Articles | Volume 26, issue 19
https://doi.org/10.5194/hess-26-4893-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-26-4893-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Socio-hydrological modeling of the tradeoff between flood control and hydropower provided by the Columbia River Treaty
School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
Felipe Augusto Arguello Souza
Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
Samuel Park
Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
Charlotte Cherry
Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, USA
Margaret Garcia
School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
David J. Yu
Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA
Department of Political Science, Purdue University, West Lafayette, IN, USA
Eduardo Mario Mendiondo
Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
Related authors
No articles found.
Marcos Roberto Benso, Roberto Fray Silva, Gabriela Chiquito Gesualdo, Antonio Mauro Saraiva, Alexandre Cláudio Botazzo Delbem, Patricia Angélica Alves Marques, José Antonio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 25, 1387–1404, https://doi.org/10.5194/nhess-25-1387-2025, https://doi.org/10.5194/nhess-25-1387-2025, 2025
Short summary
Short summary
This study applies climate extreme indices to assess climate risks to food security. Using an explainable machine learning analysis, key climate indices affecting maize and soybean yields in Brazil were identified. Results reveal the temporal sensitivity of these indices and critical yield loss thresholds, informing policy and adaptation strategies.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
Marina Batalini de Macedo, Nikunj K. Mangukiya, Maria Clara Fava, Ashutosh Sharma, Roberto Fray da Silva, Ankit Agarwal, Maria Tereza Razzolini, Eduardo Mario Mendiondo, Narendra K. Goel, Mathew Kurian, and Adelaide Cássia Nardocci
Proc. IAHS, 386, 41–46, https://doi.org/10.5194/piahs-386-41-2024, https://doi.org/10.5194/piahs-386-41-2024, 2024
Short summary
Short summary
More and more extreme rainfall causes flooding problems in cities and communities, affecting the health and well-being of the population, as well as causing damage to the economy. To help design actions aiming at reducing the impacts of these floods, computational models can be used to simulate their extent. However, there are different types of models currently available. In this study, we evaluated three different models, for a city in Brazil and a region in India, to guide the best use of it.
Gabriela C. Gesualdo, Marcos R. Benso, Fabrício A. R. Navarro, Luis M. Castillo, and Eduardo M. Mendiondo
Proc. IAHS, 385, 117–120, https://doi.org/10.5194/piahs-385-117-2024, https://doi.org/10.5194/piahs-385-117-2024, 2024
Short summary
Short summary
We simulated indexed insurance for a water utility responsible for providing water to 7.2 million people in a metropolitan region. According to our findings, an annual amount (premium) of USD 0.43, 0.87, and 1.73 should be charged per person to obtain drought coverage for three, six, and twelve months. The premium fee can be implemented in the water bills as a new strategy to pool the risk between the supplied users and the utility, to prevent them from being exposed to surcharge fluctuations.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Marcos Roberto Benso, Gabriela Chiquito Gesualdo, Roberto Fray Silva, Greicelene Jesus Silva, Luis Miguel Castillo Rápalo, Fabricio Alonso Richmond Navarro, Patricia Angélica Alves Marques, José Antônio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 23, 1335–1354, https://doi.org/10.5194/nhess-23-1335-2023, https://doi.org/10.5194/nhess-23-1335-2023, 2023
Short summary
Short summary
This article is about how farmers can better protect themselves from disasters like droughts, extreme temperatures, and floods. The authors suggest that one way to do this is by offering insurance contracts that cover these different types of disasters. By having this insurance, farmers can receive financial support and recover more quickly. The article elicits different ideas about how to design this type of insurance and suggests ways to make it better.
