Articles | Volume 27, issue 12
https://doi.org/10.5194/hess-27-2301-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2301-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments
Alessio Gentile
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico and Università degli Studi di Torino, Torino, Italy
Davide Canone
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico and Università degli Studi di Torino, Torino, Italy
Natalie Ceperley
Institute of Earth Surface Dynamic (IDYST), Faculty of Geosciences and Environment (FGSE), University of Lausanne, Lausanne, Switzerland
Institute of Geography (GIUB) and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
Davide Gisolo
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico and Università degli Studi di Torino, Torino, Italy
Maurizio Previati
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico and Università degli Studi di Torino, Torino, Italy
Giulia Zuecco
Department of Land, Environment, Agriculture and Forestry (TESAF),
University of Padova, Legnaro, Italy
Department of Chemical Sciences (DiSC), University of Padova, Padua, Italy
Bettina Schaefli
CORRESPONDING AUTHOR
Institute of Earth Surface Dynamic (IDYST), Faculty of Geosciences and Environment (FGSE), University of Lausanne, Lausanne, Switzerland
Institute of Geography (GIUB) and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
Stefano Ferraris
Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico and Università degli Studi di Torino, Torino, Italy
Related authors
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024, https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Short summary
Can we leverage high-resolution and low-cost EC measurements and biweekly δ18O data to estimate the young water fraction at higher temporal resolution? Here, we present the EXPECT method that combines two widespread techniques: EC-based hydrograph separation and sine-wave models of the seasonal isotope cycles. The method is not without its limitations, but its application in three small Swiss catchments is promising for future applications in catchments with different characteristics.
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
The Cryosphere, 18, 5713–5733, https://doi.org/10.5194/tc-18-5713-2024, https://doi.org/10.5194/tc-18-5713-2024, 2024
Short summary
Short summary
Pseudo-relict rock glaciers look relict but contain patches of permafrost. They are poorly known in terms of permafrost content, spatial distribution and frequency. Here we use spring-water temperature for a preliminary estimate of the permafrost presence in rock glaciers of a 795 km2 catchment in the Italian Alps. The results show that ~50 % of rock glaciers classified as relict might be pseudo-relict and might contain ~20 % of the ice stored in the rock glaciers in the study area.
Chalachew Muluken Liyew, Elvira Di Nardo, Rosa Meo, and Stefano Ferraris
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 173–194, https://doi.org/10.5194/ascmo-10-173-2024, https://doi.org/10.5194/ascmo-10-173-2024, 2024
Short summary
Short summary
Global warming is a big issue: it is necessary to know more details to make a forecast model and plan adaptation measures. Warming varies in space and time and models often average it over large areas. However, it shows great variations between months of the year. It also varies between regions of the world and between lowland and highland regions. This paper uses statistical and machine learning techniques to quantify such differences between Italy and the UK at different altitudes.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart Lane, and Francesco Comiti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1687, https://doi.org/10.5194/egusphere-2024-1687, 2024
Short summary
Short summary
In this article, we show that by taking the optimal parameters calibrated with a semi-lumped model for the discharge at a catchment's outlet, we can accurately simulate runoff at various points within the study area, including three nested and three neighboring catchments. In addition, we demonstrate that employing more intricate melt models, which better represent physical processes, enhances the transfer of parameters in the simulation, until an overparametrization limit is reached.
Malve Heinz, Maria Eliza Turek, Bettina Schaefli, Andreas Keiser, and Annelie Holzkämper
EGUsphere, https://doi.org/10.5194/egusphere-2024-1201, https://doi.org/10.5194/egusphere-2024-1201, 2024
Short summary
Short summary
Potato farmers in Switzerland are facing drier conditions and water restrictions. We explored how improving soil health and planting early maturing potato varieties might help to adapt. Using a computer model, we simulated potato yields and irrigation water needs under water scarcity. Our results show that earlier maturing potato varieties reduce the reliance on irrigation but result in lower yields. However, improving soil health can significantly reduce yield losses.
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024, https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Short summary
Can we leverage high-resolution and low-cost EC measurements and biweekly δ18O data to estimate the young water fraction at higher temporal resolution? Here, we present the EXPECT method that combines two widespread techniques: EC-based hydrograph separation and sine-wave models of the seasonal isotope cycles. The method is not without its limitations, but its application in three small Swiss catchments is promising for future applications in catchments with different characteristics.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024, https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
Short summary
This study assesses the impact of climate change on the timing, seasonality and magnitude of mean annual minimum (MAM) flows and annual maximum flows (AMF) in the Volta River basin (VRB). Several climate change projection data are use to simulate river flow under multiple greenhouse gas emission scenarios. Future projections show that AMF could increase with various magnitude but negligible shift in time across the VRB, while MAM could decrease with up to 14 days of delay in occurrence.
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024, https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Short summary
In hydrology, the probability distributions are used to determine the probability of occurrence of rainfall events. In this study, two different methods for modeling rainfall time characteristics have been applied: a direct method and an indirect method that make it possible to relax the assumptions of the renewal process. The analysis was extended to two additional time variables that may be of great interest for practical hydrological applications: wet chains and dry chains.
Tom Müller, Mauro Fischer, Stuart N. Lane, and Bettina Schaefli
EGUsphere, https://doi.org/10.5194/egusphere-2024-631, https://doi.org/10.5194/egusphere-2024-631, 2024
Short summary
Short summary
Based on extensive field observations in a highly glacierized catchment in the Swiss Alps, we develop a combined isotopic and glacio-hydrological model. We show that water stable isotopes may help to better constrain model parameters, especially those linked to water transfer. However, we highlight that separating snow and ice melt for temperate glaciers based on isotope mixing models alone is not advised and should only be considered if their isotopic signatures have clearly different values.
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024, https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
Short summary
We investigate the role of a newly formed floodplain in an alpine glaciated catchment to store and release water. Based on field measurements, we built a numerical model to simulate the water fluxes and show that recharge occurs mainly due to the ice-melt-fed river. We identify three future floodplains, which could emerge from glacier retreat, and show that their combined storage leads to some additional groundwater storage but contributes little additional baseflow for the downstream river.
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, Adriaan J. Teuling, and Joshua R. Larsen
Earth Syst. Sci. Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-2023, https://doi.org/10.5194/essd-15-2577-2023, 2023
Short summary
Short summary
We provide a dataset of snow water equivalent, the depth of liquid water that results from melting a given depth of snow. The dataset contains 11 071 sites over the Northern Hemisphere, spans the period 1950–2022, and is based on daily observations of snow depth on the ground and a model. The dataset fills a lack of accessible historical ground snow data, and it can be used for a variety of applications such as the impact of climate change on global and regional snow and water resources.
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023, https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
Short summary
In the last decades, geochemical investigations at the springs of rock glaciers have been used to estimate their drainage processes, and the frozen layer is typically considered to act as an aquiclude or aquitard. In this work, we evaluated the hydraulic behavior of a mountain permafrost site by executing a geophysical monitoring experiment. Several hundred liters of salt water have been injected into the subsurface, and geoelectrical measurements have been performed to define the water flow.
Anthony Michelon, Natalie Ceperley, Harsh Beria, Joshua Larsen, Torsten Vennemann, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 27, 1403–1430, https://doi.org/10.5194/hess-27-1403-2023, https://doi.org/10.5194/hess-27-1403-2023, 2023
Short summary
Short summary
Streamflow generation processes in high-elevation catchments are largely influenced by snow accumulation and melt. For this work, we collected and analyzed more than 2800 water samples (temperature, electric conductivity, and stable isotopes of water) to characterize the hydrological processes in such a high Alpine environment. Our results underline the critical role of subsurface flow during all melt periods and the presence of snowmelt even during the winter periods.
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022, https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary
Short summary
Shallow landslides pose a risk to people, property and infrastructure. Assessment of this hazard and the impact of protective measures can reduce losses. We developed a model (SlideforMAP) that can assess the shallow-landslide risk on a regional scale for specific rainfall events. Trees are an effective and cheap protective measure on a regional scale. Our model can assess their hazard reduction down to the individual tree level.
