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Abstract. Climate change may systematically impact hy-
drometeorological processes and their interactions, resulting
in changes in flooding mechanisms. Identifying such changes
is important for flood forecasting and projection. Currently,
there is a lack of observational evidence regarding trends
in flooding mechanisms in Europe, which requires reliable
methods to disentangle emerging patterns from the complex
interactions between flood drivers. Recently, numerous stud-
ies have demonstrated the skill of machine learning (ML) for
predictions in hydrology, e.g., for predicting river discharge
based on its relationship with meteorological drivers. The re-
lationship, if explained properly, may provide us with new
insights into hydrological processes. Here, by using a novel
explainable ML framework, combined with cluster analy-
sis, we identify three primary patterns that drive 53 968 an-
nual maximum discharge events in around a thousand Euro-
pean catchments. The patterns can be associated with three
catchment-wide river flooding mechanisms: recent precipita-
tion, antecedent precipitation (i.e., excessive soil moisture),
and snowmelt. The results indicate that over half of the stud-
ied catchments are controlled by a combination of the above
mechanisms, especially recent precipitation in combination
with excessive soil moisture, which is the dominant mecha-
nism in one-third of the catchments. Over the past 70 years,
significant changes in the dominant flooding mechanisms
have been detected within a number of European catchments.
Generally, the number of snowmelt-induced floods has de-
creased significantly, whereas floods driven by recent pre-
cipitation have increased. The detected changes in flood-
ing mechanisms are consistent with the expected climate
change responses, and we highlight the risks associated with
the resulting impact on flooding seasonality and magnitude.
Overall, the study offers a new perspective on understand-

ing changes in weather and climate extreme events by using
explainable ML and demonstrates the prospect of future sci-
entific discoveries supported by artificial intelligence.

1 Introduction

River flooding is a pervasive natural hazard that regularly
causes substantial economic, societal, and environmental
damages worldwide (Tellman et al., 2021; Merz et al., 2021).
With a warming atmosphere, flooding risk is projected to in-
crease due to an intensification of the water cycle over large
areas (Hirabayashi et al., 2013; Alfieri et al., 2017). For Eu-
rope, large-scale studies have revealed changes in flooding
frequency, seasonality, and magnitude over the past decades,
with considerable variations across catchments (Blöschl et
al., 2017, 2019; Hall and Blöschl, 2018; Bertola et al., 2020;
Alfieri et al., 2015). The spatial inconsistency in these trends
reflects differences in flood-generating processes across the
continent, which underscores the need for a better under-
standing of flood drivers (Keller et al., 2018).

In recent years, numerous studies have investigated river
flooding mechanisms, and some of them have provided
European-scale assessments (e.g., Berghuijs et al., 2016,
2019; Kemter et al., 2020; Bertola et al., 2021; Stein et al.,
2020). Catchment-level floods can typically be attributed to
the interaction of hydrometeorological processes, such as
extreme precipitation, soil moisture excess, and snowmelt
(Merz and Blöschl, 2003; Tarasova et al., 2019). The dom-
inant controlling processes in catchments were usually iden-
tified either qualitatively by comparing the observed flood
trends with the contemporaneous changes in flooding drivers
(e.g., Blöschl et al., 2017, 2019) or quantitatively by cal-
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culating the seasonal similarities between flood events and
potential drivers (e.g., Berghuijs et al., 2016, 2019). Such
analyses revealed the dominant flood-generating processes
at a catchment level, improving the understanding of climate
change effects on flooding magnitude and timing. However,
the methods often implicitly assume temporally consistent
flood processes within a catchment (Merz et al., 2012), mak-
ing it difficult to detect possible changes in flooding mecha-
nisms themselves in a warming climate.

Flooding mechanisms that dominate one catchment are
not always immutable but might shift over time, particularly
in light of climate change (Hall et al., 2014). For example,
increasing temperatures can affect snow dynamics in cold
regions and result in more rainfall extremes, which could
make snowmelt-dominated catchments more susceptible to
extreme rainfall and thereby alter the regional flood season-
ality and magnitudes (Davenport et al., 2020; Rottler et al.,
2021; Vormoor et al., 2016). Therefore, a systematic inves-
tigation of the changes in flooding mechanisms is necessary.
Yet few studies have been able to quantify how the mech-
anisms evolved over time on a continental scale in Europe.
The identification of specific trends in flooding mechanisms
requires a comprehensive understanding of hydrological pro-
cesses underlying individual events (Stein et al., 2020). Cur-
rently available studies that attempted to classify river flood-
ing processes on an event basis typically rely on multicri-
teria approaches, which require predefining thresholds for
a variety of hydrometeorological indicators, such as the
storm duration and snowmelt amount (e.g., Nied et al., 2014;
Stein et al., 2021). Using a multicriteria approach, Kemter
et al. (2020) identified the flooding mechanisms in Europe
by classifying approximately 174 000 flood peaks and re-
vealed their trends over the past 50 years. Likewise, Stein
et al. (2020) analyzed flood events over 4155 catchments
worldwide and classified them into five flood-generating pro-
cesses. Despite the computational efficiency of using multi-
criteria approaches, the obtained insights are often dependent
on the careful choice of indicators and thresholds. For exam-
ple, in some cases, a small change in a threshold value mod-
ifies the classification, potentially compromising the robust-
ness of the results (Sikorska et al., 2015). Alternatively, some
studies grouped flood events by inductive analyses, which
adopted clustering methods to obtain flood types from hy-
drometeorological indicators (e.g., Turkington et al., 2016;
Keller et al., 2018). However, the chosen indicators (e.g.,
snow-covered area, day of occurrence, and 95th percentile
of spatial precipitation distribution) did not unambiguously
indicate flooding mechanisms, since they were not indicative
of the causal contribution of flood drivers to peak discharges
(Tarasova et al., 2019).

An effective way to identify flooding mechanisms for indi-
vidual flood events is to quantify the contribution of possible
drivers to its occurrence, which involves uncovering the im-
plicit connections that may exist between flood events and
meteorological observations. This can be achieved by ma-

chine learning (ML), which has been receiving increasing at-
tention in Earth and climate sciences for its remarkable abil-
ity to identify and generalize predictive relations with a high-
level abstract representation (Reichstein et al., 2019; Yu and
Ma, 2021). In hydrology particularly, one excellent example
is the prevalence of Long Short-Term Memory (LSTM) neu-
ral networks (Kratzert et al., 2018; Shen, 2018), which have
been demonstrated to learn patterns conceptually consistent
with qualitative understandings of how hydrological systems
work as opposed to simply trivial coincidences (Kratzert et
al., 2019a). Extraction of captured patterns from “black-box”
ML models with feature attribution techniques (i.e., ML in-
terpretations) may lead to theoretical advances and can as-
sist in making new scientific discoveries, as recently demon-
strated for climate, ocean, and weather applications (e.g.,
Toms et al., 2020; Barnes et al., 2020; Labe and Barnes,
2021), including the identification of flooding mechanisms
(Jiang et al., 2022).

In this study, we revisit flooding mechanisms in Europe
over the period 1950–2020 by using an improved framework
based on the explainable ML methods developed by Jiang et
al. (2022) and compare the results with existing studies. We
base the analysis on around 1000 catchments, and the only
dynamic information necessary for the analysis is precipita-
tion, temperature, and streamflow. These three variables can
be readily measured, thereby reducing the reliance on possi-
bly uncertain estimations of fluxes and state variables (such
as soil moisture). The combination of supervised-learning-
based feature attribution and unsupervised-learning-based
cluster analysis reduces subjectivity and uncertainty for the
selection of appropriate indicators and thresholds in the cat-
egorization of flood drivers. Moreover, taking an event-level
perspective, we quantify the changes that occurred in these
mechanisms in the past seven decades and discuss the pos-
sible reasons for and implications of the detected changes.
Overall, the study contributes to a better understanding of
river flood risk and how it is affected by climate change
and illustrates how explainable ML can advance knowledge
about the Earth system.

2 Data and methodologies

2.1 Data

The study considers 1077 catchments in the domain of Eu-
rope (Fig. 1a) based on the data availability of daily river
discharge observations from the Global Runoff Data Cen-
tre (GRDC) dataset (https://www.bafg.de/GRDC, last ac-
cess: 1 November 2021). We restricted our analysis to catch-
ments that have a minimum of 20 years of discharge records
within 1950–2020 to ensure sufficient samples to train the
ML models. The catchment areas range between 8 and
10 000 km2 – very large catchments, where the effect of spa-
tial heterogeneity of flood drivers tends to be substantial,
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Figure 1. An overview of the 1077 catchments and their properties, including (a) average elevation and slope of the catchments; (b) the
catchment size; (c) the aridity index, expressed by the ratio between mean annual potential evapotranspiration (PET) over mean annual
precipitation; (d) the fraction of precipitation falling as snowfall (i.e., precipitation falling with a temperature below 0 ◦C); and (e) the
seasonality of annual maximum discharges. PET was estimated via Hamon’s formulation (Hamon, 1961).

were not considered. For those catchments, the sample size
of daily discharge records ranges from 7300 to 25 753, with
a median of 20 455 time steps. Overall, the selected catch-
ments encompass a variety of geographical and climatic con-
ditions, as illustrated by the catchment distributions in terms
of average elevation, average slope, catchment size, arid-
ity index, snowfall fraction, and flood mean date (Fig. 1).
The elevation, slope, and size were derived from the Global
Streamflow Indices and Metadata Archive (GSIM) (Do et al.,
2018a); the aridity index and snowfall fraction were calcu-
lated from the catchment-averaged precipitation and temper-
ature described later. In the study, floods are defined as the
annual maxima (peaks) of river discharge time series in line
with common practices (e.g., Blöschl et al., 2017, 2019). The
above properties will also be used to discuss their relevance
to the catchment-level dominant flood mechanisms.

We considered precipitation, temperature, and day length
as input variables of the ML models. Using the 0.1◦ daily
gridded precipitation and mean surface temperature data
from the E-OBS dataset (version 23.1e) (Haylock et al.,
2008), we calculated the catchment-averaged time series of
these variables based on area-weighted averages of the data
pixels within the catchment boundary. The weight of each
pixel was determined by the fraction of its area covered
by the relevant catchment. The catchment boundaries were

obtained from readily available GRDC (Do et al., 2018a)
databases, with GRDC being prioritized when the boundary
of a catchment was available in both databases. Note that,
for smaller catchments under 100 km2 (approximately 0.1◦×
0.1◦), uncertainties may exist due to the relatively coarser
spatial resolution of the meteorological data. Nonetheless,
those catchments with large uncertainties will not be con-
sidered for the subsequent attribution analysis if ML models
cannot capture the relationship between inputs and outputs
effectively. Day length was included in the study, since it was
shown to improve model accuracy in a series of preliminary
tests, including the cases where only precipitation and tem-
perature were used and where day length was additionally
incorporated. Catchments where day length largely improves
accuracy are mainly located in northern Europe. Day length
was calculated based on the day of the year and the latitude
of the catchment center by using the Brock model, following
Forsythe et al. (1995).

2.2 Attribution framework and ML model

Figure 2 illustrates the framework of using explainable
ML methods for flooding attribution in the present study,
which was originally developed by Jiang et al. (2022) and
involves three main steps. First, we built ML models for
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Figure 2. The workflow of using explainable ML methods for attributing flood peaks (annual maxima of river discharge) to their drivers.
(a) Diagrammatic representation of the used LSTM models. The window in the time series of discharge highlights the target output (which
is a point), and the window in the inputs indicates the input features used to predict the illustrated peak discharge sample. (b) The feature
importance of the inputs for predicting the peak discharge shown in (a), which was obtained by using the ML interpretation technique
(namely integrated gradient). The vertical dashed lines in the windows separate the feature importance into a recent 7 d period and an earlier
period to calculate the aggregated feature contributions (see main text).

individual catchments to establish the nonlinear predictive
maps from meteorological factors (i.e., precipitation, tem-
perature, and day length) to daily discharges (Fig. 2a). Sec-
ondly, an ML interpretation technique was applied to inter-
pret the trained models to quantify the contributions of the
three input variables at each time step (i.e., time-wise fea-
ture importance) to the generation of respective flood events
(Fig. 2b). The time-wise feature importance was further ag-
gregated into contributions of specific features. Finally, clus-
ter analysis was used to group the specific feature contribu-
tions from multiple flood events that had similar patterns into
several categories, from which we then identified different
flood mechanisms. Detailed explanations of the methods are
given below.

In the study, we used the classical LSTM network
(Hochreiter and Schmidhuber, 1997) as the ML model. The
LSTM is one of the most popular ML architectures for mod-
eling dynamic hydrological variables (e.g., Kratzert et al.,

2018; Lees et al., 2021); it can effectively capture nonlinear
and temporal dependencies between variables owing to its re-
current structure and unique gating mechanism (Gers et al.,
1999). The effectiveness of the LSTM is partially due to the
comparability of its formulation to the hydrological behav-
ior of a catchment. Specifically, the backbone of the LSTM
network is composed of recurrent cells that can store previ-
ous information from input sequences, which is conceptually
similar to the way meteorological information (e.g., precip-
itation) is stored in the form of soil moisture or snowpack
(Lees et al., 2022). The physically realistic mapping from in-
puts to outputs facilitates gaining hydrologically meaningful
insights from subsequent model interpretations. Figure 2a il-
lustrates the data flow of one sample in the LSTM model,
with the dashed windows highlighting the predictors and the
target variable. The input layer of the model brings in pre-
cipitation (P ), temperature (T ), and day length (D) over the
past 180 d (i.e., [XP1 , XP2 , . . . ,XP180; XT1 , XT2 , . . . ,XT180; XD1 ,
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XD2 , . . . ,XD180]), and the output layer produces the discharge
of the same day (i.e., y1). Note that we included predictors on
the same day as the output in the model, since precipitation
on that day could also affect the discharge, especially in small
catchments with quick catchment response times. However,
the conclusions do not change even if using LSTM models to
predict discharge on the next day (i.e., the prediction models
consider the lagged meteorological forcings up till the day
before each daily discharge). The hidden layers consist of a
single LSTM layer and a dense layer with 32 units. The num-
ber of time steps and hidden units was determined by consid-
ering both the model performance and efficiency, which had
been evaluated in preliminary experiments. Preliminary ex-
periments also suggested that using fewer time steps (e.g.,
90 d) would not impair the conclusions of the study about
flooding mechanisms because contributions from inputs at
very early time steps to output are limited in LSTM mod-
els (i.e., memory decay) (Su and Kuo, 2019). Here, we skip
the technical details of the LSTM architecture and refer to
Sherstinsky (2020) for a comprehensive explanation of the
fundamentals of LSTM networks.

To improve the robustness of model evaluation and analy-
sis, we fitted 10 independent LSTM models for each of the
1077 catchments. Specifically, the data for each catchment
were divided into 10 folds without shuffling the temporal se-
quence, and each fold was tested once with a model trained
with the remaining 9 folds. The predictive performance of
each model was evaluated independently based on testing
data, i.e., 1/10 of the data for each catchment, which ranged
from 2 to 7 years due to the 20–70-year sample sizes avail-
able in studied catchments. During the training process, a
portion of the training data (70 %) was repeatedly used to
update the model parameters every epoch until no further
decrease in the loss function was observed in the remain-
ing 30 % (also known as validation data). The initial learning
rate and maximum training epoch number were configured
to 0.01 and 200, respectively, with the adaptive moments esti-
mation (Adam) algorithm (Kingma and Ba, 2015) being used
for training the models.

