Articles | Volume 27, issue 12
https://doi.org/10.5194/hess-27-2301-2023
https://doi.org/10.5194/hess-27-2301-2023
Research article
 | 
22 Jun 2023
Research article |  | 22 Jun 2023

Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments

Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris

Related authors

Assessing the seasonal compartmentalization of water fluxes in the soil-plant-atmosphere continuum of a high-elevation mountain grassland
Alessio Gentile, Davide Gisolo, Stefano Brighenti, Giulia Zuecco, Chiara Marchina, Davide Canone, Tanzeel Hamza, Stefano Ferrari, Stefano Bechis, and Stefano Ferraris
EGUsphere, https://doi.org/10.5194/egusphere-2025-6329,https://doi.org/10.5194/egusphere-2025-6329, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Brief communication: Network-wide parameterisation for estimating snow water equivalent through cosmic ray neutron sensors in the Italian Alps
Mario Gallarate, Nicola Colombo, Enrico Gazzola, Mauro Valt, Christian Ronchi, Luca Lanteri, Roberto Dinale, Rudi Nadalet, Stefano Ferraris, Alessio Gentile, Davide Gisolo, Michele Freppaz, and Fiorella Acquaotta
EGUsphere, https://doi.org/10.5194/egusphere-2025-6148,https://doi.org/10.5194/egusphere-2025-6148, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Technical note: Two-component electrical-conductivity-based hydrograph separation employing an exponential mixing model (EXPECT) provides reliable high-temporal-resolution young water fraction estimates in three small Swiss catchments
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024,https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary

Cited articles

Aalstad, K., Westermann, S., and Bertino, L.: Evaluating satellite retrieved fractional snow-covered area at a high-Arctic site using terrestrial photography, Remote Sens. Environ., 239, 111618, https://doi.org/10.1016/j.rse.2019.111618, 2020. 
Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P., and Gloaguen, R.: Impact of transient groundwater storage on the discharge of Himalayan rivers, Nat. Geosci., 5, 127–132, https://doi.org/10.1038/ngeo1356, 2012. 
Arnoux, M., Brunner, P., Schaefli, B., Mott, R., Cochand, F., and Hunkeler, D.: Low-flow behavior of alpine catchments with varying quaternary cover under current and future climatic conditions, J. Hydrol., 592, 125591, https://doi.org/10.1016/j.jhydrol.2020.125591, 2021. 
Baraer, M., McKenzie, J. M., Mark, B. G., Bury, J., and Knox, S.: Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the Cordillera Blanca (Peru), in: Advances in Geosciences, 4th EGU Alexander von Humboldt Conference “The Andes: Challenge for Geosciences” – 4th Alexander von Humboldt International Conference on The Andes: Challenge for Geosciences, 28 November 2008, Santiago de Chile, Chile, 41–49, https://doi.org/10.5194/adgeo-22-41-2009, 2009. 
Baraer, M., McKenzie, J., Mark, B. G., Gordon, R., Bury, J., Condom, T., Gomez, J., Knox, S., and Fortner, S. K.: Contribution of groundwater to the outflow from ungauged glacierized catchments: a multi-site study in the tropical Cordillera Blanca, Peru, Hydrol. Process., 29, 2561–2581, https://doi.org/10.1002/hyp.10386, 2015. 
Download
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
Share