Articles | Volume 27, issue 1
https://doi.org/10.5194/hess-27-123-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-123-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees
Shaofei Wang
College of Water Resources and Architectural Engineering, Northwest
A&F University, 712100 Yangling, Shaanxi Province, China
Xiaodong Gao
CORRESPONDING AUTHOR
Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shaanxi Province, China
Institute of Soil and Water Conservation, Chinese Academy of Sciences
and Ministry of Water Resources, 712100 Yangling, Shaanxi Province, China
Min Yang
College of Water Resources and Architectural Engineering, Northwest
A&F University, 712100 Yangling, Shaanxi Province, China
Gaopeng Huo
College of Land and Resources, Hebei Agricultural University, 071001 Baoding, Hebei Province, China
Xiaolin Song
State Key Laboratory of Crop Stress Biology for Arid Areas, College of
Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi
Province, China
Kadambot H. M. Siddique
The UWA Institute of Agriculture, The University of Western Australia, 6001 Perth, WA, Australia
Pute Wu
Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shaanxi Province, China
Institute of Soil and Water Conservation, Chinese Academy of Sciences
and Ministry of Water Resources, 712100 Yangling, Shaanxi Province, China
Xining Zhao
Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shaanxi Province, China
Institute of Soil and Water Conservation, Chinese Academy of Sciences
and Ministry of Water Resources, 712100 Yangling, Shaanxi Province, China
Related authors
No articles found.
Weibin Zhang, Xining Zhao, Xuerui Gao, Wei Liang, Junyi Li, and Baoqing Zhang
Hydrol. Earth Syst. Sci., 29, 507–524, https://doi.org/10.5194/hess-29-507-2025, https://doi.org/10.5194/hess-29-507-2025, 2025
Short summary
Short summary
The Yellow River basin shows worsening water stress indicators (WSIs) over 1965‒2020. Water withdrawal is the main factor driving WSI before 2000, balanced by water availability. Local water yield and upstream flows are key drivers of sub-basin water availability. Water demand is expected to rise by 6.5 % in the 2030s, creating an 8.36 km³ surface water deficit. Enhanced irrigation efficiency can cut this deficit by 25 %, maintaining the stress level but worsening it for 44.9% of the population.
Nana He, Xiaodong Gao, Dagang Guo, Yabiao Wu, Dong Ge, Lianhao Zhao, Lei Tian, and Xining Zhao
Hydrol. Earth Syst. Sci., 28, 1897–1914, https://doi.org/10.5194/hess-28-1897-2024, https://doi.org/10.5194/hess-28-1897-2024, 2024
Short summary
Short summary
Deep-layer soil desiccation (DSD) can restrict the sustainability of deep-rooted plantations in water-limited areas. Thus, we explored the extreme effects of DSD based on mass data published and measured on the Loess Plateau and found that the permanent wilting point is a reliable indicator of the moisture limitation of DSD, regardless of tree species, with the corresponding maximum root water uptake depth varying among climatic zones. These dimensions increased the risk of planted trees' death.
Sihui Yan, Tibin Zhang, Binbin Zhang, Tonggang Zhang, Yu Cheng, Chun Wang, Min Luo, Hao Feng, and Kadambot H. M. Siddique
SOIL, 9, 339–349, https://doi.org/10.5194/soil-9-339-2023, https://doi.org/10.5194/soil-9-339-2023, 2023
Short summary
Short summary
The paper provides some new information about the effects of different relative concentrations of K+ to Na+ at constant electrical conductivity (EC) on soil hydraulic conductivity, salt-leaching efficiency and pore size distribution. In addition to Ca2+ and Mg2+, K+ plays an important role in soil structure stability. These findings can provide a scientific basis and technical support for the sustainable use of saline water and control of soil quality deterioration.