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022, https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Short summary
We analyzed the variability in the isotopic composition of plant water extracted by two different methods, i.e., cryogenic vacuum distillation (CVD) and Scholander-type pressure chamber (SPC). Our results indicated that the isotopic composition of plant water extracted by CVD and SPC was significantly different. We concluded that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water whereas CVD retrieves all water stored in the sampled tissue.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Stefan Brönnimann, Peter Stucki, Jörg Franke, Veronika Valler, Yuri Brugnara, Ralf Hand, Laura C. Slivinski, Gilbert P. Compo, Prashant D. Sardeshmukh, Michel Lang, and Bettina Schaefli
Clim. Past, 18, 919–933, https://doi.org/10.5194/cp-18-919-2022, https://doi.org/10.5194/cp-18-919-2022, 2022
Short summary
Short summary
Floods in Europe vary on time scales of several decades. Flood-rich and flood-poor periods alternate. Recently floods have again become more frequent. Long time series of peak stream flow, precipitation, and atmospheric variables reveal that until around 1980, these changes were mostly due to changes in atmospheric circulation. However, in recent decades the role of increasing atmospheric moisture due to climate warming has become more important and is now the main driver of flood changes.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Adrien Michel, Bettina Schaefli, Nander Wever, Harry Zekollari, Michael Lehning, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 26, 1063–1087, https://doi.org/10.5194/hess-26-1063-2022, https://doi.org/10.5194/hess-26-1063-2022, 2022
Short summary
Short summary
This study presents an extensive study of climate change impacts on river temperature in Switzerland. Results show that, even for low-emission scenarios, water temperature increase will lead to adverse effects for both ecosystems and socio-economic sectors throughout the 21st century. For high-emission scenarios, the effect will worsen. This study also shows that water seasonal warming will be different between the Alpine regions and the lowlands. Finally, efficiency of models is assessed.
Elisa Brussolo, Elisa Palazzi, Jost von Hardenberg, Giulio Masetti, Gianna Vivaldo, Maurizio Previati, Davide Canone, Davide Gisolo, Ivan Bevilacqua, Antonello Provenzale, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 26, 407–427, https://doi.org/10.5194/hess-26-407-2022, https://doi.org/10.5194/hess-26-407-2022, 2022
Short summary
Short summary
In this study, we evaluate the past, present and future quantity of groundwater potentially available for drinking purposes in the metropolitan area of Turin, north-western Italy. In order to effectively manage water resources, a knowledge of the water cycle components is necessary, including precipitation, evapotranspiration and subsurface reservoirs. All these components have been carefully evaluated in this paper, using observational datasets and modelling approaches.
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 25, 2301–2325, https://doi.org/10.5194/hess-25-2301-2021, https://doi.org/10.5194/hess-25-2301-2021, 2021
Short summary
Short summary
Rainfall observation remains a challenge, particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall–runoff response of a 13.4 km2 alpine catchment is purely data based and relies on measurements from a network of 12 low-cost rain gauges over 3 months. It assesses the importance of high-density rainfall observations in informing hydrological processes and helps in designing a permanent rain gauge network.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci., 25, 735–753, https://doi.org/10.5194/hess-25-735-2021, https://doi.org/10.5194/hess-25-735-2021, 2021
Short summary
Short summary
In this study, we collected water from an Alpine catchment in Switzerland and compared the genetic information of eukaryotic organisms conveyed by eDNA with the hydrologic information conveyed by naturally occurring hydrologic tracers. At the intersection of two disciplines, our study provides complementary knowledge gains and identifies the next steps to be addressed for using eDNA to achieve complementary insights into Alpine water sources.
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020, https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Short summary
This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Harsh Beria, Joshua R. Larsen, Anthony Michelon, Natalie C. Ceperley, and Bettina Schaefli
Geosci. Model Dev., 13, 2433–2450, https://doi.org/10.5194/gmd-13-2433-2020, https://doi.org/10.5194/gmd-13-2433-2020, 2020
Short summary
Short summary
We develop a Bayesian mixing model to address the issue of small sample sizes to describe different sources in hydrological mixing applications. Using composite likelihood functions, the model accounts for an often overlooked bias arising due to unweighted mixing. We test the model efficacy using a series of statistical benchmarking tests and demonstrate its real-life applicability by applying it to a Swiss Alpine catchment to obtain the proportion of groundwater recharged from rain vs. snow.
Anthony Michelon, Lionel Benoit, Harsh Beria, Natalie Ceperley, and Bettina Schaefli
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-683, https://doi.org/10.5194/hess-2019-683, 2020
Manuscript not accepted for further review
Short summary
Short summary
Rainfall observation remains a challenge particularly in mountain environments. Unlike most studies which are model based, this analysis of the rainfall-runoff response of a 13.4 km2 alpine catchment is purely data-based and rely on measures from a network of 12 low-cost raingauges over 3 months. It assesses the importance of high-density rainfall observations to inform hydrological processes and help to design a permanent raingauge network.
Adrien Michel, Tristan Brauchli, Michael Lehning, Bettina Schaefli, and Hendrik Huwald
Hydrol. Earth Syst. Sci., 24, 115–142, https://doi.org/10.5194/hess-24-115-2020, https://doi.org/10.5194/hess-24-115-2020, 2020
Short summary
Short summary
This study constitutes the first comprehensive analysis of river
temperature in Switzerland combined with discharge and key meteorological variables, such as air temperature and precipitation. It is also the first study to discuss the large-scale seasonal behaviour of stream temperature in Switzerland. This research shows the clear increase of river temperature in Switzerland over the last few decades and may serve as a solid reference for future climate change scenario simulations.
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-551, https://doi.org/10.5194/hess-2019-551, 2019
Revised manuscript not accepted
Short summary
Short summary
We explored what genetic material collected from water (eDNA) tells us about the flow of mountain streams, which are particularly valuable for habitat and water resources, but highly variable. We saw that when flow increased, more diverse eDNA was transported, especially in the main channel and tributaries. Whereas in the springs, we saw more diverse eDNA when the electrical conductivity of the water increased, likely indicating more underground surface contact.
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
Ana Clara Santos, Maria Manuela Portela, Andrea Rinaldo, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 22, 2377–2389, https://doi.org/10.5194/hess-22-2377-2018, https://doi.org/10.5194/hess-22-2377-2018, 2018
Short summary
Short summary
This paper assesses the performance of an analytical modeling framework for probability distributions for summer streamflow of 25 Swiss catchments that present a wide range of hydroclimatic regimes, including snow- and icemelt-influenced streamflows. Two versions of the model were tested: linear and nonlinear. The results show that the model performs well for summer discharges under all analyzed regimes and that model performance varies with mean catchment elevation.
Natalie C. Ceperley, Theophile Mande, Nick van de Giesen, Scott Tyler, Hamma Yacouba, and Marc B. Parlange
Hydrol. Earth Syst. Sci., 21, 4149–4167, https://doi.org/10.5194/hess-21-4149-2017, https://doi.org/10.5194/hess-21-4149-2017, 2017
Short summary
Short summary
We relate land cover (savanna forest and agriculture) to evaporation in Burkina Faso, west Africa. We observe more evaporation and temperature movement over the savanna forest in the headwater area relative to the agricultural section of the watershed. We find that the fraction of available energy converted to evaporation relates to vegetation cover and soil moisture. From the results, evaporation can be calculated where ground-based measurements are lacking, frequently the case across Africa.
Luca Carturan, Carlo Baroni, Michele Brunetti, Alberto Carton, Giancarlo Dalla Fontana, Maria Cristina Salvatore, Thomas Zanoner, and Giulia Zuecco
The Cryosphere, 10, 695–712, https://doi.org/10.5194/tc-10-695-2016, https://doi.org/10.5194/tc-10-695-2016, 2016
Short summary
Short summary
This work analyses the longer mass balance series of Italian glaciers. All glaciers experienced mass loss in the observation period, with increasing mass loss rates mainly due to increased ablation during longer and warmer ablation seasons. Low-altitude glaciers with low range of elevation are more out of balance than the higher, larger and steeper glaciers, which maintain accumulation areas. Because most of the monitored glaciers are at risk of extinction, they require a soon replacement.