Yongping Wei, Jing Wei, Gen Li, Shuanglei Wu, David Yu, Mohammad Ghoreishi, You Lu, Felipe Augusto Arguello Souza, Murugesu Sivapalan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 2131–2146, https://doi.org/10.5194/hess-26-2131-2022, https://doi.org/10.5194/hess-26-2131-2022, 2022
Short summary
Short summary
There is increasing tension among the riparian countries of transboundary rivers. This article proposes a socio-hydrological framework that incorporates the slow and less visible societal processes into existing hydro-economic models, revealing the slow and hidden feedbacks between societal and hydrological processes. This framework will contribute to process-based understanding of the complex mechanism that drives conflict and cooperation in transboundary river management.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Cited articles
Abraham, A. and Ramachandran, P.: Stable Agreements with Fixed Payments on Transboundary Flood Prone Rivers, in: Contemporary Issues in Group Decision and Negotiation. GDN 2021, Toronto, ON, Canada, June 6–10. Lecture Notes in Business Information Processing, vol. 420, edited by: Morais, D. C., Fang, L., and Horita, M., Springer, Cham, https://doi.org/10.1007/978-3-030-77208-6_8, 2021.
Bankes, N.: Flood Control Regime of the Columbia River Treaty: Before and after 2024, Washington Journal of Environmental Law & Policy, 2, 1–73, 2012.
Bankes, N.: The Columbia River Treaty between Canada and the United States of America–time for change?, in: Water Resource Management and the Law, edited by: Hollo, E. J., Edward Elgar Publishing, https://doi.org/10.4337/9781785369834.00019, 2017.
Bankes, N. and Cosens, B.: The Future of the Columbia River Treaty, Program on Water Issues, Munk School of Global Affairs at the University of Toronto in collaboration with the University of British Columbia, the University of Idaho and the University of Calgary, Toronto, Ontario Canada, 2012.
BC Hydro: Electricity rates & energy use, https://app.bchydro.com/accounts-billing/rates-energy-use.html (last access: 1 June 2021), 2020.
BC Ministry of Energy and Mines: US Benefits from the Columbia River Treaty – Past, Present and Future: A Province of British Columbia Perspective, https://engage.gov.bc.ca/app/uploads/sites/6/2012/07/US-Benefits-from-CRT-June-20-13-2.pdf (last access: 1 June 2021), 2013.
Bernauer, T. and Böhmelt, T.: International conflict and cooperation over freshwater resources, Nat. Sustain., 3, 350–356, https://doi.org/10.1038/s41893-020-0479-8, 2020.
Blumm, M. C. and Deroy, D.: The Fight over Columbia Basin Salmon Spills and the Future of the Lower Snake River Dams, Washington Journal of Environmental Law & Policy, 9, 1–26, 2019.
Bonneville Power Administration (BPA): The Columbia River System Inside Story, BPA, https://www.bpa.gov/-/media/Aep/power/hydropower-data-studies/columbia_river_inside_story.pdf (last access: 10 August 2022), 2001.
Bonneville Power Administration: Columbia Basin salmon and steelhead: many routes to the ocean, BPA, DOE/BP-4529, https://www.bpa.gov/about/newsroom/fact-sheets (last access: 1 July 2019), 2013.
Bonneville Power Administration: Historical Streamflow Data (Monthly Data), BPA [data set], https://www.bpa.gov/p/Power-Products/Historical-Streamflow-Data/Pages/Monthly-Data.aspx, last access: 1 July 2020.
Bowerman, T. E., Keefer, M. L., and Caudill, C. C.: Elevated stream temperature, origin, and individual size influence Chinook salmon prespawn mortality across the Columbia River Basin, Fish. Res., 237, 105874, https://doi.org/10.1016/j.fishres.2021.105874, 2021.
Caldas, M. M., Sanderson, M. R., Mather, M., Daniels, M. D., Bergtold, J. S., Aistrup, J., Heier Stamm, J. L., Haukos, D., Douglas-Mankin, K., Sheshukov, A. Y., and Lopez-Carr, D.:
Opinion: Endogenizing culture in sustainability science research and policy, P. Natl. Acad. Sci. USA, 112, 8157–8159, https://doi.org/10.1073/pnas.1510010112, 2015.
Charness, G. and Rabin, M.:
Understanding social preferences with simple tests, Q. J. Econ., 117, 817–869, 2002.
