Articles | Volume 25, issue 12
https://doi.org/10.5194/hess-25-6309-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6309-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Use of water isotopes and chemistry to infer the type and degree of exchange between groundwater and lakes in an esker complex of northeastern Ontario, Canada
Department of Geography and Planning, Queen's University, Kingston,
K7L3N6, Canada
Scott F. Lamoureux
Department of Geography and Planning, Queen's University, Kingston,
K7L3N6, Canada
Brian F. Cumming
Department of Biology, Queen's University, Kingston, K7L3J9, Canada
School of Environmental Studies, Queen's University, Kingston, K7L3J9,
Canada
Related authors
No articles found.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Cited articles
Ala-aho, P., Rossi, P. M., and Kløve, B.: Interaction of esker groundwater
with headwater lakes and streams, J. Hydrol., 500, 144–156,
https://doi.org/10.1016/j.jhydrol.2013.07.014, 2013.
Ala-aho, P., Rossi, P. M., Isokangas, E., and Kløve, B.: Fully integrated
surface–subsurface flow modelling of groundwater–lake interaction in an
esker aquifer: Model verification with stable isotopes and airborne thermal
imaging, J. Hydrol., 522, 391–406,
https://doi.org/10.1016/j.jhydrol.2014.12.054, 2015a.
Ala-aho, P., Rossi, P. M., and Kløve, B.: Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories, Hydrol. Earth Syst. Sci., 19, 1961–1976, https://doi.org/10.5194/hess-19-1961-2015, 2015b.
Anderson, M. P. and Munter, J. A.: Seasonal reversals of groundwater flow
around lakes and the relevance to stagnation points and lake budgets, Water
Resour. Res., 17, 1139–1150, https://doi.org/10.1029/WR017i004p01139, 1981.
Arnoux, M., Barbecot, F., Gibert-Brunet, E., Gibson, J., Rosa, E., Noret, A.
and Monvoisin, G.: Geochemical and isotopic mass balances of kettle lakes in
southern Quebec (Canada) as tools to document variations in groundwater
quantity and quality, Environ. Earth Sci., 76, 106,
https://doi.org/10.1007/s12665-017-6410-6, 2017a.
Arnoux, M., Gibert-Brunet, E., Barbecot, F., Guillon, S., Gibson, J., and
Noret, A.: Interactions between groundwater and seasonally ice-covered
lakes: using water stable isotopes and radon-222 multi-layer mass balance
models, Hydrol. Process., 31, 2566–2581, https://doi.org/10.1002/hyp.11206, 2017b.
Bennett, D. M., Fritz, S. C., Holz, J. C., and Zlotnik, V. A.: Evaluating
climatic and non-climatic influences on ion chemistry in natural and
man-made lakes of Nebraska, USA, Hydrobiologia, 591, 103–115,
https://doi.org/10.1007/s10750-007-0798-z, 2007.
Bertrand, G., Siergieiev, D., Ala-Aho, P., and Rossi, P. M.: Environmental
tracers and indicators bringing together groundwater, surface water and
groundwater dependent ecosystems: importance of scale in choosing relevant
tools, Environ. Earth Sci., 7, 813–827,
https://doi.org/10.1007/s12665-013-3005-8, 2014.
Birks, S. J., Edwards, T. W. D., Gibson, J. J., Michel, F. A., Drimmie, R. J.,
MacTavish, D., Remenda, V. H., and Wassenaar, L. I.: Canadian Network for
Isotopes in Precipitation, University of Waterloo, Ontario, Canada,
available at: http://science.uwaterloo.ca/~twdedwar/cnip/cniphome.html, last access: 23 May 2015.
Born, S. M., Smith, S. A., and Stephenson, D. A.: Hydrogeology of
glacial-terrain lakes, with management and planning applications, J.
Hydrol., 43, 7–43, https://doi.org/10.1016/0022-1694(79)90163-X, 1979.
Bouchard, F., Turner, K. W., MacDonald, L. A., Deakin, C., White, H.,
Farquharson, N., Medeiros, A. S., Wolfe, B. B., Hall, R. I., Pienitz, R., and
Edwards, T. W. D.: Vulnerability of shallow subarctic lakes to evaporate and
desiccate when snowmelt runoff is low, Geophys. Res. Lett., 40, 6112–6117,
https://doi.org/10.1139/as-2016-0019, 2013.
