Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6289-2022
https://doi.org/10.5194/hess-26-6289-2022
Research article
 | 
14 Dec 2022
Research article |  | 14 Dec 2022

Vegetation optimality explains the convergence of catchments on the Budyko curve

Remko C. Nijzink and Stanislaus J. Schymanski

Related authors

Selecting a conceptual hydrological model using Bayes' factors computed with Replica Exchange Hamiltonian Monte Carlo and Thermodynamic Integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
EGUsphere, https://doi.org/10.5194/egusphere-2023-2865,https://doi.org/10.5194/egusphere-2023-2865, 2024
Short summary
Technical note: Do different projections matter for the Budyko framework?
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 4575–4585, https://doi.org/10.5194/hess-26-4575-2022,https://doi.org/10.5194/hess-26-4575-2022, 2022
Short summary
Influence of modifications (from AoB2015 to v0.5) in the Vegetation Optimality Model
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Geosci. Model Dev., 15, 883–900, https://doi.org/10.5194/gmd-15-883-2022,https://doi.org/10.5194/gmd-15-883-2022, 2022
Short summary
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022,https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016,https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Theory development
Canopy structure modulates the sensitivity of subalpine forest stands to interannual snowpack and precipitation variability
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025,https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Assessing recovery time of ecosystems in China: insights into flash drought impacts on gross primary productivity
Mengge Lu, Huaiwei Sun, Yong Yang, Jie Xue, Hongbo Ling, Hong Zhang, and Wenxin Zhang
Hydrol. Earth Syst. Sci., 29, 613–625, https://doi.org/10.5194/hess-29-613-2025,https://doi.org/10.5194/hess-29-613-2025, 2025
Short summary
Combined impacts of climate change and human activities on blue and green water resources in a high-intensity development watershed
Xuejin Tan, Bingjun Liu, Xuezhi Tan, Zeqin Huang, and Jianyu Fu
Hydrol. Earth Syst. Sci., 29, 427–445, https://doi.org/10.5194/hess-29-427-2025,https://doi.org/10.5194/hess-29-427-2025, 2025
Short summary
Future response of ecosystem water use efficiency to CO2 effects in the Yellow River Basin, China
Siwei Chen, Yuxue Guo, Yue-Ping Xu, and Lu Wang
Hydrol. Earth Syst. Sci., 28, 4989–5009, https://doi.org/10.5194/hess-28-4989-2024,https://doi.org/10.5194/hess-28-4989-2024, 2024
Short summary
Temporal shift in groundwater fauna in southwestern Germany
Fabien Koch, Philipp Blum, Heide Stein, Andreas Fuchs, Hans Jürgen Hahn, and Kathrin Menberg
Hydrol. Earth Syst. Sci., 28, 4927–4946, https://doi.org/10.5194/hess-28-4927-2024,https://doi.org/10.5194/hess-28-4927-2024, 2024
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, Irrigation and drainage paper 56, FAO – Food and Agriculture Organization of the United Nations, Rome, ISBN 92-5-104219-5, 1998. a, b, c
Bergström, S.: Development and Application of a Conceptual Runoff Model for Scandinavian Catchments, Tech. rep., SMHI, SMHI Rep. RHO 7, https://www.smhi.se/polopoly_fs/1.163091!/RHO_7 Development and application of a conceptual runoff model for Scandinavian catchments.pdf (last access: 1 December 2022), 1976. a
Beringer, J., Hutley, L. B., Tapper, N. J., and Cernusak, L. A.: Savanna fires and their impact on net ecosystem productivity in North Australia, Glob. Change Biol., 13, 990–1004, https://doi.org/10.1111/j.1365-2486.2007.01334.x, 2007. a
Budyko, M.: Climate and Life, Academic Press, New York and London, edited by: Miller, D. H., ISBN 9780121394509, 1974. a, b, c
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Most catchments plot close to the empirical Budyko curve, which allows for estimating the long-term mean annual evaporation and runoff. We found that a model that optimizes vegetation properties in response to changes in precipitation leads it to converge to a single curve. In contrast, models that assume no changes in vegetation start to deviate from a single curve. This implies that vegetation has a stabilizing role, bringing catchments back to equilibrium after changes in climate.
Share