Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6339-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6339-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
River flooding mechanisms and their changes in Europe revealed by explainable machine learning
Department of Computational Hydrosystems, Helmholtz Centre for
Environmental Research, 04318 Leipzig, Germany
Emanuele Bevacqua
Department of Computational Hydrosystems, Helmholtz Centre for
Environmental Research, 04318 Leipzig, Germany
Jakob Zscheischler
Department of Computational Hydrosystems, Helmholtz Centre for
Environmental Research, 04318 Leipzig, Germany
Related authors
No articles found.
Lily-belle Sweet, Christoph Müller, Jonas Jägermeyr, and Jakob Zscheischler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3006, https://doi.org/10.5194/egusphere-2025-3006, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study presents a method to identify climate drivers of an impact, such as agricultural yield failure, from high-resolution weather data. The approach systematically generates, selects and combines predictors that generalise across different environments. Tested on crop model simulations, the identified drivers are used to create parsimonious models that achieve high predictive performance over long time horizons, offering a more interpretable alternative to black-box models.
Lou Brett, Christopher J. White, Daniela I. V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci., 25, 2591–2611, https://doi.org/10.5194/nhess-25-2591-2025, https://doi.org/10.5194/nhess-25-2591-2025, 2025
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events, and compounding flooding. The review also highlights opportunities for research in the coming years.
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
Earth Syst. Dynam., 16, 1029–1051, https://doi.org/10.5194/esd-16-1029-2025, https://doi.org/10.5194/esd-16-1029-2025, 2025
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Daniel Klotz, Peter Miersch, Thiago V. M. do Nascimento, Fabrizio Fenicia, Martin Gauch, and Jakob Zscheischler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-450, https://doi.org/10.5194/essd-2024-450, 2025
Preprint under review for ESSD
Short summary
Short summary
Data availability is central to hydrological science. It is the basis for advancing our understanding of hydrological processes, building prediction models, and anticipatory water management. We present a data-driven daily runoff reconstruction product for natural streamflow. We name it EARLS: European aggregated reconstruction for large-sample studies. The reconstructions represent daily simulations of natural streamflow across Europe and cover the period from 1953 to 2020.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024, https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Short summary
The evaluation of model performance is essential for hydrological modeling. Using performance criteria requires a deep understanding of their properties. We focus on a counterintuitive aspect of the Nash–Sutcliffe efficiency (NSE) and show that if we divide the data into multiple parts, the overall performance can be higher than all the evaluations of the subsets. Although this follows from the definition of the NSE, the resulting behavior can have unintended consequences in practice.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Derrick Muheki, Axel A. J. Deijns, Emanuele Bevacqua, Gabriele Messori, Jakob Zscheischler, and Wim Thiery
Earth Syst. Dynam., 15, 429–466, https://doi.org/10.5194/esd-15-429-2024, https://doi.org/10.5194/esd-15-429-2024, 2024
Short summary
Short summary
Climate change affects the interaction, dependence, and joint occurrence of climate extremes. Here we investigate the joint occurrence of pairs of river floods, droughts, heatwaves, crop failures, wildfires, and tropical cyclones in East Africa under past and future climate conditions. Our results show that, across all future warming scenarios, the frequency and spatial extent of these co-occurring extremes will increase in this region, particularly in areas close to the Nile and Congo rivers.
Colin Manning, Martin Widmann, Douglas Maraun, Anne F. Van Loon, and Emanuele Bevacqua
Weather Clim. Dynam., 4, 309–329, https://doi.org/10.5194/wcd-4-309-2023, https://doi.org/10.5194/wcd-4-309-2023, 2023
Short summary
Short summary
Climate models differ in their representation of dry spells and high temperatures, linked to errors in the simulation of persistent large-scale anticyclones. Models that simulate more persistent anticyclones simulate longer and hotter dry spells, and vice versa. This information is important to consider when assessing the likelihood of such events in current and future climate simulations so that we can assess the plausibility of their future projections.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022, https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
Short summary
Droughts and heatwaves are expected to occur more often in the future, but their effects on land vegetation and the carbon cycle are poorly understood. We use six climate scenarios with differing extreme occurrences and a vegetation model to analyse these effects. Tree coverage and associated plant productivity increase under a climate with no extremes. Frequent co-occurring droughts and heatwaves decrease plant productivity more than the combined effects of single droughts or heatwaves.
