Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shaanxi Province, China
Institute of Soil and Water Conservation, Chinese Academy of Sciences
and Ministry of Water Resources, 712100 Yangling, Shaanxi Province, China
Min Yang
College of Water Resources and Architectural Engineering, Northwest
A&F University, 712100 Yangling, Shaanxi Province, China
Gaopeng Huo
College of Land and Resources, Hebei Agricultural University, 071001 Baoding, Hebei Province, China
Xiaolin Song
State Key Laboratory of Crop Stress Biology for Arid Areas, College of
Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi
Province, China
Kadambot H. M. Siddique
The UWA Institute of Agriculture, The University of Western Australia, 6001 Perth, WA, Australia
Pute Wu
Institute of Soil and Water Conservation, Northwest A&F University, 712100 Yangling, Shaanxi Province, China
Institute of Soil and Water Conservation, Chinese Academy of Sciences
and Ministry of Water Resources, 712100 Yangling, Shaanxi Province, China
Water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit stage and only 100 cm in the fruit swelling stage, while 17-year-old trees always consumed water from 0–320 cm soil layers. Overall, the natural abundance of stable water isotopes method overestimated the contribution of deep soil water, especially in the 320–500 cm soils. Our findings highlight that determining the occurrence of root water uptake in deep soils helps to quantify trees' water use strategy.
Water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit...