Articles | Volume 27, issue 15
https://doi.org/10.5194/hess-27-2883-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2883-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Isotope-derived young water fractions in streamflow across the tropical Andes mountains and Amazon floodplain
Department of Earth Sciences, University of Southern California, Los
Angeles, California 90089, USA
now at: Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
Daxs Herson Coayla Rimachi
Escuela profesional de Ingenieria Forestal y Medio Ambiente, Universidad Nacional San Antonio Abad del Cusco (UNSAAC), Cusco, Peru
Escuela de posgrado de Ingenieria Ambiental, Universidad Científica del Sur, Lima, Peru
Adan Julian Ccahuana Quispe
Facultad de Ciencias Biologicas Universidad Nacional San Antonio Abad del Cusco (UNSAAC), Cusco, Peru
Abra Atwood
Department of Earth Sciences, University of Southern California, Los
Angeles, California 90089, USA
A. Joshua West
Department of Earth Sciences, University of Southern California, Los
Angeles, California 90089, USA
Related authors
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Maxwell P. Dahlquist and A. Joshua West
Earth Surf. Dynam., 10, 705–722, https://doi.org/10.5194/esurf-10-705-2022, https://doi.org/10.5194/esurf-10-705-2022, 2022
Short summary
Short summary
Himalayan rivers are full of giant boulders that rarely move except during glacial lake outburst floods (GLOFs), which therefore must be important drivers of erosion in the Himalayas. GLOFs are rare, so little is known about their long-term erosional impact. We found that rivers in Nepal have channel geometry that, compared with markers of upstream glaciation, confirm GLOFs as a major control on erosion. This previously unrecognized control should be accounted for in landscape evolution studies.
Madison M. Douglas, Gen K. Li, Woodward W. Fischer, Joel C. Rowland, Preston C. Kemeny, A. Joshua West, Jon Schwenk, Anastasia P. Piliouras, Austin J. Chadwick, and Michael P. Lamb
Earth Surf. Dynam., 10, 421–435, https://doi.org/10.5194/esurf-10-421-2022, https://doi.org/10.5194/esurf-10-421-2022, 2022
Short summary
Short summary
Arctic rivers erode into permafrost and mobilize organic carbon, which can react to form greenhouse gasses or be re-buried in floodplain deposits. We collected samples on a permafrost floodplain in Alaska to determine if more carbon is eroded or deposited by river meandering. The floodplain contained a mixture of young carbon fixed by the biosphere and old, re-deposited carbon. Thus, sediment storage may allow Arctic river floodplains to retain aged organic carbon even when permafrost thaws.
Florian Hofmann, Emily H. G. Cooperdock, A. Joshua West, Dominic Hildebrandt, Kathrin Strößner, and Kenneth A. Farley
Geochronology, 3, 395–414, https://doi.org/10.5194/gchron-3-395-2021, https://doi.org/10.5194/gchron-3-395-2021, 2021
Short summary
Short summary
We use microCT scanning to improve the quality of 3He exposure ages measured in detrital magnetite. We show that the presence of inclusions can significantly increase the measured amount of 3He and thereby the exposure age. By prescreening magnetite with microCT and analyzing only inclusion-free grains, this problem can be avoided. We also calibrate the cosmogenic 3He production rate in magnetite relative to 10Be in quartz, which can be used for similar studies in the future.
Cited articles
Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., and Goldsmith, G. R.: Seasonal origins of soil water used by trees, Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, 2019.
Ameli, A. A., Beven, K., Erlandsson, M., Creed, I. F., McDonnell, J. J., and
Bishop, K.: Primary weathering rates, water transit times, and
concentration-discharge relations: A theoretical analysis for the critical
zone: Weathering Rate, Permeability, Stream C-Q, Water Resour. Res., 53,
942–960, https://doi.org/10.1002/2016WR019448, 2017.
Asano, Y. and Uchida, T.: Flow path depth is the main controller of mean
base flow transit times in a mountainous catchment: Flow Path Depth Controls
Transit Times, Water Resour. Res., 48, W03512, https://doi.org/10.1029/2011WR010906,
2012.