Choshen-Hillel, S. and Yaniv, I.:
Agency and the construction of social preference: Between inequality aversion and prosocial behavior, J. Pers. Soc. Psychol., 101, 1253–1261, https://doi.org/10.1037/a0024557, 2011.
Cosens, B.:
Resilience and law as a theoretical backdrop for natural resource management: flood management in the Columbia River basin, Environmental Law, 42, 241, 2012.
Dombrowsky, I.:
Revisiting the potential for benefit sharing in the management of trans-boundary rivers, Water Policy, 11, 125–140, 2009.
Environment Canada: Historical HYDAT (Hydrometric Data) database, https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html, last access: 1 July 2022.
Espey, M. and Towfique, B.: International bilateral water treaty formation, Water Resour. Res., 40, 1–8, https://doi.org/10.1029/2003WR002534, 2004.
FAO: Land & Water, https://www.fao.org/land-water/water/water-management/transboundary-water-management/en/, last access: 19 August 2022.
Fehr, E. and Fischbacher, U.:
Why social preferences matter – The impact of non-selfish motives on competition, cooperation and incentives, Econ. J., 112, 1–33, https://doi.org/10.1111/1468-0297.00027, 2002.
Fehr, E. and Schmidt, K. M.:
A theory of fairness, competition, and cooperation, Q. J. Econ., 114, 817–868, 1999.
Frey, B. S. and Meier, S.:
Pro-social behavior in a natural setting, J. Econ. Behav. Organ., 54, 65–88, https://doi.org/10.1016/j.jebo.2003.10.001, 2004.
Gain, A. K., Hossain, S., Benson, D., Di Baldassarre, G., Giupponi, C., and Huq, N.:
Social-ecological system approaches for water resources management, Int. J. Sust. Dev. World, 28, 109–124, 2021.
Gintis, H., Bowles, S., Boyd, R., and Fehr, E.:
Explaining altruistic behavior in humans, Evol. Hum. Behav., 24, 153–172, 2003.
Giordano, M., Drieschova, A., Duncan, J. A., Sayama, Y., De Stefano, L., and Wolf, A. T.:
A review of the evolution and state of transboundary freshwater treaties, Int. Environ. Agreem.-P., 14, 245–264, 2014.
Giordano, M. A. and Wolf, A. T.:
Sharing waters: Post-Rio international water management, Nat. Resour Forum, 27, 163–171, 2003.
Gober, P. and Wheater, H. S.:
Socio-hydrology and the science–policy interface: a case study of the Saskatchewan River basin, Hydrol. Earth Syst. Sci., 18, 1413–1422, https://doi.org/10.5194/hess-18-1413-2014, 2014.
Government of British Columbia: 2019 Community Meetings Summary Report, https://engage.gov.bc.ca/app/uploads/sites/6/2020/06/2019-CRT-Community-Meetings-Report_Web.pdf (last access: 10 August 2022), 2019.
Grey, D., Sadoff, C., and Connors, G.: Effective cooperation on transboundary waters: A Practical Perspective. World Bank, Washington, DC, https://openknowledge.worldbank.org/handle/10986/24047 (last access: 20 July 2022), 2016.
Harman, C. and Stewardson, M.:
Optimizing dam release rules to meet environmental flow targets, River Res. Appl., 21, 113–129, 2005.
Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., McElreath, R., Alvard, M., Barr, A., and Ensminger, J.:
“Economic man” in cross-cultural perspective: Behavioral experiments in 15 small-scale societies, Behav. Brain Sci., 28, 795–815, 2005.
Hirshleifer, J.:
Competition, Cooperation, and Conflict in Economics and Biology, in: Papers and Proceedings of the Ninetieth Annual Meeting of the American Economic Association, Am. Econ. Rev., 68, 238–243, American Economic Association, https://www.jstor.org/stable/1816696 (last access: 5 July 2022), 1978.