2.3 Model interpretations and cluster analysis

The integrated gradient (IG) technique developed by Sun-
dararajan et al. (2017) was employed to interpret the trained
models, which allows for obtaining the time-wise feature im-
portance of the three input variables for each sample of the
output (i.e., daily discharges). The IG method is a gradient-
based interpretation technique that exploits the gradient of
the model’s output to its input features to trace back the spe-
cific contributions of the inputs. It aims to assign an impor-
tance score to each feature (e.g., to the precipitation at each
time step prior to the flooding). A large positive score in-
dicates that the feature substantially increases the network
output (e.g., that the precipitation at a certain time step con-
tributes to increasing the flooding), a large negative score in-

dicates a decrease in the network output, and a score close to
zero indicates little influence on the output. The IG score for
the input feature x (e.g., precipitation at the ith time step) is
formulated as

φi(x)=
(
xi − x

′

i

) 1∫
α=0

∂f
(
x′+α

(
x− x′

))
∂xi

dα, (1)

where ∂f (x′+α(x−x′))
∂xi

denotes the local gradient of the net-
work f at a point interpolated from a baseline input (x′,
when α = 0), which is meant to represent the “absence” of
feature input, to the target input (x, when α = 1). An im-
portant property of the IG is completeness, which states that
the IG scores add up to the difference between the output
of f at the target input x and the baseline input x′, i.e.,∑
i

φi(x)= f (x)−f (x
′). Therefore, the model output can be

decomposed into the sum of features’ individual contribu-
tions, and it enables us to examine the contribution of a group
of features by summing up their individual IG scores.

In the study, we focus specifically on the IG scores for an-
nual maximum peak discharge events to gain insights into
flooding mechanisms. Given that we trained 10 independent
models, 10 sequences of time-wise feature importance were
generated for each peak discharge, with each sequence hav-
ing the same dimensions as the input variables (i.e., [φP1 ,
φP2 , . . . ,φP180; φT1 , φT2 , . . . ,φT180; φD1 , φD2 , . . . ,φD180]). Then,

the 10 sequences were averaged into one sequence (i.e., [φP1 ,
φ
P

2 , . . . ,φP180; φT1 , φT2 , . . . ,φT180; φD1 , φD2 , . . . ,φD180], which
is simplified as φ•i hereafter) to reduce the impact of the
stochasticity associated with training the different LSTMs.
Figure 2b exemplifies the averaged IG scores corresponding
to the sample shown in Fig. 2a, i.e., it shows the contribution
of the three input variables to the selected annual maxima
of river discharge. The warm or cool colors in the heatmap
denote that the input variable at the particular time step has
increased or decreased the network output, while white in-
dicates little effect. Note that the averaged IG scores for an
individual peak were computed by averaging the scores ob-
tained from all 10 of the independent models, regardless of
whether the peak was part of the training data or the test-
ing data in the models. Overall, the IG scores extracted from
the 10 models for each target peak discharge generally fol-
low a similar pattern, though with inevitable differences due
to randomness and uncertainties in training processes (see
Figs. S1–S3 in the Supplement for examples). Note that us-
ing the IG scores based on the target peaks in testing datasets
alone does not yield substantial impacts on our conclusion in
subsequent analyses (see Figs. S4–S5).

In the following step, the sequences of averaged IG scores
(φ•i ) can be clustered directly using time series cluster-
ing techniques based on their similar shapes, such as using
the K-means method with the dynamic time warping algo-
rithm (DTW) as the distance metric (Tavenard et al., 2020).
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However, the main drawback of clustering time series is the
heavy computational burden. The DTW distance between
any two samples has a quadratic time complexity with re-
spect to the sequence length, which would make clustering
long feature importance sequences a time-consuming pro-
cess, and it would be especially challenging when dealing
with tens of thousands of sequences (Salvador and Chan,
2007). Moreover, for this large-sample study that aims to un-
derstand flood mechanisms at a continental scale, it might
not be necessary to distinguish the daily contributions of me-
teorological drivers in detail. Therefore, before carrying out
the cluster analysis, we aggregated each sequence of aver-
aged IG scores (φ•i ) by using a 7 d separating window, which
generates a low-dimensional contribution vector with only

six elements [
7∑
1
φ
P

i ,
180∑

8
φ
P

i ,
7∑
1
φ
T

i ,
180∑
8
φ
T

i ,
7∑
1
φ
D

i ,
180∑
8
φ
D

i ].

Here,
7∑
1
φ
•

i and
180∑
8
φ
•

i represent contributions of a variable in

recent 7 d and an earlier antecedent period, respectively. The
separating-window size should cover the period of precipi-
tation and snowmelt events leading to each peak discharge,
which depends highly on the local characteristics. After ex-
amining the relationship between catchment area and mean
event response time, Stein et al. (2020) suggested that a syn-
optic window of 7 d should be sufficient to guarantee the re-
sponse time for large catchments. As a result, this study used
a 7 d period, similar to the practice in most studies that ex-
amined flooding causes (e.g., Blöschl et al., 2017; Berghuijs
et al., 2019). However, using a shorter period (e.g., 5 d) does
not affect the conclusions about dominant flooding mecha-
nisms and their trends (see discussion in Sect. 3.7). Figure 2b
demonstrates the values of the aggregated feature contribu-
tions based on respective daily IG scores represented by the
heatmap.

To obtain an overall picture from the individual aggre-
gated feature contributions, we used the K-means method to
cluster the results for all annual maximum peak discharges
pooled from all considered catchments. Considering that the
feature importance values are correlated to the magnitude of
the predicted peak discharge due to the completeness prop-
erty, we normalized each accumulated vector by its Manhat-
tan norm (i.e., dividing each element by the sum of its abso-
lute values while keeping its sign) to make the contributions
comparable across different floods. To determine the opti-
mal cluster number for theK-means algorithm, we evaluated
the cluster characteristics for candidate cluster numbers rang-
ing from 2 to 8 using the silhouette coefficient (Rousseeuw,
1987), which reflects the separation distance between the re-
sulting clusters. The silhouette coefficient for an individual
sample is calculated as (b− a)/max(b− a), where a repre-
sents the mean distance between the sample and all other
points within the same cluster, and b represents the mean
distance between the sample and all other points in the next
nearest cluster. The average silhouette coefficient over all

samples is an indicator of the goodness of a clustering result,
which ranges from −1 to 1, with a higher score generally
indicating a better cluster number choice.

2.4 Trend analysis of flooding mechanisms

Based on the clustering results, we can identify the mecha-
nism responsible for each annual maximum peak discharge
and calculate the proportions of different flooding mech-
anisms at either the continental or catchment scale. The
trend magnitude in these proportions was then analyzed by
Theil–Sen’s estimator, with the modified Mann–Kendall test
(Hamed and Rao, 1998) being used to determine the signif-
icance of the trend. Specifically, at the continental scale, we
estimated the overall trends of various flooding mechanisms
based on their respective proportions within all the annual
maximum peak discharges per year. At the catchment scale,
to capture the variations of flooding mechanisms over differ-
ent periods, we calculated the proportion series using a 20-
year moving window in each catchment. The 20-year time
frame was used to ensure an adequate sample size for reliably
estimating the intra-period proportions and also to guarantee
enough periods to observe decadal variability (Pagano and
Garen, 2005). Only proportions that were calculated with at
least 10 years of peak discharge data in each window were
used to estimate the trend slope.

Moreover, in order to analyze the possible causes of
trends, we selected a number of regions where most catch-
ments present consistent trends in certain mechanisms. We
investigated those catchments exhibiting significant changes
in flooding mechanisms and compared the temporal regional
changes in flooding mechanisms with changes in potential
flooding drivers. The time series of proportions in regions
were calculated by applying the previously described 20-year
moving window to peak discharge classifications for the con-
sidered catchments. The flooding drivers considered include
annual maximum 7 d total precipitation, mean spring temper-
atures (January to April), and 30 d precipitation preceding
the 7 d window of recent precipitation, which is a common
proxy for soil moisture prior to flooding (e.g., Bertola et al.,
2021). All the drivers were averaged across the catchments
and then smoothed by using a 20-year moving average win-
dow as well.