Huaqing Liu, Xiaodong Gao, Changjian Li, Yaohui Cai, Xiaolin Song, and Xining Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-719, https://doi.org/10.5194/egusphere-2023-719, 2023
Preprint archived
Short summary
Short summary
We conducted a systematic and quantitative study of the effects of plant mixtures on the water cycle. Our results confirmed that plant mixtures help facilitate a positive water cycle through mitigating inefficient water consumption. The positive conclusions we reached, as well as the analyses of the influencing factors, mechanisms, and limitations, are helpful for promoting further in-depth research and encouraging the establishment of more plant mixture systems.
Cited articles
Barbeta, A., Mejia-Chang, M., Ogaya, R., Voltas, J., Dawson, T. E., and
Penuelas, J.: The combined effects of a long-term experimental drought and
an extreme drought on the use of plant-water sources in a Mediterranean
forest, Global Change Biol., 21, 1213–1225, https://doi.org/10.1111/gcb.12785, 2015.
Barbeta, A., Jones, S. P., Clavé, L., Wingate, L., Gimeno, T. E., Fréjaville, B., Wohl, S., and Ogée, J.: Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest, Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, 2019.
Barbeta, A., Burlett, R., Martín-Gómez, P., Fréjaville, B.,
Devert, N., Wingate, L., Domec, J.-C., and Ogée, J.: Evidence for
distinct isotopic compositions of sap and tissue water in tree stems:
consequences for plant water source identification, New Phytol., 233,
1121–1132, https://doi.org/10.1111/nph.17857, 2022.
Beyer, M., Koeniger, P., Gaj, M., Hamutoko, J. T., Wanke, H., and
Himmelsbach, T.: A deuterium-based labeling technique for the investigation
of rooting depths, water uptake dynamics and unsaturated zone water
transport in semiarid environments, J. Hydrol., 533, 627–643,
https://doi.org/10.1016/j.jhydrol.2015.12.037, 2016.
Beyer, M., Hamutoko, J. T., Wanke, H., Gaj, M., and Koeniger, P.:
Examination of deep root water uptake using anomalies of soil water stable
isotopes, depth-controlled isotopic labeling and mixing models, J. Hydrol.,
566, 122–136, https://doi.org/10.1016/j.jhydrol.2018.08.060, 2018.
Brodribb, T. J., Powers, J., Cochard, H., and Choat, B.: Hanging by a
thread? Forests and drought, Science, 368, 261–266, https://doi.org/10.1126/science.aat7631, 2020.
Chen, Y., Helliker, B. R., Tang, X., Li, F., Zhou, Y., and Song, X.: Stem
water cryogenic extraction biases estimation in deuterium isotope
composition of plant source water, Proc. Natl. Acad. Sci. USA, 117,
33345, https://doi.org/10.1073/pnas.2014422117, 2020.
Couvreur, V., Rothfuss, Y., Meunier, F., Bariac, T., Biron, P., Durand, J.-L., Richard, P., and Javaux, M.: Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies, Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020, 2020.
Dawson, T. E. and Ehleringer, J. R.: Streamside trees that do not use stream
water, Nature, 350, 335–337, https://doi.org/10.1038/350335a0, 1991.
Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K.
P.: Stable Isotopes in Plant Ecology, Annu. Rev. Ecol. Syst., 33, 507–559, https://doi.org/10.1146/annurev.ecolsys.33.020602.095451, 2002.
de la Casa, J., Barbeta, A., Rodríguez-Uña, A., Wingate, L., Ogée, J., and Gimeno, T. E.: Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments, Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, 2022.
Ding, Y., Nie, Y., Chen, H., Wang, K., and Querejeta, J. I.: Water uptake
depth is coordinated with leaf water potential, water-use efficiency and
drought vulnerability in karst vegetation, New Phytol., 229, 1339–1353, https://doi.org/10.1111/nph.16971, 2021.
Eggemeyer, K. D., Awada, T., Harvey, F. E., Wedin, D. A., Zhou, X., and
Zanner, C. W.: Seasonal changes in depth of water uptake for encroaching
trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland, Tree
Physiol., 29, 157–169, https://doi.org/10.1093/treephys/tpn019, 2009.