Ho, S.: “Big brother, little brothers”: Comparing China's and India's transboundary river policies, Water Policy, 18, 32–49, https://doi.org/10.2166/wp.2016.103, 2016.
Hofbauer, J. and Sigmund, K.: Evolutionary game dynamics, B. Am. Math. Soc., 40, 479–519, 2003.
Holm, C. E.: The Columbia River Treaty: Negotiating between Hydropower and Ecosystem-Based Functions, Willamette L. Rev., 54, 89, 2017.
Hyde, J. M.: Columbia River Treaty Past and Future, BPA Hydrovision, 25 pp., http://www.crt2014-2024review.gov/Files/10Aug_Hyde_TreatyPastFuture_FinalRev.pdf (last access: 6 June 2021), 2010.
Islam, S. and Susskind, L.: Using complexity science and negotiation theory to resolve boundary-crossing water issues, J. Hydrol., 562, 589–598, https://doi.org/10.1016/j.jhydrol.2018.04.020, 2018.
Iwasa, Y., Suzuki-Ohno, Y., and Yokomizo, H.: Paradox of nutrient removal in coupled socioeconomic and ecological dynamics for lake water pollution, Theor. Ecol., 3, 113–122, 2010.
Jägerskog, A. and Zeitoun, M.: Getting Transboundary Water Right: Theory and Practice for Effective Cooperation, Report Nr. 25, SIWI, Stockholm, http://environmentportal.in/files/Transboundary_Waters_with_WWW.pdf (last access: 6 June 2021), 2009.
Kameri-Mbote, P.: Water, Conflict and Cooperation: Lessons from the Nile River Basin, World, https://www.wilsoncenter.org/publication/water-conflict-and-
cooperation-lessons-the-nile-river-basin-no-4
(last access: 19 August 2022), 2007.
Kareiva, P., Marvier, M., and McClure, M.:
Recovery and management options for spring/summer chinook salmon in the Columbia River Basin, Science, 290, 977–979, https://doi.org/10.1126/science.290.5493.977, 2000.
Karpouzoglou, T., Dang Tri, V. P., Ahmed, F., Warner, J., Hoang, L., Nguyen, T. B., and Dewulf, A.: Unearthing the ripple effects of power and resilience in large river deltas, Environ. Sci. Policy, 98, 1–10, https://doi.org/10.1016/j.envsci.2019.04.011, 2019.
Kertzer, J. D. and Rathbun, B. C.:
Fair is Fair: Social Preferences and reciprocity in international Politics, World Polit., 67, 613–655, https://doi.org/10.1017/S0043887115000180, 2015.
Khan, H. F., Yang, Y. C. E., Xie, H., and Ringler, C.:
A coupled modeling framework for sustainable watershed management in transboundary river basins, Hydrol. Earth Syst. Sci., 21, 6275–6288, https://doi.org/10.5194/hess-21-6275-2017, 2017.
Kliot, N., Shmueli, D., and Shamir, U.: Institutions for management of transboundary water resources: Their nature, characteristics and shortcomings, Water Policy, 3, 229–255, https://doi.org/10.1016/S1366-7017(01)00008-3, 2001.
Koebele, E. A.: When multiple streams make a river: analyzing collaborative policymaking institutions using the multiple streams framework, Policy Sci., 54, 609–628, https://doi.org/10.1007/s11077-021-09425-3, 2021.
Leonard, N. J., Fritsch, M. A., Ruff, J. D., Fazio, J. F., Harrison, J., and Grover, T.: The challenge of managing the Columbia River Basin for energy and fish, Fisheries. Manag. Ecol., 22, 88–98, 2015.
Lower Columbia Estuary Partnership: FACTS ABOUT THE RIVER, https://www.estuarypartnership.org/learn, last access: 15 July 2022.
Lu, Y., Tian, F., Guo, L., Borzì, I., Patil, R., Wei, J., Liu, D., Wei, Y., Yu, D. J., and Sivapalan, M.: Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang–Mekong River, Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, 2021.
