Articles | Volume 26, issue 6
https://doi.org/10.5194/hess-26-1695-2022
https://doi.org/10.5194/hess-26-1695-2022
Research article
 | 
31 Mar 2022
Research article |  | 31 Mar 2022

Applying non-parametric Bayesian networks to estimate maximum daily river discharge: potential and challenges

Elisa Ragno, Markus Hrachowitz, and Oswaldo Morales-Nápoles

Related authors

Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Compound flood impact of water level and rainfall during tropical cyclone periods in a coastal city: the case of Shanghai
Hanqing Xu, Zhan Tian, Laixiang Sun, Qinghua Ye, Elisa Ragno, Jeremy Bricker, Ganquan Mao, Jinkai Tan, Jun Wang, Qian Ke, Shuai Wang, and Ralf Toumi
Nat. Hazards Earth Syst. Sci., 22, 2347–2358, https://doi.org/10.5194/nhess-22-2347-2022,https://doi.org/10.5194/nhess-22-2347-2022, 2022
Short summary
Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the Netherlands
Víctor M. Santos, Mercè Casas-Prat, Benjamin Poschlod, Elisa Ragno, Bart van den Hurk, Zengchao Hao, Tímea Kalmár, Lianhua Zhu, and Husain Najafi
Hydrol. Earth Syst. Sci., 25, 3595–3615, https://doi.org/10.5194/hess-25-3595-2021,https://doi.org/10.5194/hess-25-3595-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Extended-range forecasting of stream water temperature with deep-learning models
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025,https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Projections of streamflow intermittence under climate change in European drying river networks
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025,https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a, b, c
Addor, N., Newman, A., Mizukami, M., and Clark, M. P.: Catchment attributes for large-sample studies, Boulder, CO, UCAR/NCAR [data set], https://doi.org/10.5065/D6G73C3Q, 2017b. a
Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., and Salmerón, A.: Bayesian networks in environmental modelling, Environ. Modell. Softw., 26, 1376–1388, https://doi.org/10.1016/j.envsoft.2011.06.004, 2011. a, b, c
Anmala, J., Zhang, B., and Govindaraju, R. S.: Comparison of ANNs and Empirical Approaches for Predicting Watershed Runoff, J. Water Res. Pl., 126, 156–166, 2000. a
Barbarossa, V., Huijbregts, M. A., Hendriks, A. J., Beusen, A. H., Clavreul, J., King, H., and Schipper, A. M.: Developing and testing a global-scale regression model to quantify mean annual streamflow, J. Hydrol., 544, 479–487, https://doi.org/10.1016/j.jhydrol.2016.11.053, 2017. a, b
Download
Short summary
We explore the ability of non-parametric Bayesian networks to reproduce maximum daily discharge in a given month in a catchment when the remaining hydro-meteorological and catchment attributes are known. We show that a saturated network evaluated in an individual catchment can reproduce statistical characteristics of discharge in about ~ 40 % of the cases, while challenges remain when a saturated network considering all the catchments together is evaluated.
Share