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021, https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
Short summary
Climate hazards may be caused by events which have multiple drivers. Here we present a method to break down climate model biases in hazard indicators down to the bias caused by each driving variable. Using simplified fire and heat stress indicators driven by temperature and relative humidity as examples, we show how multivariate indicators may have complex biases and that the relationship between driving variables is a source of bias that must be considered in climate model bias corrections.
Jun Li, Zhaoli Wang, Xushu Wu, Jakob Zscheischler, Shenglian Guo, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 1587–1601, https://doi.org/10.5194/hess-25-1587-2021, https://doi.org/10.5194/hess-25-1587-2021, 2021
Short summary
Short summary
We introduce a daily-scale index, termed the standardized compound drought and heat index (SCDHI), to measure the key features of compound dry-hot conditions. SCDHI can not only monitor the long-term compound dry-hot events, but can also capture such events at sub-monthly scale and reflect the related vegetation activity impacts. The index can provide a new tool to quantify sub-monthly characteristics of compound dry-hot events, which are vital for releasing early and timely warning.
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cecile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences, 18, 2119–2137, https://doi.org/10.5194/bg-18-2119-2021, https://doi.org/10.5194/bg-18-2119-2021, 2021
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heat wave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heat wave and
low-chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea and show that they mostly occur in summer at high latitudes and their frequency is modulated by large-scale modes of climate variability.
Johannes Vogel, Pauline Rivoire, Cristina Deidda, Leila Rahimi, Christoph A. Sauter, Elisabeth Tschumi, Karin van der Wiel, Tianyi Zhang, and Jakob Zscheischler
Earth Syst. Dynam., 12, 151–172, https://doi.org/10.5194/esd-12-151-2021, https://doi.org/10.5194/esd-12-151-2021, 2021
Short summary
Short summary
We present a statistical approach for automatically identifying multiple drivers of extreme impacts based on LASSO regression. We apply the approach to simulated crop failure in the Northern Hemisphere and identify which meteorological variables including climate extreme indices and which seasons are relevant to predict crop failure. The presented approach can help unravel compounding drivers in high-impact events and could be applied to other impacts such as wildfires or flooding.
Jakob Zscheischler, Philippe Naveau, Olivia Martius, Sebastian Engelke, and Christoph C. Raible
Earth Syst. Dynam., 12, 1–16, https://doi.org/10.5194/esd-12-1-2021, https://doi.org/10.5194/esd-12-1-2021, 2021
Short summary
Short summary
Compound extremes such as heavy precipitation and extreme winds can lead to large damage. To date it is unclear how well climate models represent such compound extremes. Here we present a new measure to assess differences in the dependence structure of bivariate extremes. This measure is applied to assess differences in the dependence of compound precipitation and wind extremes between three model simulations and one reanalysis dataset in a domain in central Europe.
Andreia Filipa Silva Ribeiro, Ana Russo, Célia Marina Gouveia, Patrícia Páscoa, and Jakob Zscheischler
Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, https://doi.org/10.5194/bg-17-4815-2020, 2020
Short summary
Short summary
This study investigates the impacts of compound dry and hot extremes on crop yields, namely wheat and barley, over two regions in Spain dominated by rainfed agriculture. We provide estimates of the conditional probability of crop loss under compound dry and hot conditions, which could be an important tool for responsible authorities to mitigate the impacts magnified by the interactions between the different hazards.
Cited articles
Alfieri, L., Burek, P., Feyen, L., and Forzieri, G.: Global warming increases the frequency of river floods in Europe, Hydrol. Earth Syst. Sci., 19, 2247–2260, https://doi.org/10.5194/hess-19-2247-2015, 2015.
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., and Feyen, L.: Global projections of river flood risk in a
warmer world, Earth's Future, 5, 171–182, https://doi.org/10.1002/2016ef000485, 2017.
Barnes, E. A., Toms, B., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., and
Anderson, D.: Indicator patterns of forced change learned by an artificial
neural network, J. Adv. Model. Earth Syst., 12, e2020MS002195, https://doi.org/10.1029/2020ms002195, 2020.
Bengtsson, L., Hodges, K. I., and Roeckner, E.: Storm tracks and climate change, J. Climate, 19, 3518–3543, https://doi.org/10.1175/jcli3815.1, 2006.
