compared to the exact target
value (solid red line). The displayed parameter intervals correspond to the prior upper and lower limits of Table 1.

Figure 8. MCMC solutions using TWTf, TWT50, and TWT120 signals for the calibration of the hydrogeophysical model. The diagonal plots
represent the inferred posterior parameter distributions, showing the estimated mean value (dashed black line) and the target value (solid red
line). The off-diagonal represents the pairwise correlations between parameters.
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Figure 9. MCMC solutions considering a water table at 50 cm, 1 m, and 2 m depth (from top to bottom) for calibrating the hydrogeophysical
model. The histograms are built from the posterior distributions. The estimated mean values are represented as a dashed black line and
compared with the exact target value (solid red line). The displayed parameter intervals are equal from each parameter (each column).

Table 4. Hydraulic parameters for three types of sand. X∗ shows
the target values while the estimation results are represented below
for each sand (estimated mean values in bold, size of the posterior
CIs between parentheses, and ratio of prior to posterior intervals in
italics).

Ks (cm s−1) θs (–) θr (–) α (1 cm−1) n (–)

Coarse sand

X∗ 0.6 0.38 0.15 0.145 2.0
0.578 0.379 0.161 0.21 1.947

(0.109) (0.013) (0.081) (0.194) (1.205)
9 12 2.5 1.5 7

Medium sand

X∗ 0.08 0.40 0.07 0.145 2.68
0.08 0.399 0.069 0.147 2.59

(0.003) (0.003) (0.02) (0.027) (0.426)
47 53 10 10 20

Fine sand

X∗ 0.005 0.43 0.036 0.016 2.5
0.005 0.43 0.049 0.016 2.511
(0.0) (0.002) (0.05) (0.001) (0.465)
300 80 4 279.5 18.5

reflector, preferably located sufficiently deep in the soil, with
the TWT signal of the moving infiltration wetting front. This
combination leads to good reliability of almost all soil pa-
rameters with very narrow posterior intervals in comparison
with the prior ones. In particular, the van Genuchten param-

eter n is relatively well identified for investigated sandy soil
where n < 3.5.

5 Conclusions

The aim of the present study was to optimize a cheap method
used at the field scale to characterize the hydraulic parame-
ters of a porous medium. To this end, we investigated a par-
ticular protocol: time-lapse GPR monitoring of artificial in-
filtration experiments. Water infiltration into an initially un-
saturated sandy soil was simulated using a one-dimensional
hydrogeophysical model. GPR time signals were analyzed
from the reflection of the electromagnetic wave on the mov-
ing wetting front and on two fixed reflectors located at differ-
ent depths. GSA, based on PCE decomposition, was used to
assess the effect of the unsaturated soil parameters (saturated
hydraulic conductivity, saturated and residual water contents,
and Mualem–van Genuchten shape parameters α and n) on
the different TWT signals. Statistical calibration of the unsat-
urated soil parameters was performed with the MCMC sam-
pler using corrupted synthetic observations to evaluate the
reliability of the soil parameters from the TWT signals.

The results of GSA showed that the TWTf signal of the
wetting front is different from that of the two fixed reflec-
tors which had similar behavior. For the fixed reflectors, the
magnitude of the variance (and therefore the sensitivity of
the soil parameters) is more pronounced for deeper reflec-
tors. The TWTf signal is highly sensitive to Ks and α and
moderately sensitive to θs. A low sensitivity was observed
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for θr, whereas the parameter n was insensitive. The TWT120
signal of the fixed reflector located at 120 cm depth is highly
sensitive toKs, θs, and α, and moderately sensitive to θr. The
van Genuchten parameter n has a high sensitivity for n < 3.5
and a poor sensitivity for n≥ 3.5. The GSA study shows that
the monitoring of the infiltration using both the TWT from
the infiltration front and (at least) a fixed reflector has a sig-
nificant sensitivity for a wide range of soil types.

The reliability of the unsaturated soil parameters was as-
sessed for five different scenarios of TWT measurement sets.
When only data of the TWTf signal were used as condition-
ing information for the model calibration, all estimated pa-
rameter values were very close to the reference values. How-
ever, analyzing the associated uncertainties showed that only
Ks, θs, and n were correctly identified (with narrow posterior
intervals). Further, using only data of the TWT50 or TWT120
signals for the calibration enabled also good identification
of Ks and θs with a significant decrease in their intervals of
variation. The best results, in terms of parameter reliability,
were obtained with the combination of TWTf with at least
one fixed reflector. In this case, the four parameters Ks, θs,
θr, and α were very well identified with very narrow poste-
rior intervals. The van Genuchten parameter n was estimated
with a low uncertainty but its estimation degraded in the low
sensitivity region n≥ 3.5. We note that the deeper reflectors
provide more information as the inversion of the signal fur-
nishes parameters with lower uncertainty. Then using two or
three reflectors in addition to the wetting front signal does not
consequently reduce the uncertainty of the parameters. The
procedure was applied for three types of soil ranging from
coarse to fine sand and the results of MCMC simulations
show its efficiency. The best estimate was obtained for the
finest material. In field conditions, one could expect a higher
clay content, which would decrease the electrical resistivity
and then would attenuate the GPR signal, limiting the pene-
tration depth of the radar wave. Our numerical study shows
that using a thicker water level in the infiltration ring to apply
a greater pressure head could speed up the protocol without
having any impact on the MCMC results. Furthermore it ap-
pears that a deeper water table makes the calibration protocol
more efficient and accurate. A limitation is observed for very
shallow water tables (e.g., 50 cm) where the van Genuchten
parameters α and n could not be estimated because the va-
dose zone is already almost saturated.

The results of this study highlight the significant benefit
of combining TWT signals of fixed and moving (infiltration
wetting front) reflectors for very good identification of all the
unsaturated soil parameters. It also points out the role of GSA
in assessing the influence of the parameters on the output
signals and the necessity of performing statistical calibration
to assess the reliability of model parameters by evaluating
not only estimated parameter values but also their associated
uncertainties.
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