Asner, G. P., Martin, R. E., Anderson, C. B., Kryston, K., Vaughn, N.,
Knapp, D. E., Bentley, L. P., Shenkin, A., Salinas, N., Sinca, F.,
Tupayachi, R., Quispe Huaypar, K., Montoya Pillco, M., Ccori Álvarez, F.
D., Díaz, S., Enquist, B. J., and Malhi, Y.: Scale dependence of canopy
trait distributions along a tropical forest elevation gradient, New Phytol.,
214, 973–988, https://doi.org/10.1111/nph.14068, 2017.
Atwood, A. and West, A. J.: Evaluation of high-resolution DEMs from
satellite imagery for geomorphic applications: A case study using the SETSM
algorithm, Earth Surf. Proc. Land., 47, 706–722,
https://doi.org/10.1002/esp.5263, 2022.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature,
438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Barros, A. P. and Lettenmaier, D. P.: Dynamic modeling of orographically
induced precipitation, Rev. Geophys., 32, 265,
https://doi.org/10.1029/94RG00625, 1994.
Benettin, P., Rodriguez, N. B., Sprenger, M., Kim, M., Klaus, J., Harman, C. J., van der Velde, Y., Hrachowitz, M., Botter, G., McGuire, K. J., Kirchner, J. W., Rinaldo, A., and McDonnell, J. J.: Transit Time Estimation in Catchments: Recent Developments and Future Directions, Water Resour. Res., 58, https://doi.org/10.1029/2022WR033096, 2022.
Berner, R. A.: Rate control of mineral dissolution under Earth surface
conditions, Am. J. Sci., 278, 1235–1252,
https://doi.org/10.2475/ajs.278.9.1235, 1978.
Bookhagen, B. and Burbank, D. W.: Topography, relief, and TRMM-derived
rainfall variations along the Himalaya, Geophys. Res. Lett., 33, L08405,
https://doi.org/10.1029/2006GL026037, 2006.
Burt, E. I., Bill, M., Conrad, M. E., Quispe, A. J. C., Christensen, J. N.,
Hilton, R. G., Dellinger, M., and West, A. J.: Conservative transport of
dissolved sulfate across the Rio Madre de Dios floodplain in Peru, Geology, 49, 1064–1068, https://doi.org/10.1130/G48997.1, 2021.
Burt, E., Rimachi, D. H. C., Quispe, A. J. C., and West, A. J.: Oxygen and
hydrogen isotopes in streams and precipitation and young water fractions
across the Andes mountains and Amazon floodplain, HydroShare, https://doi.org/10.4211/hs.c01ef51ca2b3495785d0f24c62142e23, 2023.
Clark, K. E., Torres, M. A., West, A. J., Hilton, R. G., New, M., Horwath, A. B., Fisher, J. B., Rapp, J. M., Robles Caceres, A., and Malhi, Y.: The hydrological regime of a forested tropical Andean catchment, Hydrol. Earth Syst. Sci., 18, 5377–5397, https://doi.org/10.5194/hess-18-5377-2014, 2014.
Clark, K. E., West, A. J., Hilton, R. G., Asner, G. P., Quesada, C. A., Silman, M. R., Saatchi, S. S., Farfan-Rios, W., Martin, R. E., Horwath, A. B., Halladay, K., New, M., and Malhi, Y.: Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity, Earth Surf. Dynam., 4, 47–70, https://doi.org/10.5194/esurf-4-47-2016, 2016.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution
fields of global runoff combining observed river discharge and simulated
water balances: High-resolution composite runoff fields, Global Biogeochem.
Cy., 16, 15-1–15-10, https://doi.org/10.1029/1999GB001254, 2002.
Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J.: Global
silicate weathering and CO2 consumption rates deduced from the chemistry of
large rivers, Chem. Geol., 159, 3–30,
https://doi.org/10.1016/S0009-2541(99)00031-5, 1999.