Madani, K., Zarezadeh, M., and Morid, S.: A new framework for resolving conflicts over transboundary rivers using bankruptcy methods, Hydrol. Earth Syst. Sci., 18, 3055–3068, https://doi.org/10.5194/hess-18-3055-2014, 2014.
McCracken, M. and Wolf, A. T.: Updating the Register of International River Basins of the world, Int. J. Water Resour. D., 35, 732–782, https://doi.org/10.1080/07900627.2019.1572497, 2019.
Mirumachi, N.:
Securitising shared waters: An analysis of the hydropolitical context of the Tanakpur Barrage project between Nepal and India, Geogr. J., 179, 309–319, https://doi.org/10.1111/geoj.12029, 2013.
Muckleston, K. W.: Salmon vs. hydropower: Striking a balance in the Pacific Northwest, Environ. Sci. Policy Sustain. Dev., 32, 10–36, 1990.
Natural Resource Council: Upstream-Salmon and Society in the Pacific Northwest, National Academy Press, Washington, DC, https://doi.org/10.17226/4976, 1996.
Northwest Power and Conservation Council: 2019 Columbia River Basin Fish and Wildlife Program Costs Report, https://www.nwcouncil.org/sites/default/files/2020-2.pdf (last access: 15 July 2022), 2019.
Northwest Power and Conservation Council: Dams: impacts on salmon and steelhead, https://www.nwcouncil.org/reports/columbia-river-history/damsimpacts (last access: 10 August 2022), 2020a.
Northwest Power and Conservation Council: Endangered Species Act, Columbia River salmon and steelhead, and the Biological Opinion, https://www.nwcouncil.org/reports/columbia-river-history/EndangeredSpeciesAct (last access: 10 August 2022), 2020b.
Northwest Power and Conservation Council: Hydropower, https://www.nwcouncil.org/reports/columbia-river-history/hydropower (last access: 10 August 2022), 2020c.
Northwest Power and Conservation Council: International Joint Commission, https://www.nwcouncil.org/reports/columbia-river-history/internationaljointcommission (last access: 10 August 2022), 2020d.
Northwest Power and Conservation Council: Floods and flood control, https://www.nwcouncil.org/reports/columbia-river-history/floods, last access: 19 August 2022.
Northwest Power Planning Council: Compilation of information on salmon and steelhead losses in the Columbia River Basin, Northwest Power Planning Council, https://www.nwcouncil.org/reports/compilation-information-salmon-and-steelhead-total-run-size-catch-and-
hydropower-related/ (last access: 10 August 2022), 1986.
Odom, O. and Wolf, A. T.:
Résilience institutionnelle et variabilité climatique dans les traités internationaux de l'eau: Illustration avec le Bassin du Fleuve Jourdain, Hydrolog. Sci. J., 56, 703–710, https://doi.org/10.1080/02626667.2011.574138, 2011.
Pohl, B. and Swain, A.: Leveraging diplomacy for resolving transboundary water problems, in: Water Dipl. action Conting. approaches to Manag. complex water Probl., edited by: Islam, K. and Madani, K., Anthem Press, 19–34, ISBN: 9781783084937, 2017.
Qaddumi, H.: Practical approaches to transboundary water benefit sharing, Overseas Development Institute London, ISBN 9780850038774, 2008.
Rawlins, J.: Harmonisation of transboundary water governance: advance or align?, https://www.africaportal.org/features/harmonisation- transboundary-water-governance-advance-or-align/
(last access: 7 July 2022), 2019.
Rivera-Torres, M. and Gerlak, A. K.: Evolving together: transboundary water governance in the Colorado River Basin, Int. Environ. Agreem.-P., 21, 553–574, 2021.
Sadoff, C. W. and Grey, D.: Beyond the river: the benefits of cooperation on international rivers, Water Policy, 4, 389–403, 2002.
Sadoff, C. W. and Grey, D.: Cooperation on international rivers: A continuum for securing and sharing benefits, Water Int., 30, 420–427, 2005.