A. Gallice, B. Schaefli, M. Lehning, M. B. Parlange, and H. Huwald
Hydrol. Earth Syst. Sci., 19, 3727–3753, https://doi.org/10.5194/hess-19-3727-2015, https://doi.org/10.5194/hess-19-3727-2015, 2015
Short summary
Short summary
This study presents a new model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in an Alpine country. Contrary to the other approaches developed to date, which are usually based on standard regression techniques, our model makes use of the understanding that we have about the physics controlling stream temperature. On top of its accuracy being comparable to that of the other models, it can be used to gain some knowledge about the stream temperature dynamics
B. Schaefli, L. Nicótina, C. Imfeld, P. Da Ronco, E. Bertuzzo, and A. Rinaldo
Geosci. Model Dev., 7, 2733–2746, https://doi.org/10.5194/gmd-7-2733-2014, https://doi.org/10.5194/gmd-7-2733-2014, 2014
Short summary
Short summary
This paper presents the Spatially Explicit Hydrologic Response of the Laboratory of Ecohydrology of the Ecole Polytechnique Fédérale de Lausanne for hydrologic simulation at the catchment scale. It simulates the mobilization of water at the subcatchment scale and the transport to the outlet through a convolution with the river network. We discuss the parameter estimation and model performance for discharge simulation in the high Alpine Dischmabach catchment (Switzerland).
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Stochastic approaches
Monthly new water fractions and their relationships with climate and catchment properties across Alpine rivers
Technical note: Two-component electrical-conductivity-based hydrograph separation employing an exponential mixing model (EXPECT) provides reliable high-temporal-resolution young water fraction estimates in three small Swiss catchments
Flood frequency analysis using mean daily flows vs. instantaneous peak flows
On the regional-scale variability in flow duration curves in Peninsular India
A mixed distribution approach for low-flow frequency analysis – Part 2: Comparative assessment of a mixed probability vs. copula-based dependence framework
A mixed distribution approach for low-flow frequency analysis – Part 1: Concept, performance, and effect of seasonality
Significant regime shifts in historical water yield in the Upper Brahmaputra River basin
A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records
Low-flow estimation beyond the mean – expectile loss and extreme gradient boosting for spatiotemporal low-flow prediction in Austria
Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium
A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow
Parsimonious statistical learning models for low-flow estimation
Development of a Wilks feature importance method with improved variable rankings for supporting hydrological inference and modelling
Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences
Effects of climate anomalies on warm-season low flows in Switzerland
Histogram via entropy reduction (HER): an information-theoretic alternative for geostatistics
Estimation of annual runoff by exploiting long-term spatial patterns and short records within a geostatistical framework
A methodology to estimate flow duration curves at partially ungauged basins
The role of flood wave superposition in the severity of large floods
Contribution of low-frequency climatic–oceanic oscillations to streamflow variability in small, coastal rivers of the Sierra Nevada de Santa Marta (Colombia)
Stochastic reconstruction of spatio-temporal rainfall patterns by inverse hydrologic modelling
An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times
More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years
Topography significantly influencing low flows in snow-dominated watersheds
A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data
Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China
Estimating unconsolidated sediment cover thickness by using the horizontal distance to a bedrock outcrop as secondary information
On the probability distribution of daily streamflow in the United States
The European 2015 drought from a hydrological perspective
Heterogeneity measures in hydrological frequency analysis: review and new developments
ENSO-conditioned weather resampling method for seasonal ensemble streamflow prediction
Ordinary kriging as a tool to estimate historical daily streamflow records
Trends in floods in West Africa: analysis based on 11 catchments in the region
Implementation and validation of a Wilks-type multi-site daily precipitation generator over a typical Alpine river catchment
Spatial controls on groundwater response dynamics in a snowmelt-dominated montane catchment
Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?
Data compression to define information content of hydrological time series
Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?
Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain
Exploring the physical controls of regional patterns of flow duration curves – Part 1: Insights from statistical analyses
Land cover and water yield: inference problems when comparing catchments with mixed land cover
An elusive search for regional flood frequency estimates in the River Nile basin
Interannual hydroclimatic variability and its influence on winter nutrient loadings over the Southeast United States
Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal scale of adjustment
Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter?
Long-range forecasting of intermittent streamflow
Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization
Low-frequency variability of European runoff
Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France
Regional flow duration curves for ungauged sites in Sicily
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
Hydrol. Earth Syst. Sci., 28, 3675–3694, https://doi.org/10.5194/hess-28-3675-2024, https://doi.org/10.5194/hess-28-3675-2024, 2024
Short summary
Short summary
The Alps are a key water resource for central Europe, providing water for drinking, agriculture, and hydropower production. To assess water availability in streams, we need to understand how much streamflow is derived from old water stored in the subsurface versus more recent precipitation. We use tracer data from 32 Alpine streams and statistical tools to assess how much recent precipitation can be found in Alpine rivers and how this amount is related to catchment properties and climate.
Alessio Gentile, Jana von Freyberg, Davide Gisolo, Davide Canone, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 28, 1915–1934, https://doi.org/10.5194/hess-28-1915-2024, https://doi.org/10.5194/hess-28-1915-2024, 2024
Short summary
Short summary
Can we leverage high-resolution and low-cost EC measurements and biweekly δ18O data to estimate the young water fraction at higher temporal resolution? Here, we present the EXPECT method that combines two widespread techniques: EC-based hydrograph separation and sine-wave models of the seasonal isotope cycles. The method is not without its limitations, but its application in three small Swiss catchments is promising for future applications in catchments with different characteristics.
Anne Bartens, Bora Shehu, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 28, 1687–1709, https://doi.org/10.5194/hess-28-1687-2024, https://doi.org/10.5194/hess-28-1687-2024, 2024
Short summary
Short summary
River flow data are often provided as mean daily flows (MDF), in which a lot of information is lost about the actual maximum flow or instantaneous peak flows (IPF) within a day. We investigate the error of using MDF instead of IPF and identify means to predict IPF when only MDF data are available. We find that the average ratio of daily flood peaks and volumes is a good predictor, which is easily and universally applicable and requires a minimum amount of data.
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 28, 1493–1514, https://doi.org/10.5194/hess-28-1493-2024, https://doi.org/10.5194/hess-28-1493-2024, 2024
Short summary
Short summary
This study explores the regional streamflow variability in Peninsular India. This variability is governed by monsoons, mountainous systems, and geologic gradients. A linkage between these influencing factors and streamflow variability is established using a Wegenerian approach and flow duration curves.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 2019–2034, https://doi.org/10.5194/hess-27-2019-2023, https://doi.org/10.5194/hess-27-2019-2023, 2023
Short summary
Short summary
In seasonal climates with a warm and a cold season, low flows are generated by different processes so that return periods used as a measure of event severity will be inaccurate. We propose a novel mixed copula estimator that is shown to outperform previous calculation methods. The new method is highly relevant for a wide range of European river flow regimes and should be used by default.
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 689–701, https://doi.org/10.5194/hess-27-689-2023, https://doi.org/10.5194/hess-27-689-2023, 2023
Short summary
Short summary
Knowing the severity of an extreme event is of particular importance to hydrology and water policies. In this paper we propose a mixed distribution approach for low flows. It provides one consistent approach to quantify the severity of summer, winter, and annual low flows based on their respective annualities (or return periods). We show that the new method is much more accurate than existing methods and should therefore be used by engineers and water agencies.
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 26, 5391–5410, https://doi.org/10.5194/hess-26-5391-2022, https://doi.org/10.5194/hess-26-5391-2022, 2022
Short summary
Short summary
The goal of this work was to make a map of the mean annual runoff for Norway for a 30-year period. We first simulated runoff by using a process-based model that models the relationship between runoff, precipitation, temperature, and land use. Next, we corrected the map based on runoff observations from streams by using a statistical method. We were also able to use data from rivers that only had a few annual observations. We find that the statistical correction improves the runoff estimates.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 4553–4574, https://doi.org/10.5194/hess-26-4553-2022, https://doi.org/10.5194/hess-26-4553-2022, 2022
Short summary
Short summary
Our study uses a statistical boosting model for estimating low flows on a monthly basis, which can be applied to estimate low flows at sites without measurements. We use an extensive dataset of 260 stream gauges in Austria for model development. As we are specifically interested in low-flow events, our method gives specific weight to such events. We found that our method can considerably improve the predictions of low-flow events and yields accurate estimates of the seasonal low-flow variation.
