Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-331-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-331-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonality of density currents induced by differential cooling
Eawag, Swiss Federal Institute of Aquatic Science and Technology,
Surface Waters – Research and Management, 6047 Kastanienbaum, Switzerland
Physics of Aquatic Systems Laboratory, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
Cintia L. Ramón
Eawag, Swiss Federal Institute of Aquatic Science and Technology,
Surface Waters – Research and Management, 6047 Kastanienbaum, Switzerland
Department of Civil Engineering, University of Granada, 18003 Granada, Spain
Hugo N. Ulloa
Physics of Aquatic Systems Laboratory, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
Department of Earth and Environmental Science, University of
Pennsylvania, Philadelphia, PA 19104-6316, USA
Alfred Wüest
Eawag, Swiss Federal Institute of Aquatic Science and Technology,
Surface Waters – Research and Management, 6047 Kastanienbaum, Switzerland
Physics of Aquatic Systems Laboratory, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
Damien Bouffard
Eawag, Swiss Federal Institute of Aquatic Science and Technology,
Surface Waters – Research and Management, 6047 Kastanienbaum, Switzerland
Related authors
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021, https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary
Short summary
When solar radiation penetrates the frozen surface of lakes, shallower zones underneath warm faster than deep interior waters. This numerical study shows that the transport of excess heat to the lake interior depends on the lake circulation, affected by Earth's rotation, and controls the lake warming rates and the spatial distribution of the heat flux across the ice–water interface. This work contributes to the understanding of the circulation and thermal structure patterns of ice-covered lakes.
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025, https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Short summary
Models simplify reality using assumptions, which can sometimes introduce flaws and affect their accuracy. Properly calibrating model parameters is essential, and although automated tools can speed up this process, they may occasionally produce incorrect values due to inconsistencies in the model. We demonstrate that by carefully applying automated tools, we were able to identify and correct a flaw in a widely used model for lake environments.
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023, https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
Short summary
The long-term effects of climate change will include an increase in lake surface and deep water temperatures. Incorporating up to 6 decades of limnological monitoring into an improved 1D lake model approach allows us to predict the thermal regime and oxygen solubility in four peri-alpine lakes over the period 1850–2100. Our modeling approach includes a revised selection of forcing variables and provides a way to investigate the impacts of climate variations on lakes for centennial timescales.
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022, https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Marco Toffolon, Luca Cortese, and Damien Bouffard
Geosci. Model Dev., 14, 7527–7543, https://doi.org/10.5194/gmd-14-7527-2021, https://doi.org/10.5194/gmd-14-7527-2021, 2021
Short summary
Short summary
The time when lakes freeze varies considerably from year to year. A common way to predict it is to use negative degree days, i.e., the sum of air temperatures below 0 °C, a proxy for the heat lost to the atmosphere. Here, we show that this is insufficient as the mixing of the surface layer induced by wind tends to delay the formation of ice. To do so, we developed a minimal model based on a simplified energy balance, which can be used both for large-scale analyses and short-term predictions.
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam., 12, 1169–1189, https://doi.org/10.5194/esd-12-1169-2021, https://doi.org/10.5194/esd-12-1169-2021, 2021
Short summary
Short summary
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote gas exchange at the air–water interface. In this study, for the first time, we measured enhanced gas exchanges by wind-induced waves at the surface of a large lake. We adapted an ocean-based model to account for the effect of surface waves on gas exchange in lakes. We finally show that intense wind events with surface waves contribute disproportionately to the annual CO2 gas flux in a large lake.
Cintia L. Ramón, Hugo N. Ulloa, Tomy Doda, Kraig B. Winters, and Damien Bouffard
Hydrol. Earth Syst. Sci., 25, 1813–1825, https://doi.org/10.5194/hess-25-1813-2021, https://doi.org/10.5194/hess-25-1813-2021, 2021
Short summary
Short summary
When solar radiation penetrates the frozen surface of lakes, shallower zones underneath warm faster than deep interior waters. This numerical study shows that the transport of excess heat to the lake interior depends on the lake circulation, affected by Earth's rotation, and controls the lake warming rates and the spatial distribution of the heat flux across the ice–water interface. This work contributes to the understanding of the circulation and thermal structure patterns of ice-covered lakes.
Cited articles
Adams, E. E. and Wells, S. A.: Field measurements on side arms of Lake Anna,
Va., J. Hydraul. Eng., 110, 773–793, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:6(773), 1984.