3 Results and discussion

3.1 Model predictive performance and interpretations

Before moving to the analysis of annual maximum peak dis-
charges, we used the Nash–Sutcliffe efficiency (NSE) (Nash
and Sutcliffe, 1970) to assess model accuracy in predict-
ing discharges. The NSE value ranges from negative infinite
to 1.0, and NSE> 0.5 is generally deemed satisfactory for
discharge simulations (Moriasi et al., 2015). Based on the
NSE value computed in the testing period for each model
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Figure 3. (a) Nash–Sutcliffe efficiency (NSE) values in the testing period averaged over the 10-fold cross-validation. (b) The cumulative
frequency of the averaged NSE values. (c) The distribution of the standard deviation values for the NSE values across the 10-fold cross-
validation. The NSE values were calculated using all samples in respective testing datasets.

in the 10-fold cross-validation, we acquired the average and
standard deviation of NSE values for each of the 1077 catch-
ments, as shown in Fig. 3. The overall warm colors in the map
(Fig. 3a) indicate that the model performed satisfactorily for
most catchments, with the median of NSE averages reach-
ing 0.74 (Fig. 3b). The standard deviations of NSE values
(Fig. 3c) further indicate robust model performance in most
cases. Accordingly, the models have effectively captured the
generalizable predictive relationship between meteorological
factors and discharges. As an accurate predictive relation is
essential for deriving meaningful information from ML mod-
els (Murdoch et al., 2019), the subsequent analyses focus
specifically on the 977 catchments (out of 1077; 91 %) with
average NSE values above 0.5. In the following, we move to
the analysis of annual maximum peak discharges.

A total of 53 968 annual maximum discharges were iden-
tified from the 977 catchments (20–70 peaks per catchment).
By using the IG method, we can obtain 53 968 feature im-
portance sequences averaged across the models from the
10-fold cross-validation. In the case shown in Fig. 2b, pre-
cipitation is the dominant driver behind the annual maxi-
mum peak discharge occurrence, showing consistently non-
negative feature importance, with the precipitation peaks that
occur closer to the target flood peak having a greater influ-
ence (see pronounced positive contributions in red). Never-
theless, the total contribution from antecedent precipitation
is more important in predicting the peak compared with the

contribution from recent precipitation, as indicated by the ag-

gregated scores
7∑
1
φ
P

i and
180∑

8
φ
P

i . The temperature, on the

other hand, has an overall negative impact, which may be re-
lated to evapotranspiration that could decrease the discharge
magnitude, while the influence of the day length is relatively
negligible. Additionally, Fig. 4 further illustrates two other
typical cases of feature importance patterns, where the con-

tributions from recent precipitation (i.e.,
7∑
1
φ
P

i ) and temper-

ature (i.e.,
7∑
1
φ
T

i ), respectively, are dominant in predicting

target peak discharges. The distinct patterns of predictor con-
tribution to annual maximum peak discharge predictions sug-
gest that these flood events were triggered by different mech-
anisms.

3.2 Flooding types revealed by cluster analysis

To separate the 53 968 annual maximum peak discharges into
discrete groups characterized by distinct patterns of predic-
tor contributions, we performed K-means clustering on the
normalized contribution vectors. The results of the silhou-
ette analysis suggest that clustering into three main groups
would lead to the best clustering quality because it achieves
the high average silhouette coefficient, and silhouette co-
efficients for individual samples are reasonably distributed
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Figure 4. Additional examples to the case shown in Fig. 2, which illustrate the importance pattern of temperature, precipitation, and day
length in predicting two discharge peaks from other catchments. (a) Recent precipitation contributes most to the discharge peak. (b) Recent
temperature contributes most strongly to the discharge peak.

within each cluster (see Fig. A1 for more details). It should
be noted that the clustering results here only reveal major
patterns widespread in data, with certain local and specific
mechanisms unlikely to be detected.

Figure 5a–c show the distinct patterns of the three iden-
tified clusters, with cluster 1 featuring the high importance
of recent temperature (Fig. 5a, a positive contribution in
line with high temperature favoring snowmelt), cluster 2
featuring the dominant contributions from recent precipita-
tion (Fig. 5b), and cluster 3 featuring the importance of an-
tecedent precipitation events (Fig. 5c). Compared to clus-
ter 1, clusters 2 and 3 show a generally negative effect of
antecedent temperature, in line with drying favored by evapo-
transpiration. Moreover, annual maximum peak discharges in
cluster 1 are characterized by higher contributions from day
length (Fig. 5a) when compared to the other two clusters. The
role of day length implies that the magnitude of these peak
discharges can be partially explained by the seasonality pre-
sented by day length, which peaks around the June solstice.
In contrast, the main differences between clusters 2 and 3 are

due to the fractions of
7∑
1
φ
P

i and
180∑
8
φ
P

i . Overall, each cluster

accounts for 15.5 %, 49.9 %, and 34.6 % of all the identified
annual maximum peak discharges, respectively.

Figure 5d–f illustrate the distributions in terms of the pro-
portion of annual maximum peak discharges associated with

each cluster within a catchment. Annual maximum peak dis-
charges associated with high contributions from temperature
(cluster 1) mainly occur in northern Europe and in mountain-
ous regions such as the Alps (Fig. 5d), i.e., in regions with
high snowfall fractions (Fig. 1d) where rising air tempera-
ture can lead to snowmelt. The spatial distribution together
with the feature pattern shown in Fig. 5a indicates that these
floods were probably driven by snowmelt events. In con-
trast, catchments within cluster 2, where recent precipitation
played a decisive role in causing most floods (Fig. 5b), are
primarily located in regions that have a west-facing or north-
west-facing coast or mountain range, such as Ireland, Scot-
land, Wales, the Norwegian coast, north-west of the Iberian
Peninsula, and the area extending from the Alps, the Massif
Central, and the Pyrenees (Figs. 5e and 1a). These regions
are characterized by a generally humid climate (Schiemann
et al., 2018), as also indicated by Fig. 1c, and are strongly
affected by the Northern Atlantic polar front and the asso-
ciated storm tracks (Bengtsson et al., 2006) and/or by the
presence of mountain barriers perpendicular to the prevail-
ing flow direction, which force moist air to lift and condense
(Isotta et al., 2014). Previous studies indicate that flooding in
the regions could be largely explained by individual heavy-
precipitation events (Gobiet et al., 2014; Whan et al., 2020;
Blanchet and Creutin, 2017), some of which are associated
with atmospheric rivers (Lavers and Villarini, 2013).
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Figure 5. The cluster centroids and variance for the three clusters and their respective proportions of all peak discharge events in each catch-
ment. The bars and error bars in (a)–(c) represent the cluster centroids and standard deviations of the six aggregated feature contributions.
The proportions in (d)–(f) correspond to clusters 1–3, respectively.

Catchments associated with cluster 3 are mostly located
over the north European plain, southern Scandinavia, and
parts of the British Isles (Fig. 5f). Here, information from an-
tecedent precipitation has an overall higher weight than that
from recent precipitation or other predictors (Fig. 5c), sug-
gesting that recent precipitation alone would not suffice to
explain annual maximum peak discharges. Therefore, flood-
ing in these areas presents additionally heavy reliance on an-
tecedent precipitation that is stored in the form of soil mois-
ture. For example, Nied et al. (2014) revealed that, in the
Elbe River basin, some weather patterns only cause flood-
ing in the case of preceding soil saturation. Also, Leding-
ham et al. (2019) found that, in southeast England, fewer
than 15 % of daily flood events correspond to extreme pre-
cipitation events, lower than in the rest of Britain, which was
attributed to the relevant contribution of soil moisture storage
to flooding.

It should be noted that the three kinds of flooding mech-
anisms (i.e., snowmelt-driven, recent-precipitation-driven,
and antecedent-precipitation-driven) identified from the clus-
ter analysis using the optimal cluster number only indicate
which features carry greater weights for peak discharge pre-
dictions, and they are not necessarily mutually exclusive.
Particularly, the peak discharge events near the decision
boundaries between the three clusters, such as those with
similar Euclidean distances to at least two different “clos-
est” centroids, are likely affected by two or more flooding
processes simultaneously. For example, the events catego-

rized as snowmelt-driven floods are probably impacted ad-
ditionally by saturated soils or extreme precipitation, such as
rain-on-snow events (Cohen et al., 2015). These events gen-
erally represent compound flood events that arise from sev-
eral drivers occurring concurrently (Bevacqua et al., 2021;
Zscheischler et al., 2018). Recently, compound events have
received increasing attention (Zscheischler et al., 2020);
however, this study will only focus on the main flood-
ing types obtained from the clustering results, regardless of
whether compound effects were involved.

