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Abstract. The number of personal weather stations (PWSs)
with data available through the internet is increasing gradu-
ally in many parts of the world. The purpose of this study
is to investigate the applicability of these data for the spatial
interpolation of precipitation using a novel approach based
on indicator correlations and rank statistics. Due to unknown
errors and biases of the observations, rainfall amounts from
the PWS network are not considered directly. Instead, it is
assumed that the temporal order of the ranking of these data
is correct. The crucial step is to find the stations which fulfil
this condition. This is done in two steps – first, by select-
ing the locations using the time series of indicators of high
precipitation amounts. Then, the remaining stations are then
checked for whether they fit into the spatial pattern of the
other stations. Thus, it is assumed that the quantiles of the
empirical distribution functions are accurate.

These quantiles are then transformed to precipitation
amounts by a quantile mapping using the distribution func-
tions which were interpolated from the information from the
German National Weather Service (Deutscher Wetterdienst –
DWD) data only. The suggested procedure was tested for the
state of Baden-Württemberg in Germany. A detailed cross
validation of the interpolation was carried out for aggregated
precipitation amount of 1, 3, 6, 12 and 24 h. For each of these
temporal aggregations, nearly 200 intense events were eval-
uated, and the improvement of the interpolation was quanti-
fied. The results show that the filtering of observations from
PWSs is necessary as the interpolation error after the filtering
and data transformation decreases significantly. The biggest
improvement is achieved for the shortest temporal aggrega-
tions.

1 Introduction

Comprehensive reviews on the current state of citizen sci-
ence in the field of hydrology and atmospheric sciences were
published by Buytaert et al. (2014) and Muller et al. (2015).
Both of these reviews give a detailed overview of the differ-
ent forms of citizen science data and highlight the potential
to improve knowledge and data in the fields of hydrology and
hydro-climatology. One type of information which is of par-
ticular interest for hydrology is data from in situ sensors. In
recent years, the number of low-cost personal weather sta-
tions (PWSs) has increased considerably. Data from PWSs
are published online on platforms such as Netatmo (https:
//www.netatmo.com/en-gb, last access: 4 February 2021)
or Weather Underground (https://www.wunderground.com/,
last access: 4 February 2021). These stations provide weather
observations which are available in real time and for the past.
This is potentially very useful for complementing system-
atic weather observations of national weather services, espe-
cially with respect to precipitation, which is highly variable
in