Ambrosetti, W., Barbanti, L., and Carrara, E. A.: Mechanisms of hypolimnion
erosion in a deep lake (Lago Maggiore, N. Italy), J. Limnol., 69, 3–14,
https://doi.org/10.4081/jlimnol.2010.3, 2010.
Bouffard, D. and Wüest, A.: Convection in lakes, Annu. Rev. Fluid Mech.,
51, 189–215, https://doi.org/10.1146/annurev-fluid-010518-040506, 2019.
Brink, K. H.: Cross-shelf exchange, Annu. Rev. Mar. Sci., 8, 59–78,
https://doi.org/10.1146/annurev-marine-010814-015717, 2016.
Chen, C.-T. A. and Millero, F. J.: Precise thermodynamic properties for natural waters covering only the limnological range, Limnol. Oceanogr., 31, 657–662, https://doi.org/10.4319/lo.1986.31.3.0657, 1986.
Cyr, H.: Winds and the distribution of nearshore phytoplankton in a stratified lake, Water Res., 122, 114–127, https://doi.org/10.1016/j.watres.2017.05.066, 2017.
Deardorff, J. W.: Convective velocity and temperature scales for the
unstable planetary boundary layer and for Rayleigh convection, J. Atmos.
Sci., 27, 1211–1213, https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2, 1970.
Doda, T., Ramón, C. L., Ulloa, H. N., Wüest, A., and Bouffard, D.:
Data for: Seasonality of density currents induced by differential cooling,
Eawag Data Institutional Collection [data set], https://doi.org/10.25678/00057K, 2021.
Eccles, D. H.: An outline of the physical limnology of Lake Malawi (Lake Nyasa), Limnol. Oceanogr., 19, 730–742, https://doi.org/10.4319/lo.1974.19.5.0730, 1974.
Effler, S. W., Prestigiacomo, A. R., Matthews, D. A., Gelda, R. K., Peng, F., Cowen, E. A., and Schweitzer, S. A.: Tripton, trophic state metrics, and
near-shore versus pelagic zone responses to external loads in Cayuga Lake,
New York, U.S.A., Fundam. Appl. Limnol., 178, 1–15,
https://doi.org/10.1127/1863-9135/2010/0178-0001, 2010.
Fer, I., Lemmin, U., and Thorpe, S. A.: Contribution of entrainment and
vertical plumes to the winter cascading of cold shelf waters in a deep lake,
Limnol. Oceanogr., 47, 576–580, https://doi.org/10.4319/lo.2002.47.2.0576, 2002a.
Fer, I., Lemmin, U., and Thorpe, S. A.: Winter cascading of cold water in Lake Geneva, J. Geophys. Res., 107, 3060, https://doi.org/10.1029/2001JC000828, 2002b.
Fink, G., Schmid, M., Wahl, B., Wolf, T., and Wüest, A.: Heat flux
modifications related to climate-induced warming of large European lakes, Water Resour. Res., 50, 2072–2085, https://doi.org/10.1002/2013WR014448, 2014.
Finnigan, T. D. and Ivey, G. N.: Submaximal exchange between a convectively
forced basin and a large reservoir, J. Fluid Mech., 378, 357–378,
https://doi.org/10.1017/S0022112098003437, 1999.
Forel, F. A.: Le Léman – Monographie Limnologique. Tome II, Editions
Rouge, Lausanne, Switzerland, https://doi.org/10.5962/bhl.title.124608, 1895.
Forrest, A. L., Laval, B. E., Pieters, R., and Lim, D. S. S.: Convectively
driven transport in temperate lakes, Limnol. Oceanogr., 53, 2321–2332,
https://doi.org/10.4319/lo.2008.53.5_part_2.2321, 2008.
Gray, E., Mackay, E. B., Elliott, J. A., Folkard, A. M., and Jones, I. D.:
Wide-spread inconsistency in estimation of lake mixed depth impacts interpretation of limnological processes, Water Res., 168, 115136,
https://doi.org/10.1016/j.watres.2019.115136, 2020.
Harashima, A. and Watanabe, M.: Laboratory experiments on the steady
gravitational circulation excited by cooling of the water surface, J. Geophys. Res., 91, 13056–13064, https://doi.org/10.1029/JC091iC11p13056, 1986.
Hofmann, H.: Spatiotemporal distribution patterns of dissolved methane in
lakes: how accurate are the current estimations of the diffusive flux path?,
Geophys. Res. Lett., 40, 2779–2784, https://doi.org/10.1002/grl.50453, 2013.
Horsch, G. M. and Stefan, H. G.: Convective circulation in littoral water due to surface cooling, Limnol. Oceanogr., 33, 1068–1083, https://doi.org/10.4319/lo.1988.33.5.1068, 1988.