Cloutier, V., Veillette, J., Roy, M., Bois, D., Gagnon, F., and de Corta, H.:
Atlas sur les eaux souterraines de la MRC d'Abitibi, Université du
Québec en Abitibi-Témiscamingue, Québec, Canada, 24 pp., 36
maps, 2007.
Cloutier, V., Blanchette, D., Dallaire, P.-L., Nadeau, S., Rosa, E., and Roy,
M.: Projet d'acquisition de connaissances sur les eaux souterraines de
l'Abitibi-Témiscamingue (partie 1) [Abitibi-Témiscamingue
groundwater knowledge acquisition project, Part 1], Rapport final [Final
Report], Amos: Groupe de recherche sur l'eau souterraine. Institut de
recherche en mines et en environnement. Université du Québec en
Abitibi-Témiscamingue, Québec, Canada, 151 pp., 2013.
Cochrane, L. B.: Technical report on the Aquarius Project, Timmins, Ontario,
Canada, St. Andrew Goldfields LTD, 129 pp., 2006.
Cohen, M. J., Creed, I. F., Alexander, L., Basu, N. B., Calhoun, A. J. K., Craft,
C., D'Amico, E., DeKeyser, E., Fowler, L., Golden, H. E., Jawitz, J. W.,
Kalla, P., Kirkman, L. K., Lane, C. R., Lang, M., Leibowitz, S. G., Lewis,
D. B., Marton, J., McLaughlin, D. L., Mushet, D. M., Raanan-Kiperwas, H.,
Rains, M. C., Smith, L., and Walls, S. C.: Do geographically isolated wetlands
influence landscape functions?, P. Natl. Acad. Sci. USA, 113, 1978–1986,
https://doi.org/10.1073/pnas.1512650113, 2016.
Craig, H. and Gordon, L. I.: Deuterium and Oxygen-18 Variations in the Ocean
and the Marine Atmosphere, in: Stable Isotopes in Oceanographic Studies and
Paleotemperatures, edited by: Tongiorgi, E., Laboratorio di geologia
nucleare, Pisa, Italy, 9–130, 1965.
Cummings, D. I., Gorrell, G., Guilbault, J.-P., Hunter, J. A., Logan, C.,
Ponomarenko, D., Pugin, A. J.-M., Pullan, S. E., Russell, H. A. J., and Sharpe,
D. R.: Sequence stratigraphy of a glaciated basin fill, with a focus on esker
sedimentation, Geol. Soc. Am. Bull., 123, 1478–1496,
https://doi.org/10.1130/B30273.1, 2011.
Darling, W. G., Bath, A. H., Gibson, J. J., and Rozanski, K.: Isotopes in Water,
in: Isotopes in Palaeoenvironmental Research, edited by: Leng, M. J.,
Springer, Dordrecht, the Netherlands, 1–66, 2005.
Dyke, A. S.: An outline of North American deglaciation with emphasis on
central and northern Canada, in: Quaternary glaciations – extent and
chronology, part II: North America, Developments in Quaternary Science 2b,
edited by: Ehlers, J. and Gibard, P. L., Elsevier, Amsterdam, the
Netherlands, 373–424, 2004.
Environment Canada: Historical climate data for Timmins, Ontario, available
at: http://climate.weather.gc.ca/historical_data/search_historic_data_e.html, last access: 6 June 2015.
Fleckenstein, J. H., Krause, S., Hannah, D. M., and Boano, F.:
Groundwater-surface water interactions: new methods and models to improve
understanding of processes and dynamics, Adv. Water Resour., 33, 1291–1295,
https://doi.org/10.1016/j.advwatres.2010.09.011, 2010.
Fritz, S. C., Ito, E., Yu, Z., Laird, K., and Engstrom, D. R.: Hydrologic
variation in the Northern Great Plains during the last two millennia,
Quaternary Res., 53, 175–184, https://doi.org/10.1006/qres.1999.2115, 2000.
Gazis, C. and Feng, X.: A stable isotope study of soil water: evidence for
mixing and preferential flow paths, Geoderma, 119, 97–111,
https://doi.org/10.1016/S0016-7061(03)00243-X, 2004.
Gibson, J. J.: A new conceptual model for predicting isotope enrichment of
lakes in seasonal climates, PAGES News, 10, 10–11,
https://doi.org/10.22498/pages.10.2.10, 2002.