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022, https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary
Short summary
An important step in projecting future climate is the bias adjustment of the climatological and hydrological variables. In this paper, we illustrate how bias adjustment can be impaired by bias nonstationarity. Two univariate and four multivariate methods are compared, and for both types bias nonstationarity can be linked with less robust adjustment.
Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber
Hydrol. Earth Syst. Sci., 26, 149–166, https://doi.org/10.5194/hess-26-149-2022, https://doi.org/10.5194/hess-26-149-2022, 2022
Short summary
Short summary
Timely projections of seasonal streamflow extremes on a river network can be useful for flood risk mitigation, but this is challenging, particularly under space–time nonstationarity. We develop a space–time Bayesian hierarchical model (BHM) using temporal climate covariates and copulas to project seasonal streamflow extremes and the attendant uncertainties. We demonstrate this on the Upper Colorado River basin to project spring flow extremes using the preceding winter’s climate teleconnections.
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 129–148, https://doi.org/10.5194/hess-26-129-2022, https://doi.org/10.5194/hess-26-129-2022, 2022
Short summary
Short summary
This study aims to predict long-term averages of low flow on a hydrologically diverse dataset in Austria. We compared seven statistical learning methods and included a backward variable selection approach. We found that separating the low-flow processes into winter and summer low flows leads to good performance for all the models. Variable selection results in more parsimonious and more interpretable models. Linear approaches for prediction and variable selection are sufficient for our dataset.
Kailong Li, Guohe Huang, and Brian Baetz
Hydrol. Earth Syst. Sci., 25, 4947–4966, https://doi.org/10.5194/hess-25-4947-2021, https://doi.org/10.5194/hess-25-4947-2021, 2021
Short summary
Short summary
We proposed a test statistic feature importance method to quantify the importance of predictor variables for random-forest-like models. The proposed method does not rely on any performance measures to evaluate variable rankings, which can thus result in unbiased variable rankings. The resulting variable rankings based on the proposed method could help random forest achieve its optimum predictive accuracy.
Wei Hu and Bing Si
Hydrol. Earth Syst. Sci., 25, 321–331, https://doi.org/10.5194/hess-25-321-2021, https://doi.org/10.5194/hess-25-321-2021, 2021
Short summary
Short summary
Partial wavelet coherency method is improved to explore the bivariate relationships at different scales and locations after excluding the effects of other variables. The method was tested with artificial datasets and applied to a measured dataset. Compared with others, this method has the advantages of capturing phase information, dealing with multiple excluding variables, and producing more accurate results. This method can be used in different areas with spatial or temporal datasets.
Marius G. Floriancic, Wouter R. Berghuijs, Tobias Jonas, James W. Kirchner, and Peter Molnar
Hydrol. Earth Syst. Sci., 24, 5423–5438, https://doi.org/10.5194/hess-24-5423-2020, https://doi.org/10.5194/hess-24-5423-2020, 2020
Short summary
Short summary
Low river flows affect societies and ecosystems. Here we study how precipitation and potential evapotranspiration shape low flows across a network of 380 Swiss catchments. Low flows in these rivers typically result from below-average precipitation and above-average potential evapotranspiration. Extreme low flows result from long periods of the combined effects of both drivers.
Stephanie Thiesen, Diego M. Vieira, Mirko Mälicke, Ralf Loritz, J. Florian Wellmann, and Uwe Ehret
Hydrol. Earth Syst. Sci., 24, 4523–4540, https://doi.org/10.5194/hess-24-4523-2020, https://doi.org/10.5194/hess-24-4523-2020, 2020
Short summary
Short summary
A spatial interpolator has been proposed for exploring the information content of the data in the light of geostatistics and information theory. It showed comparable results to traditional interpolators, with the advantage of presenting generalization properties. We discussed three different ways of combining distributions and their implications for the probabilistic results. By its construction, the method provides a suitable and flexible framework for uncertainty analysis and decision-making.
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 24, 4109–4133, https://doi.org/10.5194/hess-24-4109-2020, https://doi.org/10.5194/hess-24-4109-2020, 2020
Short summary
Short summary
Annual runoff is a measure of how much water flows through a river during a year and is an important quantity, e.g. when planning infrastructure. In this paper, we suggest a new statistical model for annual runoff estimation. The model exploits correlation between rivers and is able to detect whether the annual runoff in the target river follows repeated patterns over time relative to neighbouring rivers. In our work we show for what cases the latter represents a benefit over comparable methods.
Elena Ridolfi, Hemendra Kumar, and András Bárdossy
Hydrol. Earth Syst. Sci., 24, 2043–2060, https://doi.org/10.5194/hess-24-2043-2020, https://doi.org/10.5194/hess-24-2043-2020, 2020
Short summary
Short summary
The paper presents a new, simple and model-free methodology to estimate the streamflow at partially gauged basins, given the precipitation gauged at another basin. We show that the FDC is not a characteristic of the basin only, but of both the basin and the weather. Because of the dependence on the climate, discharge data at the target site are here retrieved using the Antecedent Precipitation Index (API) of the donor site as it represents in a streamflow-like way the precipitation of the basin.
Björn Guse, Bruno Merz, Luzie Wietzke, Sophie Ullrich, Alberto Viglione, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 24, 1633–1648, https://doi.org/10.5194/hess-24-1633-2020, https://doi.org/10.5194/hess-24-1633-2020, 2020
Short summary
Short summary
Floods are influenced by river network processes, among others. Flood characteristics of tributaries may affect flood severity downstream of confluences. The impact of flood wave superposition is investigated with regard to magnitude and temporal matching of flood peaks. Our study in Germany and Austria shows that flood wave superposition is not the major driver of flood severity. However, there is the potential for large floods at some confluences in cases of temporal matching of flood peaks.
Juan Camilo Restrepo, Aldemar Higgins, Jaime Escobar, Silvio Ospino, and Natalia Hoyos
Hydrol. Earth Syst. Sci., 23, 2379–2400, https://doi.org/10.5194/hess-23-2379-2019, https://doi.org/10.5194/hess-23-2379-2019, 2019
Short summary
Short summary
This study evaluated the influence of low-frequency oscillations that are linked to large-scale oceanographic–atmospheric processes, on streamflow variability in small mountain rivers of the Sierra Nevada de Santa Marta, Colombia, aiming to explore streamflow variability, estimate the net contribution to the energy of low-frequency oscillations to streamflow anomalies, and analyze the linkages between streamflow anomalies and large-scale, low-frequency oceanographic–atmospheric processes.
Jens Grundmann, Sebastian Hörning, and András Bárdossy
Hydrol. Earth Syst. Sci., 23, 225–237, https://doi.org/10.5194/hess-23-225-2019, https://doi.org/10.5194/hess-23-225-2019, 2019
Jost Hellwig and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 6209–6224, https://doi.org/10.5194/hess-22-6209-2018, https://doi.org/10.5194/hess-22-6209-2018, 2018
Short summary
Short summary
Due to the lack of long-term observations, insights into changes of groundwater resources are obscured. In this paper we assess past and potential future changes in groundwater drought in headwater catchments using a baseflow approach. There are a few past trends which are highly dependent on the period of analysis. Catchments with short response times are found to have a higher sensitivity to projected seasonal precipitation shifts, urging for a local management based on response times.
Qiang Zhang, Xihui Gu, Vijay P. Singh, Peijun Shi, and Peng Sun
Hydrol. Earth Syst. Sci., 22, 2637–2653, https://doi.org/10.5194/hess-22-2637-2018, https://doi.org/10.5194/hess-22-2637-2018, 2018
Qiang Li, Xiaohua Wei, Xin Yang, Krysta Giles-Hansen, Mingfang Zhang, and Wenfei Liu
Hydrol. Earth Syst. Sci., 22, 1947–1956, https://doi.org/10.5194/hess-22-1947-2018, https://doi.org/10.5194/hess-22-1947-2018, 2018
Short summary
Short summary
Topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Topography plays a more dominant role in low flows than high flows. Our analysis also identified five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions.