Beniston, M. and Stoffel, M.: Rain-on-snow events, floods and climate change
in the Alps: Events may increase with warming up to 4 degrees C and decrease
thereafter, Sci. Total Environ., 571, 228–236, https://doi.org/10.1016/j.scitotenv.2016.07.146, 2016.
Bennett, B., Leonard, M., Deng, Y., and Westra, S.: An empirical investigation into the effect of antecedent precipitation on flood volume,
J. Hydrol., 567, 435–445, https://doi.org/10.1016/j.jhydrol.2018.10.025, 2018.
Berghuijs, W. R., Woods, R. A., Hutton, C. J., and Sivapalan, M.: Dominant
flood generating mechanisms across the United States, Geophysical Research
Letters, 43, 4382–4390, 10.1002/2016gl068070, 2016.
Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., and Kirchner, J.
W.: The relative importance of different flood-generating mechanisms across
Europe, Water Resour. Res., 55, 4582–4593, https://doi.org/10.1029/2019wr024841, 2019.
Bertola, M., Viglione, A., Lun, D., Hall, J., and Blöschl, G.: Flood
trends in Europe: are changes in small and big floods different?, Hydrol.
Earth Syst. Sci., 24, 1805–1822, https://doi.org/10.5194/hess-24-1805-2020, 2020.
Bertola, M., Viglione, A., Vorogushyn, S., Lun, D., Merz, B., and Bloeschl,
G.: Do small and large floods have the same drivers of change? A regional
attribution analysis in Europe, Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021, 2021.
Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S.,
Ramos, A. M., Vignotto, E., Bastos, A., Blesic, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P., Saunders, K., van der Wiel, K., Wu, W. Y., Zhang, T. Y., and Zscheischler, J.: Guidelines for
studying diverse types of compound weather and climate events, Earth's
Future, 9, e2021EF002340, https://doi.org/10.1029/2021ef002340, 2021.
Blanchet, J. and Creutin, J. D.: Co-occurrence of extreme daily rainfall in
the French mediterranean region, Water Resour. Res., 53, 9330–9349,
https://doi.org/10.1002/2017wr020717, 2017.
Blöschl, G., Hall, J., Parajka, J., Perdigao, R. A. P., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M., Canjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gul, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnova, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M., Salinas, J. L., Sauquet, E., Sraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson, D., Zaimi, K., and Zivkovic, N.: Changing climate shifts timing of European floods, Science, 357, 588–590, https://doi.org/10.1126/science.aan2506, 2017.
Blöschl, G., Hall, J., Viglione, A., Perdigao, R. A. P., Parajka, J.,
Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Bohac, M.,
Bonacci, O., Borga, M., Canjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gul, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnova, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet, E., Sraj, M., Szolgay, J., Volpi, E.,
Wilson, D., Zaimi, K., and Zivkovic, N.: Changing climate both increases and
decreases European river floods, Nature, 573, 108–111,
https://doi.org/10.1038/s41586-019-1495-6, 2019.
Brunner, M. I., Swain, D. L., Wood, R. R., Willkofer, F., Done, J. M.,
Gilleland, E., and Ludwig, R.: An extremeness threshold determines the
regional response of floods to changes in rainfall extremes, Commun. Earth Environ., 2, 173, https://doi.org/10.1038/s43247-021-00248-x, 2021.
Cohen, J., Ye, H. C., and Jones, J.: Trends and variability in rain-on-snow
events, Geophys. Res. Lett., 42, 7115–7122, https://doi.org/10.1002/2015gl065320,
2015.
Davenport, F. V., Herrera-Estrada, J. E., Burke, M., and Diffenbaugh, N. S.:
Flood size increases nonlinearly across the western United States in response to lower snow-precipitation ratios, Water Resour. Res., 56, e2019WR025571, https://doi.org/10.1029/2019wr025571, 2020.
Do, H. X., Gudmundsson, L., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata, Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, 2018a.
Do, H. X., Gudmundsson, L., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive – Part 1: Station catalog and Catchment boundary, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.887477, 2018b.
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J.,
Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., and Lautenbach, S.:
Collinearity: a review of methods to deal with it and a simulation study
evaluating their performance, Ecography, 36, 27–46,
https://doi.org/10.1111/j.1600-0587.2012.07348.x, 2013.