Ehleringer, J. R. and Dawson, T. E.: Water uptake by plants: perspectives
from stable isotope composition, Plant Cell Environ., 15, 1073–1082, https://doi.org/10.1111/j.1365-3040.1992.tb01657.x, 1992.
Evaristo, J., Jasechko, S., and McDonnell, J. J.: Global separation of plant
transpiration from groundwater and streamflow, Nature, 525, 91–94, https://doi.org/10.1038/nature14983, 2015.
Evaristo, J., Kim, M., van Haren, J., Pangle, L. A., Harman, C. J., Troch,
P. A., and McDonnell, J. J.: Characterizing the Fluxes and Age Distribution
of Soil Water, Plant Water and Deep Percolation in a Model Tropical
Ecosystem, Water Resour. Res., 55, 3307–3327, https://doi.org/10.1029/2018wr023265, 2019.
Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B., and Otero-Casal,
C.: Hydrologic regulation of plant rooting depth, Proc. Natl. Acad. Sci. USA, 114, 10572–10577, https://doi.org/10.1073/pnas.1712381114, 2017.
Fu, B., Wang, S., Liu, Y., Liu, J., Liang, W., and Miao, C.: Hydrogeomorphic
Ecosystem Responses to Natural and Anthropogenic Changes in the Loess
Plateau of China, Annu. Rev. Earth Pl. Sc., 45, 223–243, https://doi.org/10.1146/annurev-earth-063016-020552, 2017.
Gao, X.: The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees, Zenodo [data set], https://doi.org/10.5281/zenodo.7169689 2022.
Gao, X., Liu, Z., Zhao, X., Ling, Q., Huo, G., and Wu, P.: Extreme natural
drought enhances interspecific facilitation in semiarid agroforestry
systems, Agric., Ecosyst. Environ., 265, 444–453, https://doi.org/10.1016/j.agee.2018.07.001, 2018a.
Gao, X., Zhao, X., Li, H., Guo, L., Lv, T., and Wu, P.: Exotic shrub species
(Caragana korshinskii) is more resistant to extreme natural drought than native species
(Artemisia gmelinii) in a semiarid revegetated ecosystem, Agr. Forest Meteorol., 263, 207–216, https://doi.org/10.1016/j.agrformet.2018.08.029, 2018b.
Gao, X., Li, H., and Zhao, X.: Impact of land management practices on water
use strategy for a dryland tree plantation and subsequent responses to
drought, Land Degrad. Dev., 32, 439–452, https://doi.org/10.1002/ldr.3687, 2021a.
Gao, X., Zhao, X., Wu, P., Yang, M., Ye, M., Tian, L., Zou, Y., Wu, Y.,
Zhang, F., and Siddique, K. H. M.: The economic–environmental trade-off of
growing apple trees in the drylands of China: A conceptual framework for
sustainable intensification, J. Clean Prod., 296, 126497,
https://doi.org/10.1016/j.jclepro.2021.126497, 2021b.
Germon, A., Laclau, J.-P., Robin, A., and Jourdan, C.: Tamm Review: Deep
fine roots in forest ecosystems: Why dig deeper?, For. Ecol. Manage., 466,
118135, https://doi.org/10.1016/j.foreco.2020.118135, 2020.
Grossiord, C., Sevanto, S., Dawson, T. E., Adams, H. D., Collins, A. D.,
Dickman, L. T., Newman, B. D., Stockton, E. A., and McDowell, N. G.: Warming
combined with more extreme precipitation regimes modifies the water sources
used by trees, New Phytol., 213, 584–596, https://doi.org/10.1111/nph.14192, 2017.
Huang, J., Yu, H., Dai, A., Wei, Y., and Kang, L.: Drylands face potential
threat under 2 ∘C global warming target, Nat. Clim. Change, 7,
417–422, https://doi.org/10.1038/nclimate3275, 2017.