Yan-Fang Sang, Fubao Sun, Vijay P. Singh, Ping Xie, and Jian Sun
Hydrol. Earth Syst. Sci., 22, 757–766, https://doi.org/10.5194/hess-22-757-2018, https://doi.org/10.5194/hess-22-757-2018, 2018
Zhi Li and Jiming Jin
Hydrol. Earth Syst. Sci., 21, 5531–5546, https://doi.org/10.5194/hess-21-5531-2017, https://doi.org/10.5194/hess-21-5531-2017, 2017
Short summary
Short summary
We developed an efficient multisite and multivariate GCM downscaling method and generated climate change scenarios for SWAT to evaluate the streamflow variability within a watershed in China. The application of the ensemble techniques enables us to better quantify the model uncertainties. The peak values of precipitation and streamflow have a tendency to shift from the summer to spring season over the next 30 years. The number of extreme flooding and drought events will increase.
Nils-Otto Kitterød
Hydrol. Earth Syst. Sci., 21, 4195–4211, https://doi.org/10.5194/hess-21-4195-2017, https://doi.org/10.5194/hess-21-4195-2017, 2017
Short summary
Short summary
The GRANADA open-access database (NGU, 2016a) was used to derive point recordings of thickness of sediment above the bedrock D(u). For each D(u) the horizontal distance to nearest outcrop L(u) was derived from geological maps. The purpose was to utilize L(u) as a secondary function for estimation of D(u). Two estimation methods were employed: ordinary kriging (OK) and co-kriging (CK). A cross-validation analysis was performed to evaluate the additional information in the secondary function L(u).
Annalise G. Blum, Stacey A. Archfield, and Richard M. Vogel
Hydrol. Earth Syst. Sci., 21, 3093–3103, https://doi.org/10.5194/hess-21-3093-2017, https://doi.org/10.5194/hess-21-3093-2017, 2017
Short summary
Short summary
Flow duration curves are ubiquitous in surface water hydrology for applications including water allocation and protection of ecosystem health. We identify three probability distributions that can provide a reasonable fit to daily streamflows across much of United States. These results help us understand of the behavior of daily streamflows and enhance our ability to predict streamflows at ungaged river locations.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Ana I. Requena, Fateh Chebana, and Taha B. M. J. Ouarda
Hydrol. Earth Syst. Sci., 21, 1651–1668, https://doi.org/10.5194/hess-21-1651-2017, https://doi.org/10.5194/hess-21-1651-2017, 2017
Short summary
Short summary
The notion of a measure to quantify the degree of heterogeneity of a region from which information is required to estimate the magnitude of events at ungauged sites is introduced. These heterogeneity measures are needed to compare regions, evaluate the impact of particular sites, and rank the performance of delineating methods. A framework to define and assess their desirable properties is proposed. Several heterogeneity measures are presented and/or developed to be assessed, giving guidelines.
Joost V. L. Beckers, Albrecht H. Weerts, Erik Tijdeman, and Edwin Welles
Hydrol. Earth Syst. Sci., 20, 3277–3287, https://doi.org/10.5194/hess-20-3277-2016, https://doi.org/10.5194/hess-20-3277-2016, 2016
Short summary
Short summary
Oceanic–atmospheric climate modes, such as El Niño–Southern Oscillation (ENSO), are known to affect the streamflow regime in many rivers around the world. A new method is presented for ENSO conditioning of the ensemble streamflow prediction (ESP) method, which is often used for seasonal streamflow forecasting. The method was tested on three tributaries of the Columbia River, OR. Results show an improvement in forecast skill compared to the standard ESP.
William H. Farmer
Hydrol. Earth Syst. Sci., 20, 2721–2735, https://doi.org/10.5194/hess-20-2721-2016, https://doi.org/10.5194/hess-20-2721-2016, 2016
Short summary
Short summary
The potential of geostatistical tools, leveraging the spatial structure and dependency of correlated time series, for the prediction of daily streamflow time series at unmonitored locations is explored. Simple geostatistical tools improve on traditional estimates of daily streamflow. The temporal evolution of spatial structure, including seasonal fluctuations, is also explored. The proposed method is contrasted with more advanced geostatistical methods and shown to be comparable.
B. N. Nka, L. Oudin, H. Karambiri, J. E. Paturel, and P. Ribstein
Hydrol. Earth Syst. Sci., 19, 4707–4719, https://doi.org/10.5194/hess-19-4707-2015, https://doi.org/10.5194/hess-19-4707-2015, 2015
Short summary
Short summary
The region of West Africa is undergoing important climate and environmental changes affecting the magnitude and occurrence of floods. This study aims to analyze the evolution of flood hazard in the region and to find links between flood hazards pattern and rainfall or vegetation index patterns.
D. E. Keller, A. M. Fischer, C. Frei, M. A. Liniger, C. Appenzeller, and R. Knutti
Hydrol. Earth Syst. Sci., 19, 2163–2177, https://doi.org/10.5194/hess-19-2163-2015, https://doi.org/10.5194/hess-19-2163-2015, 2015
R. S. Smith, R. D. Moore, M. Weiler, and G. Jost
Hydrol. Earth Syst. Sci., 18, 1835–1856, https://doi.org/10.5194/hess-18-1835-2014, https://doi.org/10.5194/hess-18-1835-2014, 2014
C. Teutschbein and J. Seibert
Hydrol. Earth Syst. Sci., 17, 5061–5077, https://doi.org/10.5194/hess-17-5061-2013, https://doi.org/10.5194/hess-17-5061-2013, 2013
S. V. Weijs, N. van de Giesen, and M. B. Parlange
Hydrol. Earth Syst. Sci., 17, 3171–3187, https://doi.org/10.5194/hess-17-3171-2013, https://doi.org/10.5194/hess-17-3171-2013, 2013
S. A. Archfield, A. Pugliese, A. Castellarin, J. O. Skøien, and J. E. Kiang
Hydrol. Earth Syst. Sci., 17, 1575–1588, https://doi.org/10.5194/hess-17-1575-2013, https://doi.org/10.5194/hess-17-1575-2013, 2013
P. Cowpertwait, D. Ocio, G. Collazos, O. de Cos, and C. Stocker
Hydrol. Earth Syst. Sci., 17, 479–494, https://doi.org/10.5194/hess-17-479-2013, https://doi.org/10.5194/hess-17-479-2013, 2013
L. Cheng, M. Yaeger, A. Viglione, E. Coopersmith, S. Ye, and M. Sivapalan
Hydrol. Earth Syst. Sci., 16, 4435–4446, https://doi.org/10.5194/hess-16-4435-2012, https://doi.org/10.5194/hess-16-4435-2012, 2012
A. I. J. M. van Dijk, J. L. Peña-Arancibia, and L. A. (Sampurno) Bruijnzeel
Hydrol. Earth Syst. Sci., 16, 3461–3473, https://doi.org/10.5194/hess-16-3461-2012, https://doi.org/10.5194/hess-16-3461-2012, 2012
P. Nyeko-Ogiramoi, P. Willems, F. M. Mutua, and S. A. Moges
Hydrol. Earth Syst. Sci., 16, 3149–3163, https://doi.org/10.5194/hess-16-3149-2012, https://doi.org/10.5194/hess-16-3149-2012, 2012
J. Oh and A. Sankarasubramanian
Hydrol. Earth Syst. Sci., 16, 2285–2298, https://doi.org/10.5194/hess-16-2285-2012, https://doi.org/10.5194/hess-16-2285-2012, 2012
H. Lee, D.-J. Seo, Y. Liu, V. Koren, P. McKee, and R. Corby
Hydrol. Earth Syst. Sci., 16, 2233–2251, https://doi.org/10.5194/hess-16-2233-2012, https://doi.org/10.5194/hess-16-2233-2012, 2012
H. E. Dahlke, S. W. Lyon, J. R. Stedinger, G. Rosqvist, and P. Jansson
Hydrol. Earth Syst. Sci., 16, 2123–2141, https://doi.org/10.5194/hess-16-2123-2012, https://doi.org/10.5194/hess-16-2123-2012, 2012
F. F. van Ogtrop, R. W. Vervoort, G. Z. Heller, D. M. Stasinopoulos, and R. A. Rigby
Hydrol. Earth Syst. Sci., 15, 3343–3354, https://doi.org/10.5194/hess-15-3343-2011, https://doi.org/10.5194/hess-15-3343-2011, 2011
S. J. Noh, Y. Tachikawa, M. Shiiba, and S. Kim
Hydrol. Earth Syst. Sci., 15, 3237–3251, https://doi.org/10.5194/hess-15-3237-2011, https://doi.org/10.5194/hess-15-3237-2011, 2011
L. Gudmundsson, L. M. Tallaksen, K. Stahl, and A. K. Fleig
Hydrol. Earth Syst. Sci., 15, 2853–2869, https://doi.org/10.5194/hess-15-2853-2011, https://doi.org/10.5194/hess-15-2853-2011, 2011
E. Sauquet and C. Catalogne
Hydrol. Earth Syst. Sci., 15, 2421–2435, https://doi.org/10.5194/hess-15-2421-2011, https://doi.org/10.5194/hess-15-2421-2011, 2011
F. Viola, L. V. Noto, M. Cannarozzo, and G. La Loggia
Hydrol. Earth Syst. Sci., 15, 323–331, https://doi.org/10.5194/hess-15-323-2011, https://doi.org/10.5194/hess-15-323-2011, 2011
Cited articles
Aalstad, K., Westermann, S., and Bertino, L.: Evaluating satellite retrieved
fractional snow-covered area at a high-Arctic site using terrestrial
photography, Remote Sens. Environ., 239, 111618, https://doi.org/10.1016/j.rse.2019.111618, 2020.