ECA & D: E-OBS gridded dataset, ECA & D [data set], https://www.ecad.eu/download/ensembles/download.php (last access: 1 November 2021), 2022.
EROS: Digital Elevation – Global 30 Arc-Second Elevation (GTOPO30), USGS [data set], https://doi.org/10.5066/F7DF6PQS, 2018.
Federal Institute of Hydrology: Watershed Boundaries of GRDC Stations, Global Runoff Data Centre [data set], https://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/222_WSB/watershedBoundaries.html (last access: 1 November 2021), 2011.
Federal Institute of Hydrology: Global Runoff Database, Global Runoff Data Centre [data set], https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser (last access: 1 November 2021), 2022.
Fischer, E. M. and Knutti, R.: Observed heavy precipitation increase confirms theory and early models, Nat. Clim. Change, 6, 986–991, https://doi.org/10.1038/nclimate3110, 2016.
Fontrodona-Bach, A., van der Schrier, G., Melsen, L. A., Tank, A., and Teuling, A. J.: Widespread and accelerated decrease of observed mean and
extreme snow depth over Europe, Geophys. Res. Lett., 45, 12312–12319, https://doi.org/10.1029/2018gl079799, 2018.
Forsythe, W. C., Rykiel, E. J., Stahl, R. S., Wu, H. I., and Schoolfield, R.
M.: A model comparison for daylength as a function of latitude and day of
year, Ecological Modelling, 80, 87-95, 10.1016/0304-3800(94)00034-f, 1995.
Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O.,
Qualls, L. M., Gupta, H. V., and Nearing, G. S.: Deep learning rainfall–runoff predictions of extreme events, Hydrol. Earth Syst. Sci.,
26, 3377–3392, https://doi.org/10.5194/hess-26-3377-2022, 2022.
Gers, F. A., Schmidhuber, J., and Cummins, F.: Learning to forget: continual
prediction with LSTM, in: 1999 Ninth International Conference on Artificial
Neural Networks ICANN 99, Conf. Publ. No. 470,, 7–10 September 1999, Edinburgh, UK, https://doi.org/10.1049/cp:19991218, 1999.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.: 21st century climate change in the European Alps – A review,
Sci. Total Environ., 493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Hall, J. and Blöschl, G.: Spatial patterns and characteristics of flood
seasonality in Europe, Hydrolo. Earth Syst. Sci., 22, 3883–3901,
https://doi.org/10.5194/hess-22-3883-2018, 2018.
Hall, J., Arheimer, B., Borga, M., Brazdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriauciuniene, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigao, R. A. P., Plavcova, L., Rogger, M., Salinas, J. L., Sauquet, E., Schar, C., Szolgay, J., Viglione, A., and Bloschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
Hallema, D. W., Moussa, R., Sun, G., and McNulty, S. G.: Surface storm flow
prediction on hillslopes based on topography and hydrologic connectivity,
Ecol. Process., 5, 13, https://doi.org/10.1186/s13717-016-0057-1, 2016.
Hamed, K. H. and Rao, A. R.: A modified Mann–Kendall trend test for
autocorrelated data, J. Hydrol., 204, 182–196, https://doi.org/10.1016/s0022-1694(97)00125-x, 1998.
Hamon, W. R.: Estimating potential evapotranspiration, J. Hydraul. Div., 87, 107–102, https://doi.org/10.1061/JYCEAJ.0000599, 1961.
Hartono, N. T. P., Thapa, J., Tiihonen, A., Oviedo, F., Batali, C., Yoo, J.
J., Liu, Z., Li, R., Marrón, D. F., Bawendi, M. G., Buonassisi, T., and
Sun, S.: How machine learning can help select capping layers to suppress
perovskite degradation, Nat. Commun., 11, 4172, https://doi.org/10.1038/s41467-020-17945-4, 2020.
Haylock, M. R., Hofstra, N., Tank, A., Klok, E. J., Jones, P. D., and New,
M.: A European daily high-resolution gridded data set of surface temperature
and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119, https://doi.org/10.1029/2008jd010201, 2008.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013.
Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997.