Gibson, J. J. and Edwards, T. W. D.: Regional surface water balance and
evaporation–transpiration partitioning from a stable isotope survey of
lakes in northern Canada, Global Biogeochem. Cy., 16, 1–14,
https://doi.org/10.1029/2001GB001839, 2002.
Gibson, J. J., Edwards, T. W. D., Bursey, G. G., and Prowse, T. D.: Estimating
evaporation using stable isotopes: quantitative results and sensitivity
analysis for two catchments in northern Canada, Nord. Hydrol., 24, 79–94,
https://doi.org/10.2166/nh.1993.0015, 1993.
Gibson, J. J., Birks, S. J., and Edwards, T. W. D.: Global prediction of δA and δ2H-δ18O evaporation slopes for lakes
and soil water accounting for seasonality, Global Biogeochem. Cy., 22,
GB2031, https://doi.org/10.1029/2007GB002997, 2008.
Gonfiantini, R.: Environmental isotopes in lake studies, in: Handbook of
Environmental Isotope Geochemistry, Vol. 2, The Terrestrial Environment,
edited by: Fritz, B. P. and Fontes, J. C., Elsevier, Amsterdam, the
Netherlands, 113–168, 1986.
Gorham, E., Dean, W. E., and Sanger, J. E.: The chemical composition of lakes
in the north-central United States, Limnol. Oceanogr., 28, 287–301,
https://doi.org/10.4319/lo.1983.28.2.0287, 1983.
Granger, R. J. and Hedstrom, N.: Modelling hourly rates of evaporation from small lakes, Hydrol. Earth Syst. Sci., 15, 267–277, https://doi.org/10.5194/hess-15-267-2011, 2011.
Gurrieri, J. T. and Furniss, G.: Estimation of groundwater exchange in
alpine lakes using non-steady mass-balance methods, J. Hydrol., 297,
187–208, https://doi.org/10.1016/j.jhydrol.2004.04.021, 2004.
Horita, J. and Wesolowski, D.: Liquid-vapour fractionation of oxygen and
hydrogen isotopes of water from the freezing to the critical temperature,
Geochim. Cosmochim. Ac., 58, 3425–3437,
https://doi.org/10.1016/0016-7037(94)90096-5, 1994.
Isokangas, E., Rozanski, K., Rossi, P. M., Ronkanen, A.-K., and Kløve, B.: Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach, Hydrol. Earth Syst. Sci., 19, 1247–1262, https://doi.org/10.5194/hess-19-1247-2015, 2015.
Katz, B. G., Coplen, T. B., Bullen, T. D., and Davis, J. H.: Use of chemical and
isotopic tracers to characterize the interactions between ground water and
surface water in mantled karst, Ground Water, 35, 1014–1028,
https://doi.org/10.1111/j.1745-6584.1997.tb00174.x, 1997.
Kendall, C. and Caldwell, E. A.: Fundamentals of Isotope Geochemistry, in:
Isotope Tracers in Catchment Hydrology, edited by: Kendall, C. and McDonnell
J. J., Elsevier Science B.V., Amsterdam, the Netherlands, 51–86, 1998.
Kenoyer, G. J. and Anderson, M. P.: Groundwater's dynamic role in regulating
acidity and chemistry in a precipitation-dominated lake, J. Hydrol., 109,
287–306, https://doi.org/10.1016/0022-1694(89)90020-6, 1989.
Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A.,
Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, H., Kværner,
J., Lundberg, A., Mileusnic, M., Moszczynska, A., Muotka, T., Preda, E.,
Rossi, P., Siergieiev, D., Šimek, J., Wachniew, P., and Widerlund, A.:
Groundwater dependent ecosystems: Part I – Hydroecology, threats and status
of ecosystems, Environ. Sci. Policy, 14, 770–781,
https://doi.org/10.1016/j.envsci.2011.04.002, 2011.
Knoll, L. B., Hagenbuch, E. J., Stevens, M. H., Vanni, M. J., Renwick, W. H.,
Denlinger, J. C., Hale, R. S., and González, M. J.: Predicting
eutrophication status in reservoirs at large spatial scales using landscape
and morphometric variables, Inland Waters, 5, 203–214,
https://doi.org/10.5268/IW-5.3.812, 2015.
Kratz, T., Webster, K., Bowser, C., Magnuson, J., and Benson, B.: The
influence of landscape position on lakes in northern Wisconsin, Freshwater
Biol., 37, 209–217, https://doi.org/10.1046/j.1365-2427.1997.00149.x, 1997.