Saklani, U., Shrestha, P. P., Mukherji, A., and Scott, C. A.:
Hydro-energy cooperation in South Asia: Prospects for transboundary energy and water security, Environ. Sci. Policy, 114, 22–34, https://doi.org/10.1016/j.envsci.2020.07.013, 2020.
Sanderson, M. R., Bergtold, J. S., Heier Stamm, J. L., Caldas, M. M., and Ramsey, S. M.:
Bringing the “social” into sociohydrology: Conservation policy support in the Central Great Plains of Kansas, USA, Water Resour. Res., 53, 6725–6743, 2017.
Scrucca, L.: Package “GA”, https://luca-scr.github.io/GA/ (last access: 1 July 2022), 2021.
Shurts, J. and Paisley, R.: 7. The Columbia River Treaty, in: Water without Borders?, edited by: Norman, E. S., Cohen, A., and Bakker, K., University of Toronto Press, 139–158, ISBN: 978-1-4426-1237-2, 2013.
Sivapalan, M. and Blöschl, G.: Time scale interactions and the coevolution of humans and water, Water Resour. Res., 51, 6988–7022, 2015.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: A new science of people and water, Hydrol. Process, 26, 1270–1276, https://doi.org/10.1002/hyp.8426, 2012.
Soetaert, K., Petzoldt, T., and Setzer, R. W.: Solving differential equations in R: Package deSolve, J. Stat. Softw., 33, 1–25, https://doi.org/10.18637/jss.v033.i09, 2010.
Soetaert, K., Petzoldt, T., Setzer, R. W., Brown, P. N., Byrne, G. D., Hairer, E., Hindmarsh, A. C., Moler, C., Petzold, L. R., Saad, Y., and Ulrich, C. W.: Package “deSolve”, CRAN [code], http://desolve.r-forge.r-project.org/ (last access: 10 August 2022), 2020.
Song, J. and Whittington, D.:
Why have some countries on international rivers been successful negotiating treaties? A global perspective, Water Resour. Res., 40, 1–18, https://doi.org/10.1029/2003WR002536, 2004.
Sopinka, A. and Pitt, L.: The columbia river treaty: Fifty years after the handshake, Electricity Journal, 27, 84–94, https://doi.org/10.1016/j.tej.2014.04.005, 2014.
Stern, C. V: Columbia River Treaty Review, Congressional Research Service, 7-5700, CRS Report No. R43287, https://aquadoc.typepad.com/files/crs_columbia_river_review_1june2018.pdf (last access: 10 July 2022), 2018.
Taylon, P. D. and Jonker, L. B.:
Evolutionarily stable strategies and game dynamics, Math. Biosci., 40, 145–156, 1978.
Thomas, K. A.: The Ganges water treaty: 20 years of cooperation, on India's terms, Water Policy, 19, 724–740, https://doi.org/10.2166/wp.2017.109, 2017.
Trebitz, K. I. and Wulfhorst, J. D.: Relating social networks, ecological health, and reservoir basin governance, River Res. Appl., 37, 198–208, 2021.
Troy, T. J., Konar, M., Srinivasan, V., and Thompson, S.: Moving sociohydrology forward: a synthesis across studies, Hydrol. Earth Syst. Sci., 19, 3667–3679, https://doi.org/10.5194/hess-19-3667-2015, 2015.
UNEP: Transboundary Waters Systems – Status and Trends: Crosscutting analysis, United Nations Environment Programme (UNEP), Nairobi, ISBN: 978-92-807-3531-4, 2016.
UNESCO: Progress on Transboundary Water Cooperation 2018, ISBN: 978-92-3-100467-4, 2021.
United Nations: Transboundary Waters, https://www.unwater.org/water-facts/transboundary-waters/, last access: 19 August 2022.
United States Government Accountability Office: COLUMBIA RIVER Additional Federal Actions Would Benefit Restoration Efforts, GAO-18-561, https://www.gao.gov/assets/gao-18-561.pdf (last access: 1 August 2022), 2018.