Isotta, F. A., Frei, C., Weilguni, V., Tadic, M. P., Lassegues, P., Rudolf,
B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M., Munari, M.,
Micheletti, S., Bonati, V., Lussana, C., Ronchi, C., Panettieri, E., Marigo,
G., and Vertacnik, G.: The climate of daily precipitation in the Alps:
development and analysis of a high-resolution grid dataset from pan-Alpine
rain-gauge data, Int. J. Climatol., 34, 1657–1675, https://doi.org/10.1002/joc.3794, 2014.
Jiang, S.: An interpretive deep learning framework for identifying flooding mechanisms, Zenodo [code], https://doi.org/10.5281/zenodo.4686106, 2022.
Jiang, S. J., Zheng, Y., Wang, C., and Babovic, V.: Uncovering flooding
mechanisms across the contiguous United States through interpretive deep
learning on representative catchments, Water Resour. Res., 58, e2021WR030185, https://doi.org/10.1029/2021wr030185, 2022.
Keller, L., Rossler, O., Martius, O., and Weingartner, R.: Delineation of
flood generating processes and their hydrological response, Hydrol. Process., 32, 228–240, https://doi.org/10.1002/hyp.11407, 2018.
Kemter, M., Merz, B., Marwan, N., Vorogushyn, S., and Bloeschl, G.: Joint
trends in flood magnitudes and spatial extents across Europe, Geophys. Res. Lett., 47, e2020GL087464, https://doi.org/10.1029/2020gl087464, 2020.
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, in: 3rd International Conference on Learning Representations, 7–9 May 2015, San Diego, https://doi.org/10.48550/arXiv.1412.6980, 2015.
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.:
Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks,
Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 2018.
Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., and Klambauer, G.:
NeuralHydrology – Interpreting LSTMs in Hydrology, in: Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning, edited by: Samek,
W., Montavon, G., Vedaldi, A., Hansen, L. K., and Müller, K.-R., Springer International Publishing, Cham, 347–362, https://doi.org/10.1007/978-3-030-28954-6_19, 2019a.
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and
Nearing, G.: Towards learning universal, regional, and local hydrological
behaviors via machine learning applied to large-sample datasets, Hydrol.
Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019b.
Kroll, C. N. and Song, P.: Impact of multicollinearity on small sample
hydrologic regression models, Water Resour. Res., 49, 3756-3769,
https://doi.org/10.1002/wrcr.20315, 2013.
Labe, Z. M. and Barnes, E. A.: Detecting climate signals using explainable AI With single-forcing large ensembles, J. Adv. Model. Earth Syst., 13, e2021MS002464, https://doi.org/10.1029/2021ms002464, 2021.
Lavers, D. A. and Villarini, G.: The nexus between atmospheric rivers and
extreme precipitation across Europe, Geophys. Res. Lett., 40, 3259–3264, https://doi.org/10.1002/grl.50636, 2013.
Ledingham, J., Archer, D., Lewis, E., Fowler, H., and Kilsby, C.: Contrasting seasonality of storm rainfall and flood runoff in the UK and some implications for rainfall-runoff methods of flood estimation, Hydrol. Res., 50, 1309–1323, https://doi.org/10.2166/nh.2019.040, 2019.
Lees, T., Buechel, M., Anderson, B., Slater, L., Reece, S., Coxon, G., and
Dadson, S. J.: Benchmarking data-driven rainfall-runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models, Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021, 2021.
Lees, T., Reece, S., Kratzert, F., Klotz, D., Gauch, M., De Bruijn, J.,
Kumar Sahu, R., Greve, P., Slater, L., and Dadson, S. J.: Hydrological concept formation inside long short-term memory (LSTM) networks, Hydrol.
Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022, 2022.
Lehner, B.: Derivation of watershed boundaries for GRDC gauging stations
based on the HydroSHEDS drainage network, Federal Institute of Hydrology (BfG), Koblenz, 18 pp., https://www.bafg.de/GRDC/EN/02_srvcs/24_rprtsrs/report_41 (last access: 1 November 2021), 2012.
Merz, B., Vorogushyn, S., Uhlemann, S., Delgado, J., and Hundecha, Y.: HESS
Opinions “More efforts and scientific rigour are needed to attribute trends
in flood time series”, Hydrol. Earth Syst. Sci., 16, 1379–1387,
https://doi.org/10.5194/hess-16-1379-2012, 2012.
Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C. J. H.,
Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U., and Macdonald, E.: Causes, impacts and patterns of disastrous river floods, Nat. Rev. Earth Environ., 2, 592–609, https://doi.org/10.1038/s43017-021-00195-3, 2021.
Merz, R. and Blöschl, G.: A process typology of regional floods, Water
Resour. Res., 39, 1340, https://doi.org/10.1029/2002wr001952, 2003.
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and
water quality models: Performance measures and evaluation criteria, T. ASABE, 58, 1763–1785, 2015.
Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B.: Definitions, methods, and applications in interpretable machine learning, P. Natl. Acad. Sci. USA, 116, 22071–22080, https://doi.org/10.1073/pnas.1900654116, 2019.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D.,
Frame, J. M., Prieto, C., and Gupta, H. V.: What Role Does Hydrological
Science Play in the Age of Machine Learning?, Water Resour. Res., 57,
e2020WR028091, https://doi.org/10.1029/2020wr028091, 2021.
Nied, M., Pardowitz, T., Nissen, K., Ulbrich, U., Hundecha, Y., and Merz, B.: On the relationship between hydro-meteorological patterns and flood types, J. Hydrol., 519, 3249–3262, https://doi.org/10.1016/j.jhydrol.2014.09.089, 2014.
Pagano, T. and Garen, D.: A recent increase in western US streamflow variability and persistence, J. Hydrometeorol., 6, 173–179, https://doi.org/10.1175/jhm410.1, 2005.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019.
Rottler, E., Bronstert, A., Burger, G., and Rakovec, O.: Projected changes
in Rhine River flood seasonality under global warming, Hydrol. Earth Syst. Sci., 25, 2353–2371, https://doi.org/10.5194/hess-25-2353-2021, 2021.
Rousseeuw, P. J.: Silhouettes – A graphical aid to the interpretation and
validation of cluster-analysis, J. Comput. Appl. Math., 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987.
Salvador, S. and Chan, P.: Toward accurate dynamic time warping in linear
time and space, Intell. Data Anal., 11, 561–580, https://doi.org/10.3233/IDA-2007-11508, 2007.
Schiemann, R., Vidale, P. L., Shaffrey, L. C., Johnson, S. J., Roberts, M.
J., Demory, M. E., Mizielinski, M. S., and Strachan, J.: Mean and extreme
precipitation over European river basins better simulated in a 25 km AGCM,
Hydrol. Earth Syst. Sci., 22, 3933–3950, https://doi.org/10.5194/hess-22-3933-2018, 2018.
Sharma, A., Wasko, C., and Lettenmaier, D. P.: If precipitation extremes are
increasing, why aren't floods?, Water Resour. Res., 54, 8545–8551,
https://doi.org/10.1029/2018wr023749, 2018.
Shen, C. P.: A transdisciplinary review of deep learning research and its
relevance for water resources scientists, Water Resour. Res., 54, 8558–8593, https://doi.org/10.1029/2018wr022643, 2018.
Sherstinsky, A.: Fundamentals of Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) network, Physica D, 404, 132306, https://doi.org/10.1016/j.physd.2019.132306, 2020.
Sikorska, A. E., Viviroli, D., and Seibert, J.: Flood-type classification in
mountainous catchments using crisp and fuzzy decision trees, Water Resour.
Res., 51, 7959–7976, https://doi.org/10.1002/2015wr017326, 2015.
Stein, L., Pianosi, F., and Woods, R.: Event-based classification for global
study of river flood generating processes, Hydrol. Process., 34, 1514–1529, https://doi.org/10.1002/hyp.13678, 2020.
Stein, L., Clark, M. P., Knoben, W. J. M., Pianosi, F., and Woods, R. A.:
How do climate and catchment attributes influence flood generating processes? A large-sample study for 671 catchments across the contiguous USA, Water Resour. Res., 57, e2020WR028300, https://doi.org/10.1029/2020wr028300, 2021.
Su, Y. H. and Kuo, C. C. J.: On extended long short-term memory and dependent bidirectional recurrent neural network, Neurocomputing, 356, 151–161, https://doi.org/10.1016/j.neucom.2019.04.044, 2019.
Sundararajan, M., Taly, A., and Yan, Q.: Axiomatic attribution for deep
networks, in: Proceedings of the 34th International Conference on Machine
Learning, August 2017, Sydney, https://doi.org/10.48550/arXiv.1703.01365, 2017.
Tarasova, L., Merz, R., Kiss, A., Basso, S., Blöschl, G., Merz, B.,
Viglione, A., Plotner, S., Guse, B., Schumann, A., Fischer, S., Ahrens, B.,
Anwar, F., Bardossy, A., Buhler, P., Haberlandt, U., Kreibich, H., Krug, A.,
Lun, D., Muller-Thomy, H., Pidoto, R., Primo, C., Seidel, J., Vorogushyn, S., and Wietzke, L.: Causative classification of river flood events, Wiley Interdisciplin. Rev.-Water, 6, e1353, https://doi.org/10.1002/wat2.1353, 2019.
Tarasova, L., Basso, S., Wendi, D., Viglione, A., Kumar, R., and Merz, R.: A
Process-Based Framework to Characterize and Classify Runoff Events: The
Event Typology of Germany, Water Resour. Res., 56, e2019WR026951, https://doi.org/10.1029/2019wr026951, 2020.
Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz , G., Holtz, C.,
Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., and Woods, E.: Tslearn,
a machine learning toolkit for time series data, J. Mach. Learn. Res., 21, 1–6, 2020.
Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S., Brakenridge, G. R., Erickson, T. A., and Slayback, D. A.: Satellite imaging
reveals increased proportion of population exposed to floods, Nature, 596,
80–86, https://doi.org/10.1038/s41586-021-03695-w, 2021.
Toms, B. A., Barnes, E. A., and Ebert-Uphoff, I.: Physically interpretable
neural networks for the geosciences: Applications to Earth system variability, J. Adv. Model. Earth Syst., 12, e2019MS002002, https://doi.org/10.1029/2019ms002002, 2020.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, https://doi.org/10.3354/cr00953, 2011.
Turkington, T., Breinl, K., Ettema, J., Alkema, D., and Jetten, V.: A new
flood type classification method for use in climate change impact studies,
Weather Clim. Ext., 14, 1–16, https://doi.org/10.1016/j.wace.2016.10.001, 2016.
Vormoor, K., Lawrence, D., Heistermann, M., and Bronstert, A.: Climate change impacts on the seasonality and generation processes of floods – projections and uncertainties for catchments with mixed snowmelt/rainfall regimes, Hydrol. Earth Syst. Sci., 19, 913–931, https://doi.org/10.5194/hess-19-913-2015, 2015.
Vormoor, K., Lawrence, D., Schlichting, L., Wilson, D., and Wong, W. K.:
Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway, J. Hydrol., 538, 33–48,
https://doi.org/10.1016/j.jhydrol.2016.03.066, 2016.
Wasko, C. and Nathan, R.: Influence of changes in rainfall and soil moisture
on trends in flooding, J. Hydrol., 575, 432–441, https://doi.org/10.1016/j.jhydrol.2019.05.054, 2019.
Whan, K., Sillmann, J., Schaller, N., and Haarsma, R.: Future changes in
atmospheric rivers and extreme precipitation in Norway, Clim. Dynam., 54, 2071–2084, https://doi.org/10.1007/s00382-019-05099-z, 2020.
Yu, S. W. and Ma, J. W.: Deep learning for geophysics: Current and future
trends, Rev. Geophys., 59, e2021RG000742, https://doi.org/10.1029/2021rg000742, 2021.
Zscheischler, J., Westra, S., van den Hurk, B., Seneviratne, S. I., Ward, P.
J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and
Zhang, X. B.: Future climate risk from compound events, Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B., AghaKouchak, A., Jezequel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N., Thiery, W., and Vignotto, E.: A
typology of compound weather and climate events, Nat. Rev. Earth Environ., 1, 333–347, https://doi.org/10.1038/s43017-020-0060-z, 2020.
Short summary
Using a novel explainable machine learning approach, we investigated the contributions of precipitation, temperature, and day length to different peak discharges, thereby uncovering three primary flooding mechanisms widespread in European catchments. The results indicate that flooding mechanisms have changed in numerous catchments over the past 70 years. The study highlights the potential of artificial intelligence in revealing complex changes in extreme events related to climate change.
Using a novel explainable machine learning approach, we investigated the contributions of...