Gallart, F., Valiente, M., Llorens, P., Cayuela, C., Sprenger, M., and
Latron, J.: Investigating young water fractions in a small Mediterranean
mountain catchment: Both precipitation forcing and sampling frequency
matter, Hydrol. Process., 34, 3618–3634, https://doi.org/10.1002/hyp.13806,
2020a.
Gallart, F., von Freyberg, J., Valiente, M., Kirchner, J. W., Llorens, P., and Latron, J.: Technical note: An improved discharge sensitivity metric for young water fractions, Hydrol. Earth Syst. Sci., 24, 1101–1107, https://doi.org/10.5194/hess-24-1101-2020, 2020b.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS) Software, Version 8.2. Open Source Geospatial Foundation, Electronic document, https://grass.osgeo.org (last access: 1 April 2023), 2022.
Gu, X., Rempe, D. M., Dietrich, W. E., West, A. J., Lin, T.-C., Jin, L., and
Brantley, S. L.: Chemical reactions, porosity, and microfracturing in shale
during weathering: The effect of erosion rate, Geochim. Cosmochim. Acta,
269, 63–100, https://doi.org/10.1016/j.gca.2019.09.044, 2020.
Hale, V. C. and McDonnell, J. J.: Effect of bedrock permeability on stream
base flow mean transit time scaling relations: 1. A multiscale catchment
intercomparison: bedrock permeability and mtt scaling relationships: part 1,
Water Resour. Res., 52, 1358–1374, https://doi.org/10.1002/2014WR016124,
2016.
Hale, V. C., McDonnell, J. J., Stewart, M. K., Solomon, D. K., Doolitte, J.,
Ice, G. G., and Pack, R. T.: Effect of bedrock permeability on stream base
flow mean transit time scaling relationships: 2. Process study of storage
and release: bedrock permeability and mtt scaling relationships: part 2,
Water Resour. Res., 52, 1375–1397, https://doi.org/10.1002/2015WR017660,
2016.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch,
T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink,
P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter,
T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.
B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world's water towers, Nature, 577,
364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
Jasechko, S.: Partitioning young and old groundwater with geochemical
tracers, Chem. Geol., 427, 35–42,
https://doi.org/10.1016/j.chemgeo.2016.02.012, 2016.
Jasechko, S., Kirchner, J. W., Welker, J. M., and McDonnell, J. J.:
Substantial proportion of global streamflow less than three months old, Nat.
Geosci., 9, 126–129, https://doi.org/10.1038/ngeo2636, 2016.
Jasiewicz, J. and Metz, M.: A new GRASS GIS toolkit for Hortonian analysis
of drainage networks, Comput. Geosci., 37, 1162–1173,
https://doi.org/10.1016/j.cageo.2011.03.003, 2011.
Kirchner, J. W.: Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrol. Earth Syst. Sci., 20, 279–297, https://doi.org/10.5194/hess-20-279-2016, 2016a.
Kirchner, J. W.: Aggregation in environmental systems – Part 2: Catchment mean transit times and young water fractions under hydrologic nonstationarity, Hydrol. Earth Syst. Sci., 20, 299–328, https://doi.org/10.5194/hess-20-299-2016, 2016b.
Kirchner, J. W. and Allen, S. T.: Seasonal partitioning of precipitation between streamflow and evapotranspiration, inferred from end-member splitting analysis, Hydrol. Earth Syst. Sci., 24, 17–39, https://doi.org/10.5194/hess-24-17-2020, 2020.
Lutz, S. R., Krieg, R., Müller, C., Zink, M., Knöller, K.,
Samaniego, L., and Merz, R.: Spatial Patterns of Water Age: Using Young
Water Fractions to Improve the Characterization of Transit Times in
Contrasting Catchments, Water Resour. Res., 54, 4767–4784,
https://doi.org/10.1029/2017WR022216, 2018.
Maher, K.: The dependence of chemical weathering rates on fluid residence
time, Earth Planet. Sci. Lett., 294, 101–110,
https://doi.org/10.1016/j.epsl.2010.03.010, 2010.