UN-Water: Good Practices in Transboundary Water Cooperation, https://www.unwater.org/water-facts/transboundary-waters/ (last access: 1 August 2022), 2015.
Uprety, K. and Salman, S. M. A.:
Aspects juridiques du partage et de la gestion des eaux transfrontalières en Asie du Sud: Prévention des conflits et promotion de la coopération, Hydrol. Sci. J., 56, 641–661, https://doi.org/10.1080/02626667.2011.576252, 2011.
USACE: COLUMBIA RIVER TREATY FLOOD CONTROL OPERATING PLAN, Hydrologic Engineering Branch, Water Management Division, 220 NW 8th Ave Portland, OR 97209-3503, https://www.nwd-wc.usace.army.mil/cafe/forecast/FCOP/FCOP2003.pdf (last access: 1 July 2022), 2003.
USACE: Basin Water Control Data (Dataquery 2.0), Northwestern Division, U.S. Army Corps of Engineers, database, https://www.nwd-wc.usace.army.mil/dd/common/dataquery/www/, last access: 1 July 2022.
USACE: Columbia River Treaty Detailed Operating Plan For Canadian Storage, Columbia River Treaty Operating Committee, U.S. Army Corps of Engineers Digital Library, https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/3193/ (last access: 10 August 2022), 2013.
U.S. Energy Information Administration: https://www.eia.gov/ (last access: 15 July 2020), 2022.
USGS: USGS Real-Time Water Data for USGS 14105700 Columbia River at the Dalles, OR, USGS [data set], http://waterdata.usgs.gov/nwis/uv?14105700, last access: 1 July 2022.
Warner, J. and Zawahri, N.:
Hegemony and asymmetry: Multiple-chessboard games on transboundary rivers, Int. Environ. Agreem.-P., 12, 215–229, 2012.
White, S. M., Brandy, S., Justice, C., Morinaga, K. A., Naylor, L., Ruzycki, J., Sedell, E. R., Steele, J., Towne, A., and Webster, J. G.:
Progress towards a comprehensive approach for habitat restoration in the Columbia Basin: Case study in the Grande Ronde River, Fisheries, 46, 229–243, 2021.
Wiebe, K.: The Nile River: Potential for Conflict and Cooperation in the Face of Water, Nat. Resour. J., 41, 731–754, 2001.
Williams, J. G., Smith, S. G., Zabel, R. W., Muir, W. D., Scheuerell, M. D., Sandford, B. P., Marsh, D. M., McNatt, R. A., and Achord, S.: Effects of the federal Columbia River power system on salmonid populations, U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-63, 150 pp., 2005.
Wolf, A. T.:
Shared waters: Conflict and cooperation, Annu. Rev. Env. Resour., 32, 241–269, https://doi.org/10.1146/annurev.energy.32.041006.101434, 2007.
Yu, W.: Benefit Sharing in International Rivers: Findings from the Senegal River Basin, the Columbia River Basin, and the Lesotho Highlands Water Project, World Bank AFTWR Work. Pap., 46456, 1–79, 2008.
Zambrano-Bigiarini, M.: hydroGOF: goodness-of-fit functions for comparison of simulated and observed hydrological time series, https://cran.r-project.org/web/packages/hydroGOF/hydroGOF.pdf (last access: 1 August 2022), 2020.
Zeitoun, M., Goulden, M., and Tickner, D.:
Current and future challenges facing transboundary river basin management, WIREs Clim. Change, 4, 331–349, https://doi.org/10.1002/wcc.228, 2013.
Short summary
Equitable sharing of benefits is key to successful cooperation in transboundary water resource management. However, external changes can shift the split of benefits and shifts in the preferences regarding how an actor’s benefits compare to the other’s benefits. To understand how these changes can impact the robustness of cooperative agreements, we develop a socio-hydrological system dynamics model of the benefit sharing provision of the Columbia River Treaty and assess a series of scenarios.
Equitable sharing of benefits is key to successful cooperation in transboundary water resource...
Special issue