Andermann, C., Longuevergne, L., Bonnet, S., Crave, A., Davy, P., and Gloaguen, R.: Impact of transient groundwater storage on the discharge of
Himalayan rivers, Nat. Geosci., 5, 127–132, https://doi.org/10.1038/ngeo1356, 2012.
Arnoux, M., Brunner, P., Schaefli, B., Mott, R., Cochand, F., and Hunkeler,
D.: Low-flow behavior of alpine catchments with varying quaternary cover
under current and future climatic conditions, J. Hydrol., 592, 125591, https://doi.org/10.1016/j.jhydrol.2020.125591, 2021.
Baraer, M., McKenzie, J. M., Mark, B. G., Bury, J., and Knox, S.:
Characterizing contributions of glacier melt and groundwater during the dry
season in a poorly gauged catchment of the Cordillera Blanca (Peru), in:
Advances in Geosciences, 4th EGU Alexander von Humboldt Conference “The
Andes: Challenge for Geosciences” – 4th Alexander von Humboldt
International Conference on The Andes: Challenge for Geosciences, 28 November 2008, Santiago de Chile, Chile, 41–49, https://doi.org/10.5194/adgeo-22-41-2009, 2009.
Baraer, M., McKenzie, J., Mark, B. G., Gordon, R., Bury, J., Condom, T., Gomez, J., Knox, S., and Fortner, S. K.: Contribution of groundwater to the
outflow from ungauged glacierized catchments: a multi-site study in the tropical Cordillera Blanca, Peru, Hydrol. Process., 29, 2561–2581,
https://doi.org/10.1002/hyp.10386, 2015.
Benettin, P., Bailey, S. W., Rinaldo, A., Likens, G. E., McGuire, K. J., and
Botter, G.: Young runoff fractions control streamwater age and solute
concentration dynamics, Hydrol. Process., 31, 2982–2986, https://doi.org/10.1002/hyp.11243, 2017.
Carroll, R. W. H., Bearup, L. A., Brown, W., Dong, W., Bill, M., and Willlams, K. H.: Factors controlling seasonal groundwater and solute flux from snow-dominated basins, Hydrol. Process., 32, 2187–2202,
https://doi.org/10.1002/hyp.13151, 2018.
Carturan, L.: Replacing monitored glaciers undergoing extinction: a new
measurement series on La Mare Glacier (Ortles-Cevedale, Italy), J. Glaciol., 62, 1093–1103, https://doi.org/10.1017/jog.2016.107, 2016.
Ceperley, N., Zuecco, G., Beria, H., Carturan, L., Michelon, A., Penna, D.,
Larsen, J., and Schaefli, B.: Seasonal snow cover decreases young water
fractions in high Alpine catchments, Hydrol. Process., 34, 4794–4813,
https://doi.org/10.1002/hyp.13937, https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002/hyp.13937&file=hyp13937-sup-0009-Supinfo2.zip
(last acces: 8 June 2023), 2020.
Chen, Z., Hartmann, A., Wagener, T., and Goldscheider, N.: Dynamics of water
fluxes and storages in an Alpine karst catchment under current and potential
future climate conditions, Hydrol. Earth Syst. Sci., 22, 3807–3823, https://doi.org/10.5194/hess-22-3807-2018, 2018.
Christensen, C. W., Hayashi, M., and Bentley, L. R.: Hydrogeological
characterization of an alpine aquifer system in the Canadian Rocky Mountains, Hydrogeol. J., 28, 1871–1890, https://doi.org/10.1007/s10040-020-02153-7, 2020.
Clark, M. P., Schaefli, B., Schymanski, S. J., Samaniego, L., Luce, C. H.,
Jackson, B. M., Freer, J. E., Arnold, J. R., Moore, R. D., Istanbulluoglu,
E., and Ceola, S.: Improving the theoretical underpinnings of process-based
hydrologic models, Water Resour. Res., 52, 2350–2365, https://doi.org/10.1002/2015WR017910, 2016.
Clow, D. W., Schrott, L., Webb, R., Campbell, D. H., Torizzo, A., and
Dornblaser, M.: Ground Water Occurrence and Contributions to Streamflow in
an Alpine Catchment, Colorado Front Range, Groundwater, 41, 937–950,
https://doi.org/10.1111/j.1745-6584.2003.tb02436.x, 2003.
Cochand, M., Christe, P., Ornstein, P., and Hunkeler, D.: Groundwater Storage in High Alpine Catchments and Its Contribution to Streamflow, Water Resour. Res., 55, 2613–2630, https://doi.org/10.1029/2018WR022989, 2019.
Cowie, R. M., Knowles, J. F., Dailey, K. R., Williams, M. W., Mills, T. J.,
and Molotch, N. P.: Sources of streamflow along a headwater catchment elevational gradient, J. Hydrol., 549, 163–178,
https://doi.org/10.1016/j.jhydrol.2017.03.044, 2017.
Di Marco, N., Righetti, M., Avesani, D., Zaramella, M., Notarnicola, C., and
Borga, M.: Comparison of MODIS and Model-Derived Snow-Covered Areas: Impact
of Land Use and Solar Illumination Conditions, Geosciences, 10, 134,
https://doi.org/10.3390/geosciences10040134, 2020.
Dozier, J.: Spectral signature of alpine snow cover from the landsat thematic mapper, Remote Sens. Environ., 28, 9–22, https://doi.org/10.1016/0034-4257(89)90101-6, 1989.
Du, X., Fang, M., Lv, H., Cheng, T., Hong, P., and Liu, C.: Effect of snowmelt infiltration on groundwater recharge in a seasonal soil frost area:
a case study in Northeast China, Environ. Monit. Assess., 191, 151, https://doi.org/10.1007/s10661-019-7285-7, 2019.
Duncan, H. P.: Baseflow separation – A practical approach, J. Hydrol., 575, 308–313, https://doi.org/10.1016/j.jhydrol.2019.05.040, 2019.
Engel, M., Penna, D., Bertoldi, G., Dell'Agnese, A., Soulsby, C., and Comiti, F.: Identifying run-off contributions during melt-induced run-off events in a glacierized alpine catchment, Hydrol. Process., 30, 343–364, https://doi.org/10.1002/hyp.10577, 2016.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Flerchinger, G. N., Cooley, K. R., and Ralston, D. R.: Groundwater response
to snowmelt in a mountainous watershed, J. Hydrol., 133, 293–311,
https://doi.org/10.1016/0022-1694(92)90260-3, 1992.
Frisbee, M. D., Phillips, F. M., Campbell, A. R., Liu, F., and Sanchez, S.
