Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-583-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-583-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The use of personal weather station observations to improve precipitation estimation and interpolation
András Bárdossy
Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, 70569 Stuttgart, Germany
Jochen Seidel
CORRESPONDING AUTHOR
Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, 70569 Stuttgart, Germany
Abbas El Hachem
Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, 70569 Stuttgart, Germany
Related authors
Abbas El Hachem, Jochen Seidel, and András Bárdossy
Hydrol. Earth Syst. Sci., 29, 1335–1357, https://doi.org/10.5194/hess-29-1335-2025, https://doi.org/10.5194/hess-29-1335-2025, 2025
Short summary
Short summary
The influence of climate change on areal precipitation extremes is examined. After an upscaling of reference observations, the climate model data are corrected, and a downscaling to a finer spatial scale is done. For different temporal durations and spatial scales, areal precipitation extremes are derived. The final result indicates an increase in the expected rainfall depth compared to reference values. However, the increase varied with the duration and area size.
Sanika Baste, Daniel Klotz, Eduardo Acuña Espinoza, Andras Bardossy, and Ralf Loritz
EGUsphere, https://doi.org/10.5194/egusphere-2025-425, https://doi.org/10.5194/egusphere-2025-425, 2025
Short summary
Short summary
This study evaluates the extrapolation performance of Long Short-Term Memory (LSTM) networks in rainfall-runoff modeling, specifically under extreme conditions. The findings reveal that the LSTM cannot predict discharge values beyond a theoretical limit, which is well below the extremity of its training data. This behavior results from the LSTM's gating structures rather than saturation of cell states alone.
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
András Bárdossy and Faizan Anwar
Hydrol. Earth Syst. Sci., 27, 1987–2000, https://doi.org/10.5194/hess-27-1987-2023, https://doi.org/10.5194/hess-27-1987-2023, 2023
Short summary
Short summary
This study demonstrates the fact that the large river flows forecasted by the models show an underestimation that is inversely related to the number of locations where precipitation is recorded, which is independent of the model. The higher the number of points where the amount of precipitation is recorded, the better the estimate of the river flows.
Abbas El Hachem, Jochen Seidel, Florian Imbery, Thomas Junghänel, and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 6137–6146, https://doi.org/10.5194/hess-26-6137-2022, https://doi.org/10.5194/hess-26-6137-2022, 2022
Short summary
Short summary
Through this work, a methodology to identify outliers in intense precipitation data was presented. The results show the presence of several suspicious observations that strongly differ from their surroundings. Many identified outliers did not have unusually high values but disagreed with their neighboring values at the corresponding time steps. Weather radar and discharge data were used to distinguish between single events and false observations.
Dhiraj Raj Gyawali and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 3055–3077, https://doi.org/10.5194/hess-26-3055-2022, https://doi.org/10.5194/hess-26-3055-2022, 2022
Short summary
Short summary
In this study, different extensions of the degree-day model were calibrated on snow-cover distribution against freely available satellite snow-cover images. The calibrated models simulated the distribution very well in Baden-Württemberg (Germany) and Switzerland. In addition to reliable identification of snow cover, the melt outputs from the calibrated models were able to improve the flow simulations in different catchments in the study region.
Jieru Yan, Fei Li, András Bárdossy, and Tao Tao
Hydrol. Earth Syst. Sci., 25, 3819–3835, https://doi.org/10.5194/hess-25-3819-2021, https://doi.org/10.5194/hess-25-3819-2021, 2021
Short summary
Short summary
Accurate spatial precipitation estimates are important in various fields. An approach to simulate spatial rainfall fields conditioned on radar and rain gauge data is proposed. Unlike the commonly used Kriging methods, which provide a Kriged mean field, the output of the proposed approach is an ensemble of estimates that represents the estimation uncertainty. The approach is robust to nonlinear error in radar estimates and is shown to have some advantages, especially when estimating the extremes.
Abbas El Hachem, Jochen Seidel, and András Bárdossy
Hydrol. Earth Syst. Sci., 29, 1335–1357, https://doi.org/10.5194/hess-29-1335-2025, https://doi.org/10.5194/hess-29-1335-2025, 2025
Short summary
Short summary
The influence of climate change on areal precipitation extremes is examined. After an upscaling of reference observations, the climate model data are corrected, and a downscaling to a finer spatial scale is done. For different temporal durations and spatial scales, areal precipitation extremes are derived. The final result indicates an increase in the expected rainfall depth compared to reference values. However, the increase varied with the duration and area size.