LaBaugh, J. W., Winter, T. C., Rosenberry, D. O., Schuster, P. F., Reddy, M. M.,
and Aitken, G. R.: Hydrological and chemical estimates of the water balance
of a closed-basin lake in north central Minnesota, Water Resour. Res., 33,
2799–2812, https://doi.org/10.1029/97WR02427, 1997.
Laird, K. R., Haig, H. A., Ma, S., Kingsbury, M. V., Brown, T. A., Lewis,
C. F. M., Oglesby, R. J., and Cumming, B. F.: Expanded spatial extent of the
Medieval Climate Anomaly revealed in lake-sediment records across the boreal
region in northwest Ontario, Glob. Change Biol., 18, 2869–2881,
https://doi.org/10.1111/j.1365-2486.2012.02740.x, 2012.
Lewandowski, J., Meinikmann, K., Nützmann, G. and Rosenberry, D. O.: Groundwater – the disregarded component in lake water and nutrient budgets.
Part 2: effects of groundwater on nutrients, Hydrol. Process., 29,
2922–2955, https://doi.org/10.1002/hyp.10384, 2015.
Louiseize, N. L., Lafrenière, M. J., and Hastings, M. J.: Stable isotopic
evidence of enhanced export of microbially derived NO3 following active
layer slope disturbance in the Canadian High Arctic, Biogeochemistry, 121,
565–580, https://doi.org/10.1007/s10533-014-0023-x, 2014.
Martin, S. L. and Soranno, P. A.: Lake landscape position: relationships to
hydrologic connectivity and landscape features, Limnol. Oceanogr., 51,
801–814, https://doi.org/10.4319/lo.2006.51.2.0801, 2006.
Martin, S. L., Soranno, P. A., Bremigan, M. T., and Cheruvelil, K. S.: Comparing
hydrogeomorphic approaches to lake classification, Environ. Manage.,
48, 957–974, https://doi.org/10.1007/s00267-011-9740-2, 2011.
Mulholland, P. J.: Large scale patterns of dissolved organic carbon
concentration, flux and sources, in: Aquatic Ecosystems: Interactivity of
Dissolved Organic Matter, edited by: Findlay, S. E. G. and Sinsabaugh, R. L.,
Elsevier Science, San Diego, California, USA, 139–160, 2003.
Natural Resources Canada: GeoGratis (version 2.1):
available at: http://geogratis.cgdi.gc.ca/, 30 August 2019.
Newton, R. M. and Driscoll, C. T.: Classification of ALSC lakes, in:
Adriondack Lakes Survey: An Interpretive Analysis of Fish Communities and
Water Chemistry, 1984-87, edited by: Baker, J. P., Gherini, S. A., Munson,
R. K., Christensen, S. W., Driscoll, C. T., Gallagher, J., Newton, R. M.,
Reckhow, K. H., and Schofield, C. L., Adriondack Lakes Survey Corporation, Ray
Brook, New York, USA, 270–291, 1990.
Okkonen, J. and Kløve, B.: A sequential modelling approach to assess
groundwater–surface water resources in a snow dominated region of Finland,
J. Hydrol., 411, 91–107, https://doi.org/10.1016/j.jhydrol.2011.09.038,
2011.
Ontario Ministry of Natural Resources and Forestry: Fish ON-Line,
available at: https://www.gisapplication.lrc.gov.on.ca/FishONLine/Index.html?site=FishONLine&viewer=FishONLine&locale=en-US,
last access: 23 October 2011.
Ontario Ministry of Northern Development and Mines: Soils of
Timmins-Noranda-Rouyn area: soil survey report No 46, available at:
http://www.geologyontario.mndm.gov.on.ca/, last access: 19 October 2013.
Quinlan, R., Paterson, A. M., Hall, R. I., Dillon, P. J., Wilkinson, A. N.,
Cumming, B. F., Douglas, M. S. V., and Smol, J. P.: A landscape approach to
examining spatial patterns of limnological variables and long-term
environmental change in a southern Canadian lake district, Freshwater Biol.,
48, 1676–1697, https://doi.org/10.1046/j.1365-2427.2003.01105.x, 2003.
Rautio, A. and Korkka-Niemi, K.: Characterization of groundwater–lake water
interactions at Pyhäjärvi, a lake in SW Finland, Boreal Environ.
Res., 16, 363–380, https://doi.org/10.1108/14777831211204958, 2011.