Maher, K.: The role of fluid residence time and topographic scales in
determining chemical fluxes from landscapes, Earth Planet. Sci. Lett., 312,
48–58, https://doi.org/10.1016/j.epsl.2011.09.040, 2011.
Maher, K. and Chamberlain, C. P.: Hydrologic Regulation of Chemical
Weathering and the Geologic Carbon Cycle, Science, 343, 1502–1504,
https://doi.org/10.1126/science.1250770, 2014.
Małoszewski, P. and Zuber, A.: Determining the turnover time of
groundwater systems with the aid of environmental tracers, J. Hydrol., 57,
207–231, https://doi.org/10.1016/0022-1694(82)90147-0, 1982.
McGlynn, B., McDonnell, J., Stewart, M., and Seibert, J.: On the
relationships between catchment scale and streamwater mean residence time,
Hydrol. Process., 17, 175–181, https://doi.org/10.1002/hyp.5085, 2003.
McGuire, K. J. and McDonnell, J. J.: A review and evaluation of catchment
transit time modeling, J. Hydrol., 330, 543–563,
https://doi.org/10.1016/j.jhydrol.2006.04.020, 2006.
McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L.,
Welker, J. M., and Seibert, J.: The role of topography on catchment-scale
water residence time: catchment-scale water residence time, Water Resour.
Res., 41, W05002, https://doi.org/10.1029/2004WR003657, 2005.
Meybeck, M.: Global chemical weathering of surficial rocks estimated from
river dissolved loads, Am. J. Sci., 287, 401,
https://doi.org/10.2475/ajs.287.5.401, 1987.
Moon, S., Perron, J. T., Martel, S. J., Holbrook, W. S., and St. Clair, J.:
A model of three-dimensional topographic stresses with implications for
bedrock fractures, surface processes, and landscape evolution:
Three-Dimensional Topographic Stress, J. Geophys. Res.-Earth, 122,
823–846, https://doi.org/10.1002/2016JF004155, 2017.
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021.
Muñoz-Villers, L. E., Geissert, D. R., Holwerda, F., and McDonnell, J. J.: Factors influencing stream baseflow transit times in tropical montane watersheds, Hydrol. Earth Syst. Sci., 20, 1621–1635, https://doi.org/10.5194/hess-20-1621-2016, 2016a.
Muñoz-Villers, L. E., Geissert, D. R., Holwerda, F., and McDonnell, J. J.: Factors influencing stream baseflow transit times in tropical montane watersheds, Hydrol. Earth Syst. Sci., 20, 1621–1635, https://doi.org/10.5194/hess-20-1621-2016, 2016b.
Napoli, A., Crespi, A., Ragone, F., Maugeri, M., and Pasquero, C.:
Variability of orographic enhancement of precipitation in the Alpine region,
Sci. Rep., 9, 13352, https://doi.org/10.1038/s41598-019-49974-5, 2019.
Noh, M.-J. and Howat, I. M.: Automated stereo-photogrammetric DEM generation
at high latitudes: Surface Extraction with TIN-based Search-space
Minimization (SETSM) validation and demonstration over glaciated regions,
GIScience Remote Sens., 52, 198–217,
https://doi.org/10.1080/15481603.2015.1008621, 2015.
Pitman, N. C. A., Terborgh, J. W., Silman, M. R., Núñez V, P.,
Neill, D. A., Cerón, C. E., Palacios, W. A., and Aulestia, M.: dominance
and distribution of tree species in upper amazonian terra firme forests,
Ecology, 82, 2101–2117,
https://doi.org/10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2, 2001.
Ponton, C., West, A. J., Feakins, S. J., and Galy, V.: Leaf wax biomarkers
in transit record river catchment composition, Geophys. Res. Lett., 41,
6420–6427, https://doi.org/10.1002/2014GL061328, 2014.
Rapp, J. and Silman, M.: Diurnal, seasonal, and altitudinal trends in
microclimate across a tropical montane cloud forest, Clim. Res., 55, 17–32,
https://doi.org/10.3354/cr01127, 2012.