3.3 Dominant flooding mechanisms in Europe

The result of event-based flooding classification allows us
to identify the dominant flooding mechanisms (among clus-
ters 1–3, Fig. 5) for each catchment (Fig. 6a). A mechanism
is considered dominant in a catchment if the proportion of the
annual maximum peak discharges exceeded the maximum
proportion of the other annual maximum peak discharges
by more than 70 %. Otherwise, the catchment was regarded
as being dominated by a mixture of flooding mechanisms.
The mixture of mechanisms could be further classified into
specific combinations based on which clusters were present
in the catchment. Accordingly, for the catchments investi-
gated in the study, 52.1 % were dominated by a mixture of
mechanisms, while snowmelt, recent precipitation, and an-
tecedent precipitation solely accounted for 10.1 %, 26.9 %,
and 10.9 % of catchments, respectively. Among the mix-
tures of mechanisms, the combination of recent precipitation
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Figure 6. The dominant flooding mechanisms and their relevance to catchment attributes and seasonality. Each dot in (b)–(e) represents one
catchment. “Mixture means” the associated catchments are dominated by two or more flooding mechanisms. For example, “mixture (r+ s)”
indicates that either recent precipitation (r) or snowmelt (s) is the primary cause of the annual maximum discharges for the associated
catchments, and the difference between the two proportions is less than 70 %.

and antecedent precipitation accounted for 33.8 % of all the
catchments, followed by the combination of all three mech-
anisms (15.8 %), the combination of recent precipitation and
snowmelt (2.1 %), and the combination of antecedent precip-
itation and snowmelt (0.4 %).

It is worth noting again that the presence of a mixture
of flooding mechanisms in a catchment only indicates that
annual maximum discharges in the catchment are not uni-
formly caused by the same mechanism rather than signifying
whether individual annual maximum peak discharge events
are driven by multiple processes (i.e., compound events).
Despite this, floods in catchments with a mixture of flood-
ing mechanisms, in general, are more likely to be affected
by two or more flooding processes, since the classification
of floods in these catchments can be ambiguous (e.g., the
events near the decision boundaries between clusters). For
example, floods caused by both heavy precipitation and ex-
cessive soil moisture tend to present a high reliance on both
recent precipitation and antecedent precipitation, which re-
sults in the catchment presenting a mixture of flooding mech-
anisms, depending on which feature importance is superior.
Using 0.10 as a distance threshold to define events near the
cluster decision boundaries (i.e., the difference between the
distances from one point to its closest centroids and to its
second-closest centroids is less than 0.10), 78.9 % of such
events were found in catchments dominated by a mixture of
mechanisms, whereas only 21.1 % were found in catchments
dominated by single mechanisms.

In Fig. 6b–e, we further examine the relevance of domi-
nant mechanisms to catchment physiographic and hydrocli-
matic characteristics demonstrated in Fig. 1. Unsurprisingly,
snowmelt dominates flooding in regions with high snowfall
fractions and obvious characteristics in latitude and altitude,
where floods usually occur from May to July. The catchments
dominated by antecedent precipitation are within plain ter-
rains, where flooding occurs mainly during the winter and
spring. Catchments with a gentle slope generally tend to have
thicker soil, slower transmission, and therefore more poten-
tial to store antecedent precipitation (Hallema et al., 2016).
In contrast, recent precipitation-dominated catchments have
a broader spectrum of slopes and elevations and also experi-
ence summer floods. The distribution of catchment attributes
from catchments dominated by a mixture of mechanisms is
consistent with what we found based on catchments domi-
nated by a single mechanism. For example, catchments dom-
inated by snowmelt mixed with recent precipitation (purple
in Fig. 6) or antecedent precipitation (yellow in Fig. 6) have
relatively high snowfall fractions, with the former mainly oc-
curring on areas with steep slopes (mainly in the Alps and
Scandinavian mountains) and the latter mainly occurring on
gentle slopes (such as parts of Finland). The catchments con-
trolled by both recent and antecedent precipitation (light blue
in Fig. 6) are located mostly in western Europe, suggesting
that floods there were likely to be affected by the interaction
between extreme precipitation and antecedent soil moisture,
and their respective relative importance has varied between
events. In addition, some catchments in the Alps, Germany,
and Poland are impacted by all three mechanisms (slate gray
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Table 1. Comparisons of flooding mechanisms in Europe identified by different methods.

Methods Research Catchment Northern Western Central Southern Alpine
used scales sizes (km2) Europe Europe Europe Europe

This Machine Event- 8–10 000 Snowmelt Antecedent Antecedent Lack of Recent
study learning based precipitation precipitation samples precipitation,

+ recent + recent snowmelt
precipitation precipitation,

snowmelt

Berghuijs Seasonality Catchment- ∼ 10–∼ 100000 Snowmelt Soil moisture Soil moisture, Soil Extreme
et al. analysis based snowmelt moisture precipitation,
(2019) snowmelt

Bertola et Changes 200 km× 5–100 000 Snowmelt Extreme Extreme Soil Extreme
al. (2021) attribution 200 km precipitation precipitation, moisture precipitation,

snowmelt snowmelt

Kemter et Multi- Event- 1–800 000 Snowmelt Soil moisture Rain-on-snow, Soil Stratiform
al. (2020) criteria based soil moisture moisture rainfall

Stein et Multi- Event- 1–∼ 2000000∗ Snowmelt Excess Snow and rain, Excess Short
al. (2020) criteria based rainfall Excess rainfall rainfall rainfall

Note: the summaries above were compiled from relevant figures or qualitative descriptions in the respective studies, and the subregions of Europe were not strictly defined. The
definitions of various flooding mechanisms were not identical between the studies. ∗ The catchment size range was not stated in the paper, and we calculated it from the original
results provided by the authors.

in Fig. 6). In summary, these findings indicate that domi-
nant flooding mechanisms differ substantially across catch-
ments and are related to their geographic and climatic char-
acteristics. In addition to elevation, slope, and snow frac-
tion, the study by Stein et al. (2021) on catchments in the
United States demonstrated that other catchment character-
istics (e.g., aridity, precipitation seasonality, and mean pre-
cipitation) also significantly influence flood-generating pro-
cesses. An in-depth investigation of how geographic and cli-
matic characteristics affect flood mechanisms in European
catchments can be expected in future studies.

3.4 Comparative analysis with other studies

A better understanding of the generating processes of river
flooding is crucial for interpreting past flood changes and
for improving future flood risk predictions. In recent years,
large-scale quantitative investigations of flooding mecha-
nisms specifically for Europe have been undertaken in sev-
eral studies, with different methodologies and scales applied.
For example, by using circular statistics analysis, Berghuijs
et al. (2019) examined the relative importance of three flood-
ing mechanisms based on the seasonality of floods and
three potential drivers such as the largest daily precipita-
tion, the largest daily soil moisture excess, and the largest
daily snowmelt. Bertola et al. (2021) attributed changes in the
magnitude of flood quantiles to changes in possible drivers
by using regression analysis and determined their contribu-
tions to flood changes accordingly. In contrast to these anal-
yses conducted at catchment or coarser levels, Kemter et
al. (2020) and Stein et al. (2020) performed event-based clas-

sifications to determine flooding mechanisms in respective
regions or catchments, both using predefined criteria but with
different indicators and thresholds. Table 1 summarizes the
main findings in these studies regarding the major flooding
mechanisms per geographic subregion of Europe and com-
pares them with those identified in this study.

As indicated in Table 1, despite the different defini-
tions, methods, and standards in recognizing flooding mech-
anisms, the five studies present some consistency, especially
in Northern Europe and the Alps, which are dominated by
snowmelt or by snowmelt combined with extreme precipi-
tation. Among the four previous studies, this study shows
the largest consistency with Berghuijs et al. (2019), espe-
cially when it comes to the contribution of meteorological
drivers to flood generation in individual catchments. How-
ever, Berghuijs et al. (2019) and Kemter et al. (2020) almost
exclusively regarded floods in regions from northern France
to northern Germany to be a consequence of soil moisture
excess. In contrast, Bertola et al. (2021) and this study also
included extreme precipitation as a crucial factor, and we
have demonstrated that floods in those regions are driven by
a combination of both heavy precipitation and saturated soil
moisture.

