Articles | Volume 26, issue 5
https://doi.org/10.5194/hess-26-1261-2022
https://doi.org/10.5194/hess-26-1261-2022
Research article
 | 
09 Mar 2022
Research article |  | 09 Mar 2022

Probabilistic modelling of the inherent field-level pesticide pollution risk in a small drinking water catchment using spatial Bayesian belief networks

Mads Troldborg, Zisis Gagkas, Andy Vinten, Allan Lilly, and Miriam Glendell

Related authors

Developing a Bayesian network model for understanding river catchment resilience under future change scenarios
Kerr J. Adams, Christopher A. J. Macleod, Marc J. Metzger, Nicola Melville, Rachel C. Helliwell, Jim Pritchard, and Miriam Glendell
Hydrol. Earth Syst. Sci., 27, 2205–2225, https://doi.org/10.5194/hess-27-2205-2023,https://doi.org/10.5194/hess-27-2205-2023, 2023
Short summary
Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England)
Jingjing Guo, Miriam Glendell, Jeroen Meersmans, Frédérique Kirkels, Jack J. Middelburg, and Francien Peterse
Biogeosciences, 17, 3183–3201, https://doi.org/10.5194/bg-17-3183-2020,https://doi.org/10.5194/bg-17-3183-2020, 2020
Short summary
Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments
D. Graeber, G. Goyenola, M. Meerhoff, E. Zwirnmann, N. B. Ovesen, M. Glendell, J. Gelbrecht, F. Teixeira de Mello, I. González-Bergonzoni, E. Jeppesen, and B. Kronvang
Hydrol. Earth Syst. Sci., 19, 2377–2394, https://doi.org/10.5194/hess-19-2377-2015,https://doi.org/10.5194/hess-19-2377-2015, 2015

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
How to account for irrigation withdrawals in a watershed model
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024,https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023,https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Bingyi Zhou, Guohua Fang, Xin Li, Jian Zhou, and Huayu Zhong
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-228,https://doi.org/10.5194/hess-2023-228, 2023
Revised manuscript accepted for HESS
Short summary
Employing the Generalized Pareto Distribution to Analyze Extreme Rainfall Events on Consecutive Rainy Days in Thailand's Chi Watershed: Implications for Flood Management
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-167,https://doi.org/10.5194/hess-2023-167, 2023
Revised manuscript accepted for HESS
Short summary
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023,https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary

Cited articles

Aguilera, P. A., Fernandez, A., Fernandez, R., Rumi, R., and Salmeron, A.: Bayesian networks in environmental modelling, Environ. Modell. Softw., 26, 1376–1388, https://doi.org/10.1016/j.envsoft.2011.06.004, 2011. 
Aller, L., Bennet, T., Leher, J. H., Petty, R. J., and Hackett, G.: DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeological settings, EPA, 641 pp., 1987. 
Babaei, H., Nazari-Sharabian, M., Karakouzian, M., and Ahmad, S.: Identification of critical source areas (CSAs) and evaluation of best management practices (BMPs) in controlling eutrophication in the Dez River basin, Environments, 6, 1–15, https://doi.org/10.3390/environments6020020, 2019. 
Bereswill, R., Streloke, M., and Schulz, R.: Risk mitigation measures for diffuse pesticide entry into aquatic ecosystems: proposal of a guide to identify appropriate measures on a catchment scale, Integr. Environ. Assess., 10, 286–298, https://doi.org/10.1002/ieam.1517, 2014. 
Beven, K., Asadullah, A., Bates, P., Blyth, E., Chappell, N., Child, S., Cloke, H., Dadson, S., Everard, N., Fowler, H. J., Freer, J., Hannah, D. M., Heppell, K., Holden, J., Lamb, R., Lewis, H., Morgan, G., Parry, L., and Wagener, T.: Developing observational methods to drive future hydrological science: Can we make a start as a community?, Hydrol. Process., 34, 868–873, https://doi.org/10.1002/hyp.13622, 2019. 
Download
Short summary
Pesticides continue to pose a threat to surface water quality worldwide. Here, we present a spatial Bayesian belief network (BBN) for assessing inherent pesticide risk to water quality. The BBN was applied in a small catchment with limited data to simulate the risk of five pesticides and evaluate the likely effectiveness of mitigation measures. The probabilistic graphical model combines diverse data and explicitly accounts for uncertainties, which are often ignored in pesticide risk assessments.