Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6339-2022
https://doi.org/10.5194/hess-26-6339-2022
Research article
 | 
16 Dec 2022
Research article |  | 16 Dec 2022

River flooding mechanisms and their changes in Europe revealed by explainable machine learning

Shijie Jiang, Emanuele Bevacqua, and Jakob Zscheischler

Related authors

Review article: The growth in compound weather and climate event research in the decade since SREX
Lou Brett, Christopher J. White, Daniela I. V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025,https://doi.org/10.5194/nhess-25-2591-2025, 2025
Short summary
Concurrent modes of climate variability linked to spatially compounding wind and precipitation extremes in the Northern Hemisphere
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
Earth Syst. Dynam., 16, 1029–1051, https://doi.org/10.5194/esd-16-1029-2025,https://doi.org/10.5194/esd-16-1029-2025, 2025
Short summary
EARLS: A runoff reconstruction dataset for Europe
Daniel Klotz, Peter Miersch, Thiago V. M. do Nascimento, Fabrizio Fenicia, Martin Gauch, and Jakob Zscheischler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-450,https://doi.org/10.5194/essd-2024-450, 2025
Revised manuscript under review for ESSD
Short summary
An increase in the spatial extent of European floods over the last 70 years
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024,https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024,https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Mathematical applications
Understanding meteorological and physio-geographical controls of variability of flood event classes in headstream catchments of China
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci., 29, 3257–3275, https://doi.org/10.5194/hess-29-3257-2025,https://doi.org/10.5194/hess-29-3257-2025, 2025
Short summary
Technical note: Streamflow seasonality using directional statistics
Wouter R. Berghuijs, Kate Hale, and Harsh Beria
Hydrol. Earth Syst. Sci., 29, 2851–2862, https://doi.org/10.5194/hess-29-2851-2025,https://doi.org/10.5194/hess-29-2851-2025, 2025
Short summary
Technical note: Quadratic Solution of the Approximate Reservoir Equation (QuaSoARe)
Julien Lerat
Hydrol. Earth Syst. Sci., 29, 2003–2021, https://doi.org/10.5194/hess-29-2003-2025,https://doi.org/10.5194/hess-29-2003-2025, 2025
Short summary
Two-dimensional Differential-form of Distributed Xinanjiang Model
Jianfei Zhao, Zhongmin Liang, Vijay P. Singh, Taiyi Wen, Yiming Hu, Binquan Li, and Jun Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-377,https://doi.org/10.5194/hess-2024-377, 2025
Revised manuscript accepted for HESS
Short summary
Climatic, topographic, and groundwater controls on runoff response to precipitation: evidence from a large-sample data set
Zahra Eslami, Hansjörg Seybold, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2025-35,https://doi.org/10.5194/egusphere-2025-35, 2025
Short summary

Cited articles

Alfieri, L., Burek, P., Feyen, L., and Forzieri, G.: Global warming increases the frequency of river floods in Europe, Hydrol. Earth Syst. Sci., 19, 2247–2260, https://doi.org/10.5194/hess-19-2247-2015, 2015. 
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., and Feyen, L.: Global projections of river flood risk in a warmer world, Earth's Future, 5, 171–182, https://doi.org/10.1002/2016ef000485, 2017. 
Barnes, E. A., Toms, B., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., and Anderson, D.: Indicator patterns of forced change learned by an artificial neural network, J. Adv. Model. Earth Syst., 12, e2020MS002195, https://doi.org/10.1029/2020ms002195, 2020. 
Bengtsson, L., Hodges, K. I., and Roeckner, E.: Storm tracks and climate change, J. Climate, 19, 3518–3543, https://doi.org/10.1175/jcli3815.1, 2006. 
Beniston, M. and Stoffel, M.: Rain-on-snow events, floods and climate change in the Alps: Events may increase with warming up to 4 degrees C and decrease thereafter, Sci. Total Environ., 571, 228–236, https://doi.org/10.1016/j.scitotenv.2016.07.146, 2016. 
Download
Short summary
Using a novel explainable machine learning approach, we investigated the contributions of precipitation, temperature, and day length to different peak discharges, thereby uncovering three primary flooding mechanisms widespread in European catchments. The results indicate that flooding mechanisms have changed in numerous catchments over the past 70 years. The study highlights the potential of artificial intelligence in revealing complex changes in extreme events related to climate change.
Share