Imberger, J. and Patterson, J. C.: Physical Limnology, edited by J. W. Hutchinson and T. Y. Wu, Adv. Appl. Mech., 27, 303–475,
https://doi.org/10.1016/S0065-2156(08)70199-6, 1989.
James, W. F. and Barko, J. W.: Estimation of phosphorus exchange between
littoral and pelagic zones during nighttime convective circulation, Limnol.
Oceanogr., 36, 179–187, https://doi.org/10.4319/lo.1991.36.1.0179, 1991a.
James, W. F. and Barko, J. W.: Littoral-pelagic phosphorus dynamics during
nighttime convective circulation, Limnol. Oceanogr., 36, 949–960,
https://doi.org/10.4319/lo.1991.36.5.0949, 1991b.
James, W. F., Barko, J. W., and Eakin, H. L.: Convective water exchanges
during differential cooling and heating: implications for dissolved constituent transport, Hydrobiologia, 294, 167–176, https://doi.org/10.1007/BF00016857, 1994.
Lövstedt, C. B. and Bengtsson, L.: Density-driven current between reed
belts and open water in a shallow lake, Water Resour. Res., 44, W10413,
https://doi.org/10.1029/2008WR006949, 2008.
MacIntyre, S. and Melack, J. M.: Vertical and horizontal transport in lakes:
linking littoral, benthic, and pelagic habitats, J. N. Am. Benthol. Soc., 14, 599–615, https://doi.org/10.2307/1467544, 1995.
MacIntyre, S., Romero, J. R., and Kling, G. W.: Spatial-temporal variability
in surface layer deepening and lateral advection in an embayment of Lake
Victoria, East Africa, Limnol. Oceanogr., 47, 656–671,
https://doi.org/10.4319/lo.2002.47.3.0656, 2002.
McJannet, D. L., Webster, I. T., and Cook, F. J.: An area-dependent wind
function for estimating open water evaporation using land-based meteorological data, Environ. Model. Softw., 31, 76–83,
https://doi.org/10.1016/j.envsoft.2011.11.017, 2012.
Meyers, T. and Dale, R.: Predicting daily insolation with hourly cloud
height and coverage, J. Clim. Appl. Meteorol., 22, 537–545,
https://doi.org/10.1175/1520-0450(1983)022<0537:PDIWHC>2.0.CO;2, 1983.
Monismith, S. G., Imberger, J., and Morison, M. L.: Convective motions in the
sidearm of a small reservoir, Limnol. Oceanogr., 35, 1676–1702,
https://doi.org/10.4319/lo.1990.35.8.1676, 1990.
Mortimer, C. H.: Water movements in lakes during summer stratification;
evidence from the distribution of temperature in Windermere, Philos. T. Roy.
Soc. Lond. B, 236, 355–398, https://doi.org/10.1098/rstb.1952.0005, 1952.
Pálmarsson, S. Ó. and Schladow, S. G.: Exchange flow in a shallow
lake embayment, Ecol. Appl., 18, A89–A106, https://doi.org/10.1890/06-1618.1, 2008.
Peeters, F., Finger, D., Hofer, M., Brennwald, M., Livingstone, D. M., and
Kipfer, R.: Deep-water renewal in Lake Issyk-Kul driven by d cooling, Limnol. Oceanogr., 48, 1419–1431, https://doi.org/10.4319/lo.2003.48.4.1419, 2003.
Phillips, O. M.: On turbulent convection currents and the circulation of the
Red Sea, Deep-Sea Res. Oceanogr. Abstr., 13, 1149–1160,
https://doi.org/10.1016/0011-7471(66)90706-6, 1966.
Rao, Y. R. and Schwab, D. J.: Transport and mixing between the coastal and
offshore waters in the Great Lakes: a review, J. Great Lakes Res., 33,
202–218, https://doi.org/10.3394/0380-1330(2007)33[202:TAMBTC]2.0.CO;2, 2007.
Roget, E., Colomer, J., Casamitjana, X., and Llebot, J. E.: Bottom currents
induced by baroclinic forcing in Lake Banyoles (Spain), Aquat. Sci., 55,
206–227, https://doi.org/10.1007/BF00877450, 1993.
Rogowski, P., Merrifield, S., Ding, L., Terrill, E., and Gesiriech, G.:
Robotic mapping of mixing and dispersion of augmented surface water in a
drought frequent reservoir, Limnol. Oceanogr. Meth., 17, 475–489,
https://doi.org/10.1002/lom3.10326, 2019.