Rempe, D. M. and Dietrich, W. E.: Direct observations of rock moisture, a
hidden component of the hydrologic cycle, P. Natl. Acad. Sci. USA, 115,
2664–2669, https://doi.org/10.1073/pnas.1800141115, 2018.
Roe, G. H. and Baker, M. B.: Microphysical and Geometrical Controls on the
Pattern of Orographic Precipitation, J. Atmos. Sci., 63, 861–880,
https://doi.org/10.1175/JAS3619.1, 2006.
Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrüger, B.,
Cornelissen, T., and Vereecken, H.: Tracer sampling frequency influences
estimates of young water fraction and streamwater transit time distribution,
J. Hydrol., 541, 952–964, https://doi.org/10.1016/j.jhydrol.2016.08.007,
2016.
Stockinger, M. P., Bogena, H. R., Lücke, A., Stumpp, C., and Vereecken, H.: Time variability and uncertainty in the fraction of young water in a small headwater catchment, Hydrol. Earth Syst. Sci., 23, 4333–4347, https://doi.org/10.5194/hess-23-4333-2019, 2019.
Tang, W. and Carey, S. K.: HydRun: A MATLAB toolbox for rainfall-runoff
analysis, Hydrol. Process., 31, 2670–2682,
https://doi.org/10.1002/hyp.11185, 2017.
Tetzlaff, D., Seibert, J., McGuire, K. J., Laudon, H., Burns, D. A., Dunn,
S. M., and Soulsby, C.: How does landscape structure influence catchment
transit time across different geomorphic provinces?, Hydrol. Process., 23,
945–953, https://doi.org/10.1002/hyp.7240, 2009.
Torres, M. A., West, A. J., Clark, K. E., Paris, G., Bouchez, J., Ponton,
C., Feakins, S. J., Galy, V., and Adkins, J. F.: The acid and alkalinity
budgets of weathering in the Andes–Amazon system: Insights into the
erosional control of global biogeochemical cycles, Earth Planet. Sci. Lett.,
450, 381–391, https://doi.org/10.1016/j.epsl.2016.06.012, 2016.
Tucker, G. E. and Bras, R. L.: A stochastic approach to modeling the role of
rainfall variability in drainage basin evolution, Water Resour. Res., 36,
1953–1964, https://doi.org/10.1029/2000WR900065, 2000.
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner,
R.: Mountains of the world, water towers for humanity: Typology, mapping,
and global significance: mountains as water towers for humanity, Water
Resour. Res., 43, W07447, https://doi.org/10.1029/2006WR005653, 2007.
von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments, Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, 2018a.
von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments, Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, 2018b.
West, A., Galy, A., and Bickle, M.: Tectonic and climatic controls on
silicate weathering, Earth Planet. Sci. Lett., 235, 211–228,
https://doi.org/10.1016/j.epsl.2005.03.020, 2005.
Wilusz, D. C., Harman, C. J., and Ball, W. P.: Sensitivity of Catchment
Transit Times to Rainfall Variability Under Present and Future Climates,
Water Resour. Res., 53, 10231–10256, https://doi.org/10.1002/2017WR020894,
2017.
Wu, M. S., West, A. J., and Feakins, S. J.: Tropical soil profiles reveal
the fate of plant wax biomarkers during soil storage, Org. Geochem., 128,
1–15, https://doi.org/10.1016/j.orggeochem.2018.12.011, 2019.
Xiao, D., Brantley, S. L., and Li, L.: Vertical Connectivity Regulates Water
Transit Time and Chemical Weathering at the Hillslope Scale, Water Resour.
Res., 57, e2020WR029207, https://doi.org/10.1029/2020WR029207, 2021.
Short summary
Mountains store and release water, serving as water towers for downstream regions and affecting global sediment and carbon fluxes. We use stream and rain chemistry to calculate how much streamflow comes from recent rainfall across seven sites in the Andes mountains and the nearby Amazon lowlands. We find that the type of rock and the intensity of rainfall control water retention and release, challenging assumptions that mountain topography exerts the primary effect on watershed hydrology.
Mountains store and release water, serving as water towers for downstream regions and affecting...