Huo, G., Zhao, X., Gao, X., Wang, S., and Pan, Y.: Seasonal water use
patterns of rainfed jujube trees in stands of different ages under semiarid
Plantations in China, Agric., Ecosyst. Environ., 265, 392–401, https://doi.org/10.1016/j.agee.2018.06.028, 2018.
Huo, G., Zhao, X., Gao, X., and Wang, S.: Seasonal effects of intercropping
on tree water use strategies in semiarid plantations: Evidence from natural
and labelling stable isotopes, Plant Soil, 453, 229–243, https://doi.org/10.1007/s11104-020-04477-5, 2020.
Jiang, P., Wang, H., Meinzer, F. C., Kou, L., Dai, X., and Fu, X.: Linking
reliance on deep soil water to resource economy strategies and abundance
among coexisting understorey shrub species in subtropical pine plantations,
New Phytol., 225, 222–233, https://doi.org/10.1111/nph.16027, 2020.
Jiao, W., Wang, L., Smith, W. K., Chang, Q., Wang, H., and D'Odorico, P.:
Observed increasing water constraint on vegetation growth over the last
three decades, Nat. Commun., 12, 3777, https://doi.org/10.1038/s41467-021-24016-9, 2021.
Kahmen, A., Buser, T., Hoch, G., Grun, G., and Dietrich, L.: Dynamic 2H
irrigation pulse labelling reveals rapid infiltration and mixing of
precipitation in the soil and species-specific water uptake depths of trees
in a temperate forest, Ecohydrology, 14, e2322,
https://doi.org/10.1002/eco.2322, 2021.
Kulmatiski, A., Beard, K. H., Verweij, R. J. T., and February, E. C.: A
depth-controlled tracer technique measures vertical, horizontal and temporal
patterns of water use by trees and grasses in a subtropical savanna, New
Phytol., 188, 199–209, https://doi.org/10.1111/j.1469-8137.2010.03338.x,
2010.
Li, H., Si, B., and Li, M.: Rooting depth controls potential groundwater
recharge on hillslopes, J. Hydrol., 564, 164–174, https://doi.org/10.1016/j.jhydrol.2018.07.002, 2018.
Li, H., Si, B., Wu, P., and McDonnell, J. J.: Water mining from the deep
critical zone by apple trees growing on loess, Hydrol. Process., 33,
320–327, https://doi.org/10.1002/hyp.13346, 2019.
Ma, X., Zhu, J., Wang, Y., Yan, W., and Zhao, C.: Variations in water use
strategies of sand-binding vegetation along a precipitation gradient in
sandy regions, northern China, J. Hydrol., 600, 126539,
https://doi.org/10.1016/j.jhydrol.2021.126539, 2021.
Magh, R.-K., Eiferle, C., Burzlaff, T., Dannenmann, M., Rennenberg, H., and
Dubbert, M.: Competition for water rather than facilitation in mixed
beech-fir forests after drying-wetting cycle, J. Hydrol., 587, 124944, https://doi.org/10.1016/j.jhydrol.2020.124944, 2020.
McDowell, N. G., Williams, A. P., Xu, C., Pockman, W. T., Dickman, L. T.,
Sevanto, S., Pangle, R., Limousin, J., Plaut, J., Mackay, D. S., Ogee, J.,
Domec, J. C., Allen, C. D., Fisher, R. A., Jiang, X., Muss, J. D.,
Breshears, D. D., Rauscher, S. A., and Koven, C.: Multi-scale predictions of
massive conifer mortality due to chronic temperature rise, Nat. Clim.
Change, 6, 295–300, https://doi.org/10.1038/nclimate2873, 2016.
Mennekes, D., Rinderer, M., Seeger, S., and Orlowski, N.: Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment, Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, 2021.