Rueda, F., Moreno-Ostos, E., and Cruz-Pizarro, L.: Spatial and temporal scales of transport during the cooling phase of the ice-free period in a small high-mountain lake, Aquat. Sci., 69, 115–128, https://doi.org/10.1007/s00027-006-0823-8, 2007.
Schlatter, J. W., Wüest, A., and Imboden, D. M.: Hypolimnetic density
currents traced by sulphur hexafluoride (SF6), Aquat. Sci., 59,
225–242, https://doi.org/10.1007/BF02523275, 1997.
Sturman, J. J. and Ivey, G. N.: Unsteady convective exchange flows in cavities, J. Fluid Mech., 368, 127–153, https://doi.org/10.1017/S002211209800175X, 1998.
Sturman, J. J., Ivey, G. N., and Taylor, J. R.: Convection in a long box
driven by heating and cooling on the horizontal boundaries, J. Fluid Mech.,
310, 61–87, https://doi.org/10.1017/S0022112096001735, 1996.
Sturman, J. J., Oldham, C. E., and Ivey, G. N.: Steady convective exchange
flows down slopes, Aquat. Sci., 61, 260–278, https://doi.org/10.1007/s000270050065, 1999.
Talling, J. F.: Origin of stratification in an African Rift lake, Limnol.
Oceanogr., 8, 68–78, https://doi.org/10.4319/lo.1963.8.1.0068, 1963.
Thorpe, S. A., Lemmin, U., Perrinjaquet, C., and Fer, I.: Observations of the
thermal structure of a lake using a submarine, Limnol. Oceanogr., 44, 1575–1582, https://doi.org/10.4319/lo.1999.44.6.1575, 1999.
Ulloa, H. N., Ramón, C. L., Doda, T., Wüest, A., and Bouffard, D.:
Development of overturning circulation in sloping waterbodies due to surface
cooling, J. Fluid Mech., 930, A18, https://doi.org/10.1017/jfm.2021.883, 2022.
Verburg, P., Antenucci, J. P., and Hecky, R. E.: Differential cooling drives
large-scale convective circulation in Lake Tanganyika, Limnol. Oceanogr., 56, 910–926, https://doi.org/10.4319/lo.2011.56.3.0910, 2011.
Wedderburn, E. M.: The temperature of the fresh-water Lochs of Scotland,
with special reference to Loch Ness, Trans. Roy. Soc. Edinb., 45, 407–489, https://doi.org/10.1017/S0080456800022791, 1907.
Wells, M. G. and Sherman, B.: Stratification produced by surface cooling in
lakes with significant shallow regions, Limnol. Oceanogr., 46, 1747–1759, https://doi.org/10.4319/lo.2001.46.7.1747, 2001.
Wetzel, R. G.: Limnology: Lake and River Ecosystems, 3rd Edn., Academic
Press, San Diego, California, USA, ISBN 13 9780127447605, 2001.
Woodward, B. L., Marti, C. L., Imberger, J., Hipsey, M. R., and Oldham, C.
E.: Wind and buoyancy driven horizontal exchange in shallow embayments of a
tropical reservoir: Lake Argyle, Western Australia, Limnol. Oceanogr., 62, 1636–1657, https://doi.org/10.1002/lno.10522, 2017.
Wüest, A. and Lorke, A.: Small-scale hydrodynamics in lakes, Annu. Rev.
Fluid Mech., 35, 373–412, https://doi.org/10.1146/annurev.fluid.35.101101.161220, 2003.
Zilitinkevic, S. S.: Turbulent Penetrative Convection, edited by: Henderson-Sellers, B., Avebury, Adelshot, UK, ISBN 13 9781856281868, 1991.
Zimmermann, M., Mayr, M. J., Bürgmann, H., Eugster, W., Steinsberger, T., Wehrli, B., Brand, A., and Bouffard, D.: Microbial methane oxidation efficiency and robustness during lake overturn, Limnol. Oceanogr. Lett., 6, 320–328, https://doi.org/10.1002/lol2.10209, 2021.
Short summary
At night or during cold periods, the shallow littoral region of lakes cools faster than their deeper interior. This induces a cold downslope current that carries littoral waters offshore. From a 1-year-long database collected in a small temperate lake, we resolve the seasonality of this current and report its frequent occurrence from summer to winter. This study contributes to a better quantification of lateral exchange in lakes, with implications for the transport of dissolved compounds.
At night or during cold periods, the shallow littoral region of lakes cools faster than their...