A.: Streamflow generation in a large, alpine watershed in the southern Rocky
Mountains of Colorado: Is streamflow generation simply the aggregation of
hillslope runoff responses?, Water Resour. Res., 47, W06512, https://doi.org/10.1029/2010WR009391, 2011.
Gallart, F., Valiente, M., Llorens, P., Cayuela, C., Sprenger, M., and Latron, J.: Investigating young water fractions in a small Mediterranean mountain catchment: Both precipitation forcing and sampling frequency matter, Hydrol. Process., 34, 3618–3634, https://doi.org/10.1002/hyp.13806, 2020a.
Gallart, F., von Freyberg, J., Valiente, M., Kirchner, J. W., Llorens, P.,
and Latron, J.: Technical note: An improved discharge sensitivity metric for
young water fractions, Hydrol. Earth Syst. Sci., 24, 1101–1107,
https://doi.org/10.5194/hess-24-1101-2020, 2020b.
Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., and Hagolle, O.: Theia
Snow collection: high-resolution operational snow cover maps from Sentinel-2
and Landsat-8 data, Earth Syst. Sci. Data, 11, 493–514,
https://doi.org/10.5194/essd-11-493-2019, 2019.
Gentile, A.: GEE code that accompanies the paper: “Towards a conceptualization of the hydrological processes behind changesof young water fraction with elevation: a focus on mountainous alpine catchments”, Google Earth Engine, https://code.earthengine.google.com/8239cfe7aab498180e5c42475023cb80?noload=true
(last access: 8 June 2023), 2023.
Gisolo, D., Previati, M., Bevilacqua, I., Canone, D., Boetti, M., Dematteis,
N., Balocco, J., Ferrari, S., Gentile, A., Nsassila, M., Heery, B., Vereecken, H., and Ferraris, S.: A Calibration Free Radiation Driven Model
for Estimating Actual Evapotranspiration of Mountain Grasslands (CLIME-MG),
J. Hydrol., 610, 127948, https://doi.org/10.1016/j.jhydrol.2022.127948, 2022.
Gleeson, T. and Manning, A. H.: Regional groundwater flow in mountainous
terrain: Three-dimensional simulations of topographic and hydrogeologic
controls, Water Resour. Res., 44, W10403, https://doi.org/10.1029/2008WR006848, 2008.
Gleeson, T., Moosdorf, N., Hartmann, J., and van Beek, L. P. H.: A glimpse
beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability
and porosity, Geophys. Res. Lett., 41, 3891–3898, https://doi.org/10.1002/2014GL059856, 2014.
Gordon, R. P., Lautz, L. K., McKenzie, J. M., Mark, B. G., Chavez, D., and
Baraer, M.: Sources and pathways of stream generation in tropical proglacial
valleys of the Cordillera Blanca, Peru, J. Hydrol., 522, 628–644,
https://doi.org/10.1016/j.jhydrol.2015.01.013, 2015.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Goulden, M. L., Anderson, R. G., Bales, R. C., Kelly, A. E., Meadows, M.,
and Winston, G. C.: Evapotranspiration along an elevation gradient in California's Sierra Nevada, J. Geophys. Res., 117, G03028, https://doi.org/10.1029/2012JG002027, 2012.
Harrington, J. S., Mozil, A., Hayashi, M., and Bentley, L. R.: Groundwater
flow and storage processes in an inactive rock glacier, Hydrol. Process., 32, 3070–3088, https://doi.org/10.1002/hyp.13248, 2018.
Harrison, H. N., Hammond, J. C., Kampf, S., and Kiewiet, L.: On the
hydrological difference between catchments above and below the intermittent-persistent snow transition, Hydrol. Process., 35, e14411,
https://doi.org/10.1002/hyp.14411, 2021.
Hayashi, M.: Alpine Hydrogeology: The Critical Role of Groundwater in Sourcing the Headwaters of the World, Ground Water, 58, 498–510,
https://doi.org/10.1111/gwat.12965, 2020.
Hofmeister, F., Arias-Rodriguez, L. F., Premier, V., Marin, C., Notarnicola,
C., Disse, M., and Chiogna, G.: Intercomparison of Sentinel-2 and modelled
snow cover maps in a high-elevation Alpine catchment, J. Hydrol. X, 15, 100123, https://doi.org/10.1016/j.hydroa.2022.100123, 2022.
Jansson, P., Hock, R., and Schneider, T.: The concept of glacier storage: a
review, J. Hydrol., 282, 116–129, https://doi.org/10.1016/S0022-1694(03)00258-0, 2003.
Jasechko, S.: Global Isotope Hydrogeology – Review, Rev. Geophys., 57, 835–965, https://doi.org/10.1029/2018RG000627, 2019.
Jasechko, S., Kirchner, J. W., Welker, J. M., and McDonnell, J. J.:
Substantial proportion of global streamflow less than three months old, Nat. Geosci., 9, 126–129, https://doi.org/10.1038/ngeo2636, 2016.
Käser, D. and Hunkeler, D.: Contribution of alluvial groundwater to the
outflow of mountainous catchments, Water Resour. Res., 52, 680–697,
https://doi.org/10.1002/2014WR016730, 2016.
Keller, D. E., Fischer, A. M., Liniger, M. A., Appenzeller, C., and Knutti,
R.: Testing a weather generator for downscaling climate change projections
over Switzerland, Int. J. Climatol., 37, 928–942, https://doi.org/10.1002/joc.4750, 2017.
Kirchner, J. W.: Aggregation in environmental systems – Part 1: Seasonal
tracer cycles quantify young water fractions, but not mean transit times, in
spatially heterogeneous catchments, Hydrol. Earth Syst. Sci., 20, 279–297, https://doi.org/10.5194/hess-20-279-2016, 2016a.
Kirchner, J. W.: Aggregation in environmental systems – Part 2: Catchment mean transit times and young water fractions under hydrologic nonstationarity, Hydrol. Earth Syst. Sci., 20, 299–328,
https://doi.org/10.5194/hess-20-299-2016, 2016b.
Kirchner, J. W. and Knapp, J. L. A.: Technical note: Calculation scripts for
ensemble hydrograph separation, Hydrol. Earth Syst. Sci., 24, 5539–5558, https://doi.org/10.5194/hess-24-5539-2020, 2020.
Li, L., Sullivan, P. L., Benettin, P., Cirpka, O. A., Bishop, K., Brantley, S. L., Knapp, J. L. A., van Meerveld, I., Rinaldo, A., Seibert, J., Wen, H.,
and Kirchner, J. W.: Toward catchment hydro-biogeochemical theories, WIREs
Water, 8, e1495, https://doi.org/10.1002/wat2.1495, 2021.
Liu, F., Williams, M. W., and Caine, N.: Source waters and flow paths in an
alpine catchment, Colorado Front Range, United States, Water Resour. Res., 40, W09401, https://doi.org/10.1029/2004WR003076, 2004.
Lucianetti, G., Penna, D., Mastrorillo, L., and Mazza, R.: The Role of Snowmelt on the Spatio-Temporal Variability of Spring Recharge in a Dolomitic Mountain Group, Italian Alps, Water, 12, 2256, https://doi.org/10.3390/w12082256, 2020.
Lutz, S. R., Krieg, R., Müller, C., Zink, M., Knöller, K., Samaniego, L., and Merz, R.: Spatial Patterns of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in Contrasting Catchments, Water Resour. Res., 54, 4767–4784, https://doi.org/10.1029/2017WR022216, 2018.
Lyne, V. and Hollick, M.: Stochastic Time-Variable Rainfall-Runoff Modeling,
in: Institution of Engineers Australia National Conference, September 1979, Barton, Australia, Institute of Engineers Australia, 89–92,
https://www.researchgate.net/profile/Vincent-Lyne/publication/272491803_Stochastic_Time-Variable_Rainfall-Runoff_Modeling/links/54f45fb40cf299c8d9e6e6c1/Stochastic-Time-Variable-Rainfall-Runoff-Modeling.pdf
(last access: 8 June 2023), 1979.
Martin, C., Kampf, S. K., Hammond, J. C., Wilson, C., and Anderson, S. P.:
Controls on Streamflow Densities in Semiarid Rocky Mountain Catchments, Water, 13, 521, https://doi.org/10.3390/w13040521, 2021.
