Articles | Volume 25, issue 2
Hydrol. Earth Syst. Sci., 25, 583–601, 2021
https://doi.org/10.5194/hess-25-583-2021
Hydrol. Earth Syst. Sci., 25, 583–601, 2021
https://doi.org/10.5194/hess-25-583-2021

Research article 10 Feb 2021

Research article | 10 Feb 2021

The use of personal weather station observations to improve precipitation estimation and interpolation

András Bárdossy et al.

Related authors

Conditional simulation of spatial rainfall fields using random mixing: a study that implements full control over the stochastic process
Jieru Yan, Fei Li, András Bárdossy, and Tao Tao
Hydrol. Earth Syst. Sci., 25, 3819–3835, https://doi.org/10.5194/hess-25-3819-2021,https://doi.org/10.5194/hess-25-3819-2021, 2021
Short summary
Development and parameter estimation of snowmelt models using spatial snow-cover observations from MODIS
Dhiraj Raj Gyawali and András Bárdossy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-310,https://doi.org/10.5194/hess-2021-310, 2021
Revised manuscript under review for HESS
Short summary
Conditional simulation of surface rainfall fields using modified phase annealing
Jieru Yan, András Bárdossy, Sebastian Hörning, and Tao Tao
Hydrol. Earth Syst. Sci., 24, 2287–2301, https://doi.org/10.5194/hess-24-2287-2020,https://doi.org/10.5194/hess-24-2287-2020, 2020
Short summary
A methodology to estimate flow duration curves at partially ungauged basins
Elena Ridolfi, Hemendra Kumar, and András Bárdossy
Hydrol. Earth Syst. Sci., 24, 2043–2060, https://doi.org/10.5194/hess-24-2043-2020,https://doi.org/10.5194/hess-24-2043-2020, 2020
Short summary
Joint editorial: Invigorating hydrological research through journal publications
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018,https://doi.org/10.5194/piahs-380-3-2018, 2018

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Mathematical applications
The 2018 northern European hydrological drought and its drivers in a historical perspective
Sigrid J. Bakke, Monica Ionita, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 5621–5653, https://doi.org/10.5194/hess-24-5621-2020,https://doi.org/10.5194/hess-24-5621-2020, 2020
Short summary
Assimilating shallow soil moisture observations into land models with a water budget constraint
Bo Dan, Xiaogu Zheng, Guocan Wu, and Tao Li
Hydrol. Earth Syst. Sci., 24, 5187–5201, https://doi.org/10.5194/hess-24-5187-2020,https://doi.org/10.5194/hess-24-5187-2020, 2020
Short summary
Emerging climate signals in the Lena River catchment: a non-parametric statistical approach
Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama
Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020,https://doi.org/10.5194/hess-24-2817-2020, 2020
Short summary
Near-0 °C surface temperature and precipitation type patterns across Canada
Eva Mekis, Ronald E. Stewart, Julie M. Theriault, Bohdan Kochtubajda, Barrie R. Bonsal, and Zhuo Liu
Hydrol. Earth Syst. Sci., 24, 1741–1761, https://doi.org/10.5194/hess-24-1741-2020,https://doi.org/10.5194/hess-24-1741-2020, 2020
Short summary
A universal multifractal approach to assessment of spatiotemporal extreme precipitation over the Loess Plateau of China
Jianjun Zhang, Guangyao Gao, Bojie Fu, Cong Wang, Hoshin V. Gupta, Xiaoping Zhang, and Rui Li
Hydrol. Earth Syst. Sci., 24, 809–826, https://doi.org/10.5194/hess-24-809-2020,https://doi.org/10.5194/hess-24-809-2020, 2020
Short summary

Cited articles

Ahmed, S. and de Marsily, G.: Comparison of geostatistical methods for estimating transmissivity using data transmissivity and specific capacity, Water Resour. Res., 23, 1717–1737, 1987. a
Bárdossy, A.: Interpolation of groundwater quality parameters with some values below the detection limit, Hydrol. Earth Syst. Sci., 15, 2763–2775, https://doi.org/10.5194/hess-15-2763-2011, 2011. a
Bárdossy, A. and Kundzewicz, Z.: Geostatistical methods for detection of outliers in groundwater quality spatial fields, J. Hydrol., 115, 343–359, https://doi.org/10.1016/0022-1694(90)90213-H, 1990. a
Bárdossy, A. and Pegram, G.: Interpolation of precipitation under topographic influence at different time scales, Water Resour. Res., 49, 4545–4565, 2013. a, b, c
Berndt, C. and Haberlandt, U.: Spatial interpolation of climate variables in Northern Germany – Influence of temporal resolution and network density, J. Hydrol.: Reg. Stud., 15, 184–202, https://doi.org/10.1016/j.ejrh.2018.02.002, 2018. a
Download
Short summary
In this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.