Miguez-Macho, G. and Fan, Y.: Spatiotemporal origin of soil water taken up
by vegetation, Nature, 598, 624–628, https://doi.org/10.1038/s41586-021-03958-6, 2021.
Nardini, A., Casolo, V., Dal Borgo, A., Savi, T., Stenni, B., Bertoncin, P.,
Zini, L., and McDowell, N. G.: Rooting depth, water relations and
non-structural carbohydrate dynamics in three woody angiosperms
differentially affected by an extreme summer drought, Plant Cell Environ.,
39, 618–627, https://doi.org/10.1111/pce.12646, 2016.
Naseer, S., Lee, Y., Lapierre, C., Franke, R., Nawrath, C., and Geldner, N.:
Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer
without suberin, Proc. Natl. Acad. Sci. USA, 109, 10101–10106,
https://doi.org/10.1073/pnas.1205726109, 2012.
Nehemy, M. F., Benettin, P., Asadollahi, M., Pratt, D., Rinaldo, A., and
McDonnell, J. J.: Tree water deficit and dynamic source water partitioning,
Hydrol. Process., 35, e14004, https://doi.org/10.1002/hyp.14004, 2021.
Nehemy, M. F., Benettin, P., Allen, S. T., Steppe, K., Rinaldo, A., Lehmann,
M. M., McDonnell, J. J.: Phloem water isotopically different to xylem water:
Potential causes and implications for ecohydrological tracing, Ecohydrology,
15, e2417, https://doi.org/10.1002/eco.2417, 2022.
O'Connor, J. C., Dekker, S. C., Staal, A., Tuinenburg, O. A., Rebel, K. T.,
and Santos, M. J.: Forests buffer against variations in precipitation,
Global Change Biol., 27, 4686–4696, https://doi.org/10.1111/gcb.15763, 2021.
Orlowski, N., Breuer, L., and McDonnell, J. J.: Ecohydrology Bearings –
Invited Commentary Critical issues with cryogenic extraction of soil water
for stable isotope analysis, Ecohydrology, 9, 3–10, https://doi.org/10.1002/eco.1722,
2016a.
Orlowski, N., Pratt, D. L., and McDonnell, J. J.: Intercomparison of soil
pore water extraction methods for stable isotope analysis, Hydrol. Process.,
30, 3434–3449, https://doi.org/10.1002/hyp.10870, 2016b.
Orlowski, N., Breuer, L., Angeli, N., Boeckx, P., Brumbt, C., Cook, C. S., Dubbert, M., Dyckmans, J., Gallagher, B., Gralher, B., Herbstritt, B., Hervé-Fernández, P., Hissler, C., Koeniger, P., Legout, A., Macdonald, C. J., Oyarzún, C., Redelstein, R., Seidler, C., Siegwolf, R., Stumpp, C., Thomsen, S., Weiler, M., Werner, C., and McDonnell, J. J.: Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water, Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, 2018.
Poca, M., Coomans, O., Urcelay, C., Zeballos, S. R., Bodé, S., and
Boeckx, P.: Isotope fractionation during root water uptake by Acacia caven
is enhanced by arbuscular mycorrhizas, Plant Soil, 441, 485–497,
https://doi.org/10.1007/s11104-019-04139-1, 2019.
Potts, D. L., Huxman, T. E., Cable, J. M., English, N. B., Ignace, D. D.,
Eilts, J. A., Mason, M. J., Weltzin, J. F., and Williams, D. G.: Antecedent
moisture and seasonal precipitation influence the response of canopy-scale
carbon and water exchange to rainfall pulses in a semi-arid grassland, New
Phytol., 170, 849–860, https://doi.org/10.1111/j.1469-8137.2006.01732.x,
2006.
Rothfuss, Y. and Javaux, M.: Reviews and syntheses: Isotopic approaches to quantify root water uptake: a review and comparison of methods, Biogeosciences, 14, 2199–2224, https://doi.org/10.5194/bg-14-2199-2017, 2017.