Martinec, J.: Subsurface flow from snowmelt traced by tritium, Water Resour. Res., 11, 496–498, https://doi.org/10.1029/WR011i003p00496, 1975.
McDonnell, J. J.: Beyond the water balance, Nat. Geosci., 10, 396, https://doi.org/10.1038/ngeo2964, 2017.
Michelon, A., Ceperley, N., Beria, H., Larsen, J., Vennemann, T., and Schaefli, B.: Hydrodynamics of a high Alpine catchment characterized by four
natural tracers, Hydrol. Earth Syst. Sci., 27, 1403–1430,
https://doi.org/10.5194/hess-27-1403-2023, 2023.
Müller, T., Lane, S. N., and Schaefli, B.: Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment, Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, 2022.
Nathan, R. J. and McMahon, T. A.: Evaluation of automated techniques for base flow and recession analyses, Water Resour. Res., 26, 1465–1473,
https://doi.org/10.1029/WR026i007p01465, 1990.
Painter, K. J., Gentile, A., and Ferraris, S.: A stochastic cellular automaton model to describe the evolution of the snow-covered area across a
high-elevation mountain catchment, Sci.e Total Environ., 857, 159195, https://doi.org/10.1016/j.scitotenv.2022.159195, 2023.
Pavlovskii, I., Hayashi, M., and Lennon, M. R.: Transformation of snow
isotopic signature along groundwater recharge pathways in the Canadian Prairies, J. Hydrol., 563, 1147–1160, https://doi.org/10.1016/j.jhydrol.2017.09.053, 2018.
Penna, D., van Meerveld, H. J., Zuecco, G., Dalla Fontana, G., and Borga, M.: Hydrological response of an Alpine catchment to rainfall and snowmelt events, J. Hydrol., 537, 382–397, https://doi.org/10.1016/j.jhydrol.2016.03.040, 2016.
Petersky, R. and Harpold, A.: Now you see it, now you don't: a case study of
ephemeral snowpacks and soil moisture response in the Great Basin, USA,
Hydrol. Earth Syst. Sci., 22, 4891–4906, https://doi.org/10.5194/hess-22-4891-2018, 2018.
Rey, D. M., Hinckley, E.-L. S., Walvoord, M. A., and Singha, K.: Integrating
observations and models to determine the effect of seasonally frozen ground
on hydrologic partitioning in alpine hillslopes in the Colorado Rocky Mountains, USA, Hydrol. Process., 35, e14374, https://doi.org/10.1002/hyp.14374, 2021.
Saberi, L., McLaughlin, R. T., Ng, G.-H. C., La Frenierre, J., Wickert, A.
D., Baraer, M., Zhi, W., Li, L., and Mark, B. G.: Multi-scale temporal
variability in meltwater contributions in a tropical glacierized watershed,
Hydrol. Earth Syst.Sci., 23, 405–425, https://doi.org/10.5194/hess-23-405-2019, 2019.
Santos, A. C., Portela, M. M., Rinaldo, A., and Schaefli, B.: Analytical
flow duration curves for summer streamflow in Switzerland, Hydrol. Earth Syst. Sci., 22, 2377–2389, https://doi.org/10.5194/hess-22-2377-2018, 2018.
Scherler, M., Hauck, C., Hoelzle, M., Stähli, M., and Völksch, I.:
Meltwater infiltration into the frozen active layer at an alpine permafrost
site, Permafrost Periglac. Process., 21, 325–334, https://doi.org/10.1002/ppp.694, 2010.
Schmieder, J., Seeger, S., Weiler, M., and Strasser, U.: `Teflon Basin' or
Not? A High-Elevation Catchment Transit Time Modeling Approach, Hydrology,
6, 92, https://doi.org/10.3390/hydrology6040092, 2019.
Somers, L. D. and McKenzie, J. M.: A review of groundwater in high mountain
environments, WIREs Water, 7, e1475, https://doi.org/10.1002/wat2.1475, 2020.
Somers, L. D., McKenzie, J. M., Mark, B. G., Lagos, P., Ng, G.-H. C., Wickert, A. D., Yarleque, C., Baraër, M., and Silva, Y.: Groundwater
Buffers Decreasing Glacier Melt in an Andean Watershed – But Not Forever,
Geophys. Res. Lett., 46, 13016–13026, https://doi.org/10.1029/2019GL084730, 2019.
Staudinger, M., Stoelzle, M., Seeger, S., Seibert, J., Weiler, M., and Stahl, K.: Catchment water storage variation with elevation, Hydrol. Process., 31, 2000–2015, https://doi.org/10.1002/hyp.11158, 2017.
Staudinger, M., Seeger, S., Herbstritt, B., Stoelzle, M., Seibert, J., Stahl, K., and Weiler, M.: The CH-IRP data set: fortnightly data of δ2H and δ18O in streamflow and precipitation in Switzerland (Version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.4057967, 2020.
Stockinger, M., Reemt Bogena, H., Lücke, A., Stumpp, C., and Vereecken,
H.: Time variability and uncertainty in the fraction of young water in a
small headwater catchment, Hydrol. Earth Syst. Sci., 23, 4333—4347, https://doi.org/10.5194/hess-23-4333-2019, 2019.
Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrüger, B.,
Cornelissen, T., and Vereecken, H.: Tracer sampling frequency influences
estimates of young water fraction and streamwater transit time distribution,
J. Hydrol., 541, 952–964, https://doi.org/10.1016/j.jhydrol.2016.08.007, 2016.
Stoelzle, M., Schuetz, T., Weiler, M., Stahl, K., and Tallaksen, L. M.: Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions, Hydrol. Earth Syst. Sci., 24, 849–867,
https://doi.org/10.5194/hess-24-849-2020, 2020.
von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.:
Sensitivity of young water fractions to hydro-climatic forcing and landscape
properties across 22 Swiss catchments, Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, 2018.
Weingartner, R. and Aschwanden, H.: Abflussregimes als Grundlage zur
Abschätzung von Mittelwerten des Abflusses, Hydrologischer atlas der
Schweiz, Tafel 5.2, https://hydrologischeratlas.ch/produkte/druckausgabe/fliessgewasser-und-seen/tafel-5-2
(last access: 8 June 2023), 1992.
Williams, M. W., Wilson, A., Tshering, D., Thapa, P., and Kayastha, R. B.:
Using geochemical and isotopic chemistry to evaluate glacier melt contributions to the Chamkar Chhu (river), Bhutan, Ann. Glaciol., 57, 339–348, https://doi.org/10.3189/2016AoG71A068, 2016.
Wilson, A. M., Williams, M. W., Kayastha, R. B., and Racoviteanu, A.: Use of
a hydrologic mixing model to examine the roles of meltwater, precipitation
and groundwater in the Langtang River basin, Nepal, Ann. Glaciol., 57, 155–168, https://doi.org/10.3189/2016AoG71A067, 2016.
Wilusz, D. C., Harman, C. J., and Ball, W. P.: Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates,
Water Resour. Res., 53, 10231–10256, https://doi.org/10.1002/2017WR020894, 2017.
Xia, C., Zuecco, G., Chen, K., Liu, L., Zhang, Z., and Luo, J.: The
estimation of young water fraction based on isotopic signals: challenges and
recommendations, Front. Ecol. Evol., 11, 1114259, https://doi.org/10.3389/fevo.2023.1114259, 2023.
Zuecco, G., Carturan, L., De Blasi, F., Seppi, R., Zanoner, T., Penna, D.,
Borga, M., Carton, A., and Dalla Fontana, G.: Understanding hydrological
processes in glacierized catchments: Evidence and implications of highly
variable isotopic and electrical conductivity data, Hydrol. Process., 33, 816–832, https://doi.org/10.1002/hyp.13366, 2019.
Short summary
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than 2–3 months), variations with elevation? Why is F*yw counterintuitively low in high-elevation catchments, in spite of steeper topography? In this paper, we present a perceptual model explaining how the longer low-flow duration at high elevations, driven by the persistence of winter snowpacks, increases the proportion of stored (old) water contributing to the stream, thus reducing F*yw.
What drives young water fraction, F*yw (i.e., the fraction of water in streamflow younger than...