Rey, N., Rosa, E., Cloutier, V., and Lefebvre, R.: Using water stable
isotopes for tracing surface and groundwater flow systems in the
Barlow-Ojibway Clay Belt, Quebec, Canada, Can. Water Resour. J., 43,
173–194, https://doi.org/10.1080/07011784.2017.1403960, 2018.
Richard, J. A. and McClenaghan, M. B.: Quaternary geology of the Porquis
Junction area, Ontario Geological Survey, Map 2659, scale 1:50000, 2000.
Rosenberry, D. O., Lewandowski, J., Meinikmann, K., and Nützmann, G.:
Groundwater – the disregarded component in lake water and nutrient budgets.
Part 1: effects of groundwater on hydrology, Hydrol. Process., 29,
2895–2921, https://doi.org/10.1002/hyp.10403, 2015.
Rossi, P. M., Ala-aho, P., Ronkanen, A., and Kløve, B.: Groundwater-surface
water interaction between an esker aquifer and a drained fen, J. Hydrol.,
432–433, 52–60, https://doi.org/10.1016/j.jhydrol.2012.02.026, 2012.
Roy, M., Dell'Oste, F., Veillette, J. J., de Vernal, A., Hélie, J.-F., and
Parent, M.: Insights on the events surrounding the final drainage of Lake
Ojibway based on James Bay stratigraphic sequences, Quaternary Sci. Rev., 30, 682–692,
https://doi.org/10.1016/j.quascirev.2010.12.008, 2011.
Schuster, P. F., Reddy, M. M., LaBaugh, J. W., Parkhurst, R. S., Rosenberry,
D. O., Winter, T. C., Antweiler, R. C., and Dean, W. E.: Characterization of lake
water and ground water movement in the littoral zone of Williams Lake, a
closed-basin lake in north central Minnesota, Hydrol. Process., 17,
823–838, https://doi.org/10.1002/hyp.1211, 2003.
Sebestyen, S. D. and Schneider, R. L.: Dynamic temporal patterns of nearshore
seepage flux in a headwater Adirondack lake, J. Hydrol., 247, 137–150,
https://doi.org/10.1016/S0022-1694(01)00377-8, 2001.
Skrzypek, G., Mydłowski, A., Dogramaci, S., Hedley, P., Gibson, J., and Grierson, P.: Estimation of evaporative loss based on the stable isotope
composition of water using “Hydrocalculator”, J. Hydrol., 523, 781–789,
https://doi.org/10.1016/j.jhydrol.2015.02.010, 2015.
Smerdon, B. D., Devito, K. J., and Mendoza, C. A.: Interaction of groundwater
and shallow lakes on outwash sediments in the subhumid Boreal Plains region,
J. Hydrol., 314, 246–262, https://doi.org/10.1016/j.jhydrol.2005.04.001,
2005.
Smerdon, B. D., Devito, K. J., and Mendoza, C. A.: Simulations of fully coupled
lake-groundwater exchange in a subhumid climate with an integrated
hydrologic model, Water Resour. Res., 43, W01416,
https://doi.org/10.1029/2006WR005137, 2007.
Stauffer, R. E. and Wittchen, B. D.: Hydrogeochemistry of Maine seepage lakes
and related groundwaters, J. Hydrol., 138, 559–581,
https://doi.org/10.1016/0022-1694(92)90137-K, 1992.
Thorslund, J., Cohen, M. J., Jawitz, J. W., Destouni, G., Creed, I. F., Rains,
M. C., Badiou, P., and Jarsjö, J.: Solute Evidence for Hydrological
Connectivity of Geographically Isolated Wetlands, Land Degrad. Dev., 29,
3954–3962, https://doi.org/10.1002/ldr.3145, 2018.
Tóth, J.: A theoretical analysis of groundwater flow in small drainage
basins, J. Geophys. Res., 68, 4795–4812,
https://doi.org/10.1029/JZ068i016p04795, 1963.
Tondu, J. M., Turner, K. W., Wolfe, B. B., Hall, R. I., Edwards, T. W. D., and
McDonald, I.: Using water isotope tracers to develop the hydrological
component of a long-term aquatic ecosystem monitoring program for a northern
lake-rich landscape, Arct. Antarct. Alp. Res., 45, 594–614,
https://doi.org/10.1657/1938-4246-45.4.594, 2013.