In addition to methodological differences, the inconsistent
catchment samples are also responsible for the divergent at-
tribution results in different studies. As shown in Table 1, the
catchments examined in this study are generally smaller and
tend to be more susceptible to high-intensity rainfall. More-
over, discrepancies in the estimation of soil moisture might
be an additional reason. In the absence of direct observa-
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tions, soil moisture in the four previous studies was explicitly
estimated by using simple water balance models (Berghuijs
et al., 2019; Stein et al., 2020), reanalysis data (Kemter et
al., 2020), and a proxy based on antecedent precipitation
(Bertola et al., 2021). The uncertainty associated with soil
moisture estimates may, however, make a difference in deter-
mining whether floods are triggered by extreme precipitation
or soil moisture excess. Tarasova et al. (2020) conducted a
rigorous uncertainty analysis of input data for a runoff event
classification framework, emphasizing the importance of de-
veloping novel indicators to reduce these uncertainties. Here,
profiting from the memory property of LSTM models, the
present study identified flooding mechanisms based on long-
term predictive relationships between precipitation, tempera-
ture, day length, and discharge. The method has reduced the
need for accurate catchment wetness estimates, yet such un-
certainty is not eliminated completely, particularly since we
chose a 7 d window to distinguish between antecedent and
recent precipitation. Compared to analyses at catchment or
coarser levels, event-based investigations of flooding mech-
anisms have the advantage of allowing for the detection of
stronger signals about their potential changes over time, since
averaged information tends to obscure information about in-
dividual event processes and thus makes the trends imper-
ceptible. For example, Berghuijs et al. (2019) found no dis-
cernible change in the relative importance of flood drivers for
most regions in Europe, while some regional studies (e.g.,
Vormoor et al., 2016; Beniston and Stoffel, 2016) and event-
based studies (e.g., Kemter et al., 2020) have indicated such
changes.

3.5 Temporal evolutions of flooding mechanisms

To test whether the dominant mechanism has changed over
the period 1950–2020, we first compared the catchment-level
dominant mechanisms separately for 1950–1985 and 1985–
2020 by applying the procedure implemented in Sect. 3.3.
Only the 818 catchments with at least 15 years of records
in each period were considered. Figure 7a summarizes the
proportions of the single dominant mechanisms (represented
by colorful blocks) and their combinations (represented by
gray blocks) during each period along with shifts between
them. The Sankey plot indicates that a majority of catch-
ments (79.6 %) retain their dominant mechanisms and that
there has not been a shift from one dominant mechanism to
another (see the absence of data flow between two different
blocks from left to right). However, some catchments with
single mechanisms have become dominated by a mixture of
mechanisms (i.e., flowing from colorful blocks to gray ones,
which accounts for 7.2 % of the total), while some behave in
the opposite way (7.3 %). In a few catchments with a mixture
of mechanisms (5.9 %), the dominant mechanisms have also
changed, though they remain mixed.

Despite only a few fractions of catchments presenting
a change in their dominant flooding mechanisms, Fig. 7b

reveals tendencies for specific mechanisms at event levels
when considering all annual maximum peak discharges in
the 818 catchments over the past seven decades. In particular,
the annual maximum peak discharges driven by snowmelt
have been declining by 0.8 % per decade. In contrast, re-
cent precipitation has become more dominant in causing
floods, increasing by 1.1 % per decade, despite weaker sig-
nificance that is probably due to the inconsistent changes
from 2005 onward. Both frequency changes are probably
associated with the warming atmosphere, which causes de-
creased snowpack (Fontrodona-Bach et al., 2018). Also, be-
cause of the rising temperatures, the atmosphere has a higher
moisture-holding capacity, leading to an increase in precip-
itation extremes on average (Trenberth, 2011; Fischer and
Knutti, 2016). These factors make it more likely that the an-
nual floods are driven by recent precipitation and less fre-
quently by snowmelt. Additionally, we observe an overall
slight decrease in soil-moisture-excess-driven floods as a re-
sult of counterbalancing the other two trends, though the
trend is not statistically significant when considering the en-
tire period. The above conclusions hold when considering a
smaller subset of catchments (460 in this case) with at least
25 years of records in each period.

Note that Fig. 7b only presents the overall trends in flood-
ing mechanisms at the continental scale, while disparate
trends that could cancel each other out may exist in different
regions. Therefore, we further examined the trends in differ-
ent event-based mechanisms in the 818 catchments (Fig. 7c–
e), with the color representing the Theil–Sen slopes com-
puted on the time series of respective proportions in indi-
vidual catchments. The results indicate that most catchments
in the Alps, which are typically dominated by snowmelt,
have experienced significant decreases in snowmelt-driven
floods, with similar cases having occurred in Scandinavia
as well (Fig. 7c). In contrast, extreme precipitation has be-
come a more frequent cause of annual maximum discharges
in the Massif Central, the north European plain, and the Alps,
while decreased trends are observed in some regions of west-
ern Europe and, especially, southeast England (Fig. 7d). As
for soil-moisture-induced floods, their proportion generally
shows opposing trends relative to those of extreme precipita-
tion (Fig. 7e).

The decreasing trend in snowmelt-driven floods was also
detected by Kemter et al. (2020), with a decrease of 1.65 %
per decade, mainly occurring in eastern Europe, which
was outside of our study area. In addition, they detected
an increase in stratiform rainfall-driven floods (0.49 % per
decade), mainly along the Mediterranean coast, and an
increase in soil-moisture-excess-driven floods (1.55 % per
decade) in the British Isles and central and northern Europe.
The difference between Kemter et al. (2020) and this study
probably arises from the varying study areas (the former
additionally includes a large number of eastern and south-
ern European catchments), as well as the definition of flood
types. For example, their study defined soil-moisture-excess-
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Figure 7. (a) Sankey plot indicating the proportions of single dominant flood-generating mechanisms and their combinations during two
time periods, with the flow lines indicating shifts between them. The proportions were calculated based on the 818 catchments that have at
least 15 years of records available in each period. (b) The evolution of the proportions of annual maximum peak discharges with the three

flooding mechanisms. The shades denote the 95 % confidence interval of the proportions, which was calculated as p̂± 1.96×
√
p̂(1−p̂)
n

(p̂ is the estimated proportion, and n is the sample size). The dashed black lines indicate the slope of their trends estimated by Theil–
Sen’s estimator, with their significance being assessed by the modified Mann–Kendall test. (c–e) The spatial trends in different event-based
flooding mechanisms, where the trends indicated by the colorful dots were calculated using a 20-year moving window. Markers with black
edges denote catchments with significant trends (α = 0.05). The black boxes highlight five hotspot regions that are discussed in the main
text.

driven floods as non-snowmelt floods when the mean soil wa-
ter content was above 70 % before a time window, and the
remainder were defined as stratiform rainfall-driven floods.
In contrast, this study used cluster analysis for the actual
contributions of precipitation events before floods, and soil-
moisture-induced floods were related to annual maximum
peak discharges where the contribution from antecedent pre-
cipitation is more important than recent precipitation.

3.6 Possible causes and implications of the trends

To gain insights into the causes of the identified trends, we
analyze five selected regions, highlighted in Fig. 7c–e (see
region numbers in Fig. 7c), which feature consistent trends
in certain mechanisms. For region 1 (the Alps) and region 3
(northeast Scandinavia), catchments with significant decreas-
ing trends in snowmelt-driven events were considered. For
region 2 (southeast France) and region 4 (northern Germany),
we considered catchments with significant increasing trends

in extreme precipitation-driven events, as well as those pre-
senting significant decreases for region 5 (southeast Eng-
land). Figure 8 shows the temporal regional evolution of the
event-level mechanisms within the considered catchments
along with the change in magnitude of the annual maximum
7 d precipitation and mean spring temperatures over the past
70 years. For the two regions with significant soil moisture
effect on flooding (i.e., regions 4 and 5), we additionally
added the averaged trends of antecedent soil moisture con-
ditions prior to flooding for analysis.