Sanika Baste, Daniel Klotz, Eduardo Acuña Espinoza, Andras Bardossy, and Ralf Loritz
EGUsphere, https://doi.org/10.5194/egusphere-2025-425, https://doi.org/10.5194/egusphere-2025-425, 2025
Short summary
Short summary
This study evaluates the extrapolation performance of Long Short-Term Memory (LSTM) networks in rainfall-runoff modeling, specifically under extreme conditions. The findings reveal that the LSTM cannot predict discharge values beyond a theoretical limit, which is well below the extremity of its training data. This behavior results from the LSTM's gating structures rather than saturation of cell states alone.
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
András Bárdossy and Faizan Anwar
Hydrol. Earth Syst. Sci., 27, 1987–2000, https://doi.org/10.5194/hess-27-1987-2023, https://doi.org/10.5194/hess-27-1987-2023, 2023
Short summary
Short summary
This study demonstrates the fact that the large river flows forecasted by the models show an underestimation that is inversely related to the number of locations where precipitation is recorded, which is independent of the model. The higher the number of points where the amount of precipitation is recorded, the better the estimate of the river flows.
Abbas El Hachem, Jochen Seidel, Florian Imbery, Thomas Junghänel, and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 6137–6146, https://doi.org/10.5194/hess-26-6137-2022, https://doi.org/10.5194/hess-26-6137-2022, 2022
Short summary
Short summary
Through this work, a methodology to identify outliers in intense precipitation data was presented. The results show the presence of several suspicious observations that strongly differ from their surroundings. Many identified outliers did not have unusually high values but disagreed with their neighboring values at the corresponding time steps. Weather radar and discharge data were used to distinguish between single events and false observations.
Dhiraj Raj Gyawali and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 3055–3077, https://doi.org/10.5194/hess-26-3055-2022, https://doi.org/10.5194/hess-26-3055-2022, 2022
Short summary
Short summary
In this study, different extensions of the degree-day model were calibrated on snow-cover distribution against freely available satellite snow-cover images. The calibrated models simulated the distribution very well in Baden-Württemberg (Germany) and Switzerland. In addition to reliable identification of snow cover, the melt outputs from the calibrated models were able to improve the flow simulations in different catchments in the study region.
Jieru Yan, Fei Li, András Bárdossy, and Tao Tao
Hydrol. Earth Syst. Sci., 25, 3819–3835, https://doi.org/10.5194/hess-25-3819-2021, https://doi.org/10.5194/hess-25-3819-2021, 2021
Short summary
Short summary
Accurate spatial precipitation estimates are important in various fields. An approach to simulate spatial rainfall fields conditioned on radar and rain gauge data is proposed. Unlike the commonly used Kriging methods, which provide a Kriged mean field, the output of the proposed approach is an ensemble of estimates that represents the estimation uncertainty. The approach is robust to nonlinear error in radar estimates and is shown to have some advantages, especially when estimating the extremes.
Cited articles
Ahmed, S. and de Marsily, G.: Comparison of geostatistical methods for estimating transmissivity using data transmissivity and specific capacity,
Water Resour. Res., 23, 1717–1737, 1987. a
Bárdossy, A.: Interpolation of groundwater quality parameters with some values below the detection limit, Hydrol. Earth Syst. Sci., 15, 2763–2775, https://doi.org/10.5194/hess-15-2763-2011, 2011. a
Bárdossy, A. and Kundzewicz, Z.: Geostatistical methods for detection of
outliers in groundwater quality spatial fields, J. Hydrol., 115, 343–359, https://doi.org/10.1016/0022-1694(90)90213-H, 1990. a
Berndt, C. and Haberlandt, U.: Spatial interpolation of climate variables in
Northern Germany – Influence of temporal resolution and network density, J. Hydrol.: Reg. Stud., 15, 184–202, https://doi.org/10.1016/j.ejrh.2018.02.002, 2018. a