Seeger, S. and Weiler, M.: Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling, Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, 2021.
Stock, B. C. and Semmens, B. X.: MixSIAR GUI User Manual, version 3.1, https://github.com/brianstock/MixSIAR/ (last access: 1 April 2022) or
https://doi.org/10.5281/zenodo.47719, 2013.
Szutu, D. J. and Papuga, S. A.: Year-Round Transpiration Dynamics Linked
With Deep Soil Moisture in a Warm Desert Shrubland, Water Resour. Res., 55,
5679–5695, https://doi.org/10.1029/2018WR023990, 2019.
Tao, Z., Li, H., and Si, B.: Stand age and precipitation affect deep soil
water depletion of economical forest in the loess area, Agr. Forest
Meteorol., 310, 108636, https://doi.org/10.1016/j.agrformet.2021.108636, 2021a.
Tao, Z., Neil, E., and Si, B.: Determining deep root water uptake patterns
with tree age in the Chinese loess area, Agric. Water Manage., 249, 106810,
https://doi.org/10.1016/j.agwat.2021.106810, 2021b.
Vargas, A. I., Schaffer, B., Li, Y., and Sternberg, L. d. S. L.: Testing
plant use of mobile vs immobile soil water sources using stable isotope
experiments, New Phytol., 215, 582–594, https://doi.org/10.1111/nph.14616, 2017.
Wang, H., Jin, J., Cui, B., Si, B., Ma, X., and Wen, M.: Technical note: Evaporating water is different from bulk soil water in δ2H and δ18O and has implications for evaporation calculation, Hydrol. Earth Syst. Sci., 25, 5399–5413, https://doi.org/10.5194/hess-25-5399-2021, 2021b.
Wang, J., Fu, B., Jiao, L., Lu, N., Li, J., Chen, W., and Wang, L.:
Age-related water use characteristics of Robinia pseudoacacia on the Loess Plateau, Agr. Forest
Meteorol., 301–302, 108344, https://doi.org/10.1016/j.agrformet.2021.108344,
2021a.
Wang, S., An, J., Zhao, X., Gao, X., Wu, P., Huo, G., and Robinson, B. H.:
Age- and climate- related water use patterns of apple trees on China's Loess
Plateau, J. Hydrol., 582, 124462, https://doi.org/10.1016/j.jhydrol.2019.124462, 2020.
Wang, S., Yang, M., Gao, X., Zhang, Z., Wang, X., Zhao, X., and Wu, P.:
Comparison of the root-soil water relationship of two typical revegetation
species along a precipitation gradient on the Loess Plateau, Environ. Res.
Lett., 16, 064054, https://doi.org/10.1088/1748-9326/ac00e4, 2021c.
Wang, S., Gao, X., Yang, M., Zhang, L., Wang, X., Wu, P., and Zhao, X.: The
efficiency of organic C sequestration in deep soils is enhanced by drier
climates, Geoderma, 415, 115774,
https://doi.org/10.1016/j.geoderma.2022.115774, 2022.
Wang, Y., Hu, W., Zhu, Y., Shao, M., Xiao, S., and Zhang, C.: Vertical
distribution and temporal stability of soil water in 21-m profiles under
different land uses on the Loess Plateau in China, J. Hydrol., 527, 543–554, https://doi.org/10.1016/j.jhydrol.2015.05.010, 2015.
Wen, M., He, D., Li, M., Ren, R., Jin, J., and Si, B.: Causes and Factors of
Cryogenic Extraction Biases on Isotopes of Xylem Water, Water Resour. Res.,
58, e2022WR032182, https://doi.org/10.1029/2022wr032182, 2022.
Wu, W., Li, H., Feng, H., Si, B., Chen, G., Meng, T., Li, Y., and Siddique,
K. H. M.: Precipitation dominates the transpiration of both the economic
forest (Malus pumila) and ecological forest (Robinia pseudoacacia) on the Loess Plateau after about 15 years
of water depletion in deep soil, Agr. Forest Meteorol., 297, 108244,
https://doi.org/10.1016/j.agrformet.2020.108244, 2021.