Mean spring temperatures have increased significantly in
all five regions (Fig. 8), confirming the previous explanations
for the reduced influence of snowmelt on river discharge
annual maxima in snowy areas (regions 1–3) (Vormoor et
al., 2016; Beniston and Stoffel, 2016). Furthermore, in re-
gions 1–4, the increased magnitude of maximum 7 d precipi-
tation can explain the rise in proportions of annual maximum
peak discharges driven by extreme precipitation events. In
contrast, the maximum 7 d precipitation in southeast England
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Figure 8. The temporal changes of the event-level mechanisms in relevant catchments within the five selected regions (see Fig. 7c), as well as
the changes in average extreme precipitation (represented by annual maximum 7 d total precipitation), mean spring temperatures (represented
by average temperature between January and April), and antecedent soil moisture conditions prior to flooding (represented by the 30 d total
precipitation preceding the 7 d window of recent precipitation). The numbers in panel titles indicate the number of catchments considered.
The proportions were calculated by a 20-year moving window, while precipitation and temperature were smoothed using a 20-year moving
average window, with their values at central positions in time windows. The dashed gray lines indicate the slope of relevant trends with their
significance.

(region 5) remained almost unchanged (Fig. 8e). Nonethe-
less, soil moisture conditions before discharges might have
increased in southeast England, as indicated by the increas-
ing antecedent precipitation accumulations, which causes an-
nual maximum discharge to be more likely to be driven by
soil moisture excesses than by recent precipitation. Blöschl
et al. (2017) stated that the region has a large subsurface
water storage capacity, which is capable of storing a large
amount of water that continuously increases until flooding
occurs. In comparison, in northern Germany (region 4), the
antecedent precipitation before annual maximum peak dis-
charges changed more slightly (Fig. 8d), while the increase
in precipitation extremes likely caused an increase in floods
driven by recent heavy precipitation. Note that, here, we
merely examined the monotonic trends within data over the
70 years, while the trends may vary piecewise (e.g., the
changes in maximum weekly precipitation in the Alps and
southeast France), the impact of which on flooding mech-

anisms deserves further research. These figures are robust
against spatial variability within regions (see Fig. S6).

A change in flooding mechanisms may affect the seasonal-
ity and magnitude of flooding, which might ultimately impair
the current flood risk management measures. For example,
in catchments previously dominated by snowmelt, increas-
ing floods from extreme precipitation and soil moisture ex-
cess may lead to shifted flood mean dates and less concen-
trated seasonal patterns (as exemplified in Fig. B1). By sim-
ulating daily discharge for a reference period (1961–1990)
and a future period (2071–2099), Vormoor et al. (2015) pre-
dicted that floods in some Nordic catchments could even
shift from spring to autumn as rain replaced snowmelt as
the dominant flood-inducing process. These results suggest
that, in a warmer climate, flood risk predictions in snowmelt-
affected catchments should consider the interconnection be-
tween changes in flooding drivers and seasonality.
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As for the impact on flooding magnitude, while it is
challenging to link observed changes in individual flooding
drivers alone to changes in flooding magnitudes, a link may
appear, especially in light of climate change (Blöschl et al.,
2019). For example, the catchments where floods are dom-
inated by recent precipitation tend to be more susceptible
to changes in extreme 7 d precipitation (Fig. B2). Despite a
lack of sufficient observational evidence that the magnitude
of floods increases with more extreme precipitation (Sharma
et al., 2018), the trend of which is often determined jointly by
both changes in rainfall and changes in antecedent soil mois-
ture, some studies demonstrated the changed precipitation
severity could vary the relationship between precipitation
and streamflow (Bennett et al., 2018). When recent rainfall
increases, changes in antecedent moisture conditions would
become less important in modulating the response to rainfall
(Wasko and Nathan, 2019). Brunner et al. (2021) indicated
that it is possible to identify a catchment-specific extreme-
ness threshold, above which precipitation increases clearly
produce greater flood magnitudes, and below which flood
magnitude is strongly modulated by soil moisture. Therefore,
the persistent risk that recent extreme precipitation would
have an increasingly decisive role in flood generation for a
large proportion of catchments, as implied by Fig. 7, cannot
be disregarded. Recognizing the impact of such mechanism
shifts in flooding mechanisms is crucial for understanding
the link between changes in precipitation and flood risk in a
warming climate.

3.7 Limitations and outlooks

In this study, we trained LSTM models in a local fashion (i.e.,
training the model individually for each catchment) rather
than a regional fashion (training a single model across mul-
tiple catchments), since the main objective of the study is to
identify distinguishable patterns of meteorological variables’
contributions at local scales. From a prediction standpoint,
particularly for unprecedented events and ungauged basins
(Nearing et al., 2021; Frame et al., 2022), regional modeling
may be a better choice because it is capable of learning more
general relationships from a larger variety of hydrological
data (Kratzert et al., 2019b). However, for the regional mod-
eling, both meteorological time series and static catchment
attributes are used as inputs to distinguish response behaviors
across time and space. Adding such static attributes would
introduce substantial multicollinearities among the consid-
ered variables (see Fig. S7 for illustration). Multicollinear-
ity might not be a problem for ML models when they are
used for prediction, as long as the collinearity between vari-
ables remains stationary (Dormann et al., 2013). Neverthe-
less, for our study that aims to interpret the effects of pre-
dictors on responses, high multicollinearity in predictors in-
dicates that considerable information may be shared among
the collinear sets. This would result in difficulties in separat-
ing the physical effects of these variables – this is also the

case in traditional regression models (Hartono et al., 2020).
Therefore, interpreting flooding mechanisms with regional
LSTM models may become more challenging than with lo-
cal LSTM models that use only meteorological time series,
since some catchment attributes would confound the inter-
pretation. In this study, we therefore employed simple local
models, which avoids confounding and multicollinearity re-
sulting from static catchment attributes. However, in light
of the benefit of regional modeling, which can provide in-
sights into how flooding mechanisms vary spatially by ge-
ographic and climatic characteristics of catchments, how to
deal with these challenges in the interpretation merits more
exploration in future studies. An immediate question to ad-
dress is whether adopting different modeling strategies will
result in different interpretations regarding the gradient con-
tributions of meteorological forcings, which ultimately leads
to alternative understandings of flooding mechanisms. The
emerging differences may provide us with an opportunity to
gain new insights into flooding mechanisms from these mod-
els.

The multicollinearity also exists in meteorological drivers
at daily scales, which requires careful handling of the inter-
pretation results if adding more predictors. For example, ra-
diation is usually an important driver of snowmelt that fa-
vors flooding (Merz and Blöschl, 2003), but the interpre-
tation method might not assign it high importance when
it is combined with day length as an additional predictor
due to the high correlation between the two variables (see
Fig. S8 for an example). This is because the used interpreta-
tion technique does not measure how important a feature is
in the real world but rather how important it is to the model.
Therefore, it is not necessarily better to add more input fea-
tures to a model in terms of process understanding, which
can even be misleading if the interpretation results are not
justified by sufficient physical knowledge (Kroll and Song,
2013). In this study, instead of using more predictors that re-
sult in less interpretability, we restricted ourselves to few in-
put features whose effect can be relatively easily interpreted
and understood. Therefore, we only selected daily precipita-
tion, temperature, and day length as meteorological inputs,
the combination of which results in uncovering three well-
known flooding mechanisms. The results are physically in-
terpretable and comparable with findings from other studies
that used classical methods. Incorporating more meteorolog-
ical drivers into the model might, in theory, allow for the
identification of additional flooding mechanisms that may be
overlooked. However, multicollinearity and confounding can
pose a challenge to interpretability, especially when the rec-
ognized patterns cannot be linked to fundamental physical
processes. Therefore, we leave how to resolve the trade off
as an open question for future studies.

In the clustering procedure, we chose to use a 7 d win-
dow to aggregate the daily IG scores into a low-dimensional
contribution vector for the sake of efficiency in clustering
lengthy time series, which could induce inevitable uncertain-
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ties and subjectivity. Despite this, additional tests indicate
that our findings are similar when using a 5 d window, which
is also a common interval to consider flooding drivers (e.g.,
Rottler et al., 2021). Specifically, based on the 5 d window,
the events identified with snowmelt, recent precipitation, or
antecedent precipitation as the primary causes account for
15.3 %, 48.9 %, and 35.8 % of all the 53 968 annual maxi-
mum peak discharges (Fig. S9), which is only slightly differ-
ent from using a 7 d window. As for the three mechanisms
in individual catchments, decreasing the window length has
the least impact on identifying snowmelt-driven floods, with
the absolute changes in their proportions being within 1 %
for 81.5 % of catchments and within 5 % for 97.2 % of catch-
ments. In comparison, the proportion changes for two other
flooding types are more sensitive, with changes within 5 %
for 76.6 % (78.0 %) of catchments in terms of recent (an-
tecedent) precipitation-driven flooding. However, this does
not affect the conclusion regarding the respective trends in
flooding mechanisms (Fig. S10), indicating the robustness of
the methodology. Despite this sensitivity analysis, we would
like to emphasize that the selection of the separating win-
dow remains somewhat subjective, and further exploration is
needed to avoid a possible bias due to arbitrary judgments in
identifying flooding mechanisms.