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T., Bastiaensen, J., De Biẽvre, B., Bhusal, J., Clark, J., Dewulf, A., Foggin, M., Hannah, D., Hergarten, C., Isaeva, A., Karpouzoglou, T., Pandeya, B., Paudel, D., Sharma, K., Steenhuis, T., Tilahun, S., Van Hecken, G., and Zhumanova, M.: Citizen science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and sustainable development, Front. Earth Sci., 2, 1–21, https://doi.org/10.3389/feart.2014.00026, 2014. a
Chen, A. B., Behl, M., and Goodall, J. L.: Trust me, my neighbors say it's
raining outside: ensuring data trustworthiness for crowdsourced weather
stations, in: Proceedings of the 5th Conference on Systems for Built
Environments, ACM, 7–8 November 2018, Shenzen, China, 25–28, https://doi.org/10.1145/3276774.3276792, 2018. a
Cifelli, R., Doesken, N., Kennedy, P., Carey, L. D., Rutledge, S. A.,
Gimmestad, C., and Depue, T.: The Community Collaborative Rain, Hail, and
Snow Network: Informal Education for Scientists and Citizens, B. Am. Meteorol. Soc., 86, 1069–1078, https://doi.org/10.1175/BAMS-86-8-1069, 2005. a
Clark, I., Basinger, K., and Harper, W.: MUCK – a novel approach to co-kriging, Geostatistical, sensitivity, and uncertainty methods for ground-water flow and radionuclide transport modeling, in: Proc. DOE/AECL conference, 1987, San Francisco, 473–493, 1989. a
Delhomme, J.: Kriging in the hydrosciences, Adv. Water Resour., 1, 251–266, https://doi.org/10.1016/0309-1708(78)90039-8, 1978. a, b
Deutscher Wetterdienst: Deutscher Klimaatlas, available at:
https://www.dwd.de/klimaatlas (last access: 4 February 2021), 2020. a
de Vos, L., Leijnse, H., Overeem, A., and Uijlenhoet, R.: The potential of
urban rainfall monitoring with crowdsourced automatic weather stations in
Amsterdam, Hydrol. Earth Syst. Sci., 21, 765–777, https://doi.org/10.5194/hess-21-765-2017, 2017. a, b
DWD: Index of /climate_environment/CDC/, available at: https://opendata.dwd.de/climate_environment/CDC, last access: 4 February 2021. a
El Hachem, A.: PWS quality control filter algorithm, Zenodo, https://doi.org/10.5281/zenodo.4501920, 2021. a
Giraldo, R., Delicado, P., and Mateu, J.: Ordinary kriging for function-valued spatial data, Environ. Ecol. Stat., 18, 411–426,
https://doi.org/10.1007/s10651-010-0143-y, 2011. a
Haberlandt, U.: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event, J. Hydrol., 332, 144–157, 2007. a
Lebrenz, H. and Bárdossy, A.: Estimation of the variogram using Kendall's tau for a robust geostatistical interpolation, J. Hydrol. Eng., 22, 04017038, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001568, 2017. a, b
Lebrenz, H. and Bárdossy, A.: Geostatistical interpolation by quantile
kriging, Hydrol. Earth Syst. Sci., 23, 1633–1648, https://doi.org/10.5194/hess-23-1633-2019, 2019. a
Lewis, E., Quinn, N., Blenkinsop, S., Fowler, H. J., Freer, J., Tanguy, M.,
Hitt, O., Coxon, G., Bates, P., and Woods, R.: A rule based quality control
method for hourly rainfall data and a 1-km resolution gridded hourly rainfall
dataset for Great Britain: CEH-GEAR1hr, J. Hydrol., 564, 930–943, https://doi.org/10.1016/j.jhydrol.2018.07.034, 2018. a
Mosthaf, T. and Bárdossy, A.: Regionalizing nonparametric models of
precipitation amounts on different temporal scales, Hydrol. Earth Syst. Sci., 21, 2463–2481, https://doi.org/10.5194/hess-21-2463-2017, 2017. a
Muller, C., Chapman, L., Johnston, S., Kidd, C., Illingworth, S., Foody, G.,
Overeem, A., and Leigh, R.: Crowdsourcing for climate and atmospheric sciences: current status and future potential, Int. J. Climatol., 35, 3185–3203, https://doi.org/10.1002/joc.4210, 2015. a
Napoly, A., Grassmann, T., Meier, F., and Fenner, D.: Development and
Application of a Statistically-Based Quality Control for Crowdsourced Air
Temperature Data, Front. Earth Sci., 6, 118, https://doi.org/10.3389/feart.2018.00118, 2018. a
NETATMO: Welcome aboard!, available at: https://dev.netatmo.com/apidocumentation, last access: 4 February 2021. a
Villarini, G. and Krajewski, W. F.: Review of the Different Sources of
Uncertainty in Single Polarization Radar-Based Estimates of Rainfall, Surv. Geophys., 31, 107–129, https://doi.org/10.1007/s10712-009-9079-x, 2010.
a
World Meteorological Organization: Guide to meteorological instruments and
methods of observation, oCLC: 288915903, World Meteorological Organization, Geneva, Switzerland, 2008. a
Short summary
In this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.
In this study, the applicability of data from private weather stations (PWS) for precipitation...