Turner, J. V. and Townley, L. R.: Determination of groundwater flow-through
regimes of shallow lakes and wetlands from numerical analysis of stable
isotope and chloride tracer distribution patterns, J. Hydrol., 320, 451–483,
https://doi.org/10.1016/j.jhydrol.2005.07.050, 2006.
Turner, K. W., Wolfe, B. B., and Edwards, T. W. D.: Characterizing the role of
hydrological processes on lake water balances in the Old Crow Flats, Yukon
Territory, Canada, using water isotope tracers, J. Hydrol., 386, 103–117,
https://doi.org/10.1016/j.jhydrol.2010.03.012, 2010.
Turner, K. W., Edwards, T. W. D., and Wolfe, B. B.: Characterizing runoff
generation processes in a lake-rich thermokarst landscape (Old Crow Flats,
Yukon, Canada) using δ18O, δ2H and d-excess
measurements, Permafrost Periglac., 25, 53–59,
https://doi.org/10.1002/ppp.1802, 2014a.
Turner, K. W., Wolfe, B. B., Edwards, T. W. D., Lantz, T. C., Hall, R. I., and
Larocque, G.: Controls on water balance of shallow thermokarst lakes and
their relations with catchment characteristics: a multi-year,
landscape-scale assessment based on water isotope tracers and remote sensing
in Old Crow Flats, Yukon (Canada), Glob. Change Biol., 20, 1585–1603,
https://doi.org/10.1111/gcb.12465, 2014b.
Webster, K. E., Kratz, T. K., Bowser, C. J., Magnuson, J. J., and Rose, W. J.: The
influence of landscape position on lake chemical responses to drought in
northern Wisconsin, Limnol. Oceanogr., 41, 977–984,
https://doi.org/10.4319/lo.1996.41.5.0977, 1996.
Webster, K. E., Soranno, P. A., Baines, S. B., Kratz, T. K., Bowser, C. J.,
Dillon, P. J., Campbell, P., Fee, E. J., and Hecky, R. E.: Structuring features
of lake districts: landscape controls on lake chemical responses to drought,
Freshwater Biol., 43, 499–515,
https://doi.org/10.1046/j.1365-2427.2000.00571.x, 2000.
Winter, T. C.: Numerical simulation analysis of the interaction of lakes and
groundwater, United States Geological Survey Professional Papers, 1001,
https://doi.org/10.3133/pp1001, 1976.
Winter, T. C.: Classification of the hydrologic setting of lakes in the north
central United States, Water Resour. Res., 13, 753–767,
https://doi.org/10.1029/WR013i004p00753, 1977.
Winter, T. C.: Relation of streams, lakes, and wetlands to groundwater flow
systems, Hydrogeol. J., 7, 28–45, https://doi.org/10.1007/s100400050178,
1999.
Winter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. W.: Ground water and
surface water: a single resource, in: U.S. Geological Survey Circular 1139,
U.S. Geological Survey, Denver, Colorado, USA, 1998.
Winter, T. C., Rosenberry, D. O., and LaBaugh, J. W.: Where does the ground
water in small watersheds come from?, Ground Water, 41, 989–1000,
https://doi.org/10.1111/j.1745-6584.2003.tb02440.x, 2003.
Wolfe, B. B., Karst-Riddoch, T. L., Hall, R. I., Edwards, T. W. D., English,
M. C., Palmini, R., McGowan, S., and Vardy, S. R.: Classification of hydrologic
regimes of northern floodplain basins (Peace-Athabasca Delta, Canada) from
analysis of stable isotopes (δ18O, δ2H) and water
chemistry, Hydrol. Process., 21, 151–168, https://doi.org/10.1002/hyp.6229,
2007.
Yi, Y., Brock, B. E., Falcone, M. D., Wolfe, B. B., and Edwards, T. W. D.: A
coupled isotope tracer method to characterize input water to lakes, J.
Hydrol., 350, 1–13, https://doi.org/10.1016/j.jhydrol.2007.11.008, 2008.
Short summary
The investigation of groundwater–lake-water interactions in highly permeable boreal terrain using several indicators showed that lowland lakes are embedded into the groundwater system and are thus relatively resilient to short-term hydroclimatic change, while upland lakes rely more on precipitation as their main water input, making them more sensitive to evaporative drawdown. This suggests that landscape position controls the vulnerability of lake-water levels to hydroclimatic change.
The investigation of groundwater–lake-water interactions in highly permeable boreal terrain...