4 Conclusions

Flooding in rivers is usually caused by complex interac-
tions between heavy precipitation, high soil moisture, and
melting snow. Climate change has resulted in an overall
decreased snowpack and more intense short-term precipita-
tion extremes, which might systematically alter the interac-
tion between flood drivers at the catchment level. To inves-
tigate whether flooding mechanisms have changed in Eu-
ropean catchments, this study introduced a novel explain-
able ML method to identify flooding mechanisms. Com-
pared with conventional classification approaches, where the
results are usually dependent on appropriate flood process
definitions and are sensitive to the selected indicators and
threshold parameters, the combination of explainable ML
and cluster analysis is able to avoid such predefinitions and
reduces subjectivities in identification processes. With the
ML-captured feature importance of precipitation, tempera-
ture, and day length for predicting annual maximum dis-
charges, we aggregated driver contributions in the recent 7 d
and an earlier period (back to 180 d) and then applied clus-
ter analysis to group them based on similar patterns. As a
result, the method identifies three major patterns that in-
duce floods across 977 European catchments, correspond-
ing to three typical flooding mechanisms, including recent
precipitation (responsible for 49.9 % of the annual maxi-
mum discharge events), antecedent precipitation (i.e., exces-
sive soil moisture, accounting for 34.6 %), and snowmelt
(15.5 %). The results indicate that, for 26.9 % of catchments,

recent precipitation is the typical main contributor to floods,
while floods are typically controlled by antecedent precipita-
tion (linked to excessive soil moisture) in 10.9 % of catch-
ments. In around one-third (33.8 %) of catchments, floods
are dominated by a combination of recent heavy precipita-
tion and antecedent-precipitation events, meaning that some
floods there were caused by recent rains, and others were pri-
marily driven by antecedent precipitation, although many of
them were likely due to the compound effect between the
two drivers. The remaining catchments are dominated by
snowmelt (10.1 %) or by combinations of snowmelt with the
other two drivers. The spatial distribution of the dominant
flooding mechanisms reflects the variation of the catchment’s
geographic and climatic characteristics and is generally con-
sistent with results reported in earlier studies, some of which
did not perform event-based classifications but rather identi-
fied the overall mechanisms within individual catchments.

We further detected changes in dominant flooding mech-
anisms over the last 70 years in over 20.4 % of European
catchments; in particular, some catchments that were previ-
ously dominated by single mechanisms became dominated
by a mixture of mechanisms, and some catchments show op-
posite shifts. Despite no regime shift from one single flood-
ing mechanism to another single one, tendencies in their
mechanisms at event levels were found. Specifically, when
taking all annual maximum discharge events into account,
those triggered by snowmelt have significantly decreased,
with their proportion dropping by 0.8 % per decade. Recent
7 d precipitation, on the other hand, has become increasingly
important for flooding, with flooding triggered by such re-
cent heavy precipitation increasing by 1.1 % per decade. The
changes in flooding mechanisms present a largely consistent
pattern with climate change responses, and we discuss the
potential risks associated with the resulting effects on flood-
ing seasonality and magnitude.

Overall, this study highlights the usability of explain-
able ML in helping uncover complex and possibly non-linear
changes in weather and climate extreme events in the warm-
ing Earth system. With more large-sample hydrometeorolog-
ical datasets becoming readily accessible, one next step is
to extend the research to a larger scale for a better under-
standing of variations in flooding mechanisms globally. Still,
many challenges remain for future work, providing poten-
tial research opportunities. For example, the clustering pro-
cedure can be improved by developing algorithms to aggre-
gate daily feature importance adaptively, thereby avoiding
the predefined separation window while maintaining high
efficiency. Moreover, regional LSTM models that incorpo-
rate static catchment attributes can be employed to capture
the spatial variations in flooding mechanisms and to quantify
the influence of catchments’ geographical and climatic con-
ditions on flooding processes. In addition to the integrated
gradient method used in this study, other interpretation tech-
niques might be explored further to uncover potentially valu-
able information when more input variables are included.

Hydrol. Earth Syst. Sci., 26, 6339–6359, 2022 https://doi.org/10.5194/hess-26-6339-2022



S. Jiang et al.: River flooding mechanisms and their changes in Europe 6355

Appendix A

Figure A1. Determination of optimal cluster number. (a) The av-
erage silhouette coefficients and total within-cluster sum of squares
assessed for respective candidate cluster numbers. (b) The silhou-
ette plots for various clusters when the cluster number is 2 or 3,
where the x axis represents the silhouette coefficient for individual
samples, and they were ordered by the coefficients and grouped by
clusters in the y axis; (a) suggests that clustering the samples into
either two or three groups can achieve similarly high average silhou-
ette coefficients, while the silhouette plots for individual samples
under the two candidate numbers in (b) further suggest that clus-
tering into three groups would be the best choice because a cluster
with all below-average silhouette coefficients is present when clus-
tering into two groups. Therefore, we cluster annual maximum peak
discharges into three main groups in the main text.

Appendix B

Figure B1. (a) Change in flooding mean dates (difference from
1985–2020 to 1950–1985) in 44 catchments, with a significant re-
duction of snowmelt-driven floods in the Alps (region 1 in Fig. 7c),
for snowmelt-driven floods and for all floods irrespective of their
cause. For these catchments, the overall proportion of annual max-
imum discharges caused by snowmelt has decreased from 49.0 %
in 1950–1985 to 36.8 % in 1985–2020. (b) The differences in mean
resultant length of flood dates for the same cases as in (a). The mean
resultant length is a measure in circular statistics between 0 and 1
that reflects the spread of a circular variable, with 0 representing the
spread of flood dates evenly distributed over the year and 1 repre-
senting the spread concentrated at 1 d. It can be deducted from (a)
that, following the temperature increase, snowmelt-driven floods
generally occurred earlier in the year during 1985–2020 compared
to 1950–1985, with a median shift of−5.9 d. On the other hand, an-
nual peak discharges occurred later in more than half of the catch-
ments due to the increasing presence of other types of floods. Fur-
thermore, (b) shows that the seasonality of annual maximum dis-
charges has become more diffuse (decreasing mean resultant length)
in most catchments for the same reason, though snowmelt-driven
floods remain relatively stable.

Figure B2. The distribution of Spearman’s correlations between an-
nual maximum discharge and annual maximum 7 d precipitation
for two groups of catchments (blue, recent-precipitation-dominated
catchments; green, antecedent-precipitation-dominated catchments,
based on Fig. 6a). It shows that the catchments where floods are
dominated by recent precipitation tend to have higher correlations
than antecedent-precipitation-dominated catchments, which implies
that the former might be more susceptible to changes in extreme 7 d
precipitation.
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Code and data availability. The river discharge data can be
obtained from the GRDC dataset (https://portal.grdc.bafg.
de/applications/public.html?publicuser=PublicUser; Fed-
eral Institute of Hydrology, 2022). The E-OBS gridded
precipitation and temperature dataset is available at https:
//www.ecad.eu/download/ensembles/download.php (ECA & D,
2022; Haylock et al., 2008). Catchment attributes and boundaries
are available at https://doi.org/10.1594/PANGAEA.887477 (Do et
al., 2018b) and https://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/
222_WSB/watershedBoundaries.html (Federal Institute of Hy-
drology, 2011; Lehner, 2012). The 30 arcsec elevation data shown
in Fig. 1a are accessible at https://doi.org/10.5066/F7DF6PQS
(EROS, 2018). The code for the explainable machine learning
framework is available at https://doi.org/10.5281/zenodo.4686106
(Jiang, 2022).
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