Wu, W., Tao, Z., Chen, G., Meng, T., Li, Y., Feng, H., Si, B., Manevski, K.,
Andersen, M. N., and Siddique, K. H. M.: Phenology determines water use
strategies of three economic tree species in the semi-arid Loess Plateau of
China, Agr. Forest Meteorol., 312, 108716,
https://doi.org/10.1016/j.agrformet.2021.108716, 2022.
Xiang, W., Si, B. C., Biswas, A., and Li, Z.: Quantifying dual recharge
mechanisms in deep unsaturated zone of Chinese Loess Plateau using stable
isotopes, Geoderma, 337, 773–781, https://doi.org/10.1016/j.geoderma.2018.10.006, 2019.
Yang, B., Wen, X., and Sun, X.: Seasonal variations in depth of water uptake
for a subtropical coniferous plantation subjected to drought in an East
Asian monsoon region, Agr. Forest Meteorol., 201, 218–228, https://doi.org/10.1016/j.agrformet.2014.11.020, 2015.
Yang, M., Gao, X., Wang, S., and Zhao, X.: Quantifying the importance of
deep root water uptake for apple trees' hydrological and physiological
performance in drylands, J. Hydrol., 606, 127471, https://doi.org/10.1016/j.jhydrol.2022.127471, 2022.
Yang, Y. and Fu, B.: Soil water migration in the unsaturated zone of semiarid region in China from isotope evidence, Hydrol. Earth Syst. Sci., 21, 1757–1767, https://doi.org/10.5194/hess-21-1757-2017, 2017.
Zarebanadkouki, M., Kim, Y. X., and Carminati, A.: Where do roots take up
water? Neutron radiography of water flow into the roots of transpiring
plants growing in soil, New Phytol., 199, 1034–1044,
https://doi.org/10.1111/nph.12330, 2013.
Zhang, Z., Huang, M., Yang, Y., and Zhao, X.: Evaluating drought-induced
mortality risk for Robinia pseudoacacia plantations along the precipitation gradient on the
Chinese Loess Plateau, Agr. Forest Meteorol., 284, 107897,
https://doi.org/10.1016/j.agrformet.2019.107897, 2020.
Zhao, L., Wang, L., Cernusak, L. A., Liu, X., Xiao, H., Zhou, M., and Zhang, S.: Significant difference in hydrogen isotope composition between xylem and tissue water in Populus Euphratica, Plant Cell Environ., 39, 1848–1857, https://doi.org/10.1111/pce.12753, 2016.
Zhao, Y. and Wang, L.: Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz trunk water from root water stable isotope measurements, Hydrol. Earth Syst. Sci., 25, 3975–3989, https://doi.org/10.5194/hess-25-3975-2021, 2021.
Zhao, Y., Wang, Y., He, M., Tong, Y., Zhou, J., Guo, X., Liu, J., and Zhang,
X.: Transference of Robinia pseudoacacia water-use patterns from deep to shallow soil layers
during the transition period between the dry and rainy seasons in a
water-limited region, For. Ecol. Manage., 457, 117727, https://doi.org/10.1016/j.foreco.2019.117727, 2020.
Zhao, Y., Wang, L., Knighton, J., Evaristo, J., and Wassen, M.: Contrasting
adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem, Agr.
Forest Meteorol., 300, 108323,
https://doi.org/10.1016/j.agrformet.2021.108323, 2021.
Short summary
Water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit stage and only 100 cm in the fruit swelling stage, while 17-year-old trees always consumed water from 0–320 cm soil layers. Overall, the natural abundance of stable water isotopes method overestimated the contribution of deep soil water, especially in the 320–500 cm soils. Our findings highlight that determining the occurrence of root water uptake in deep soils helps to quantify trees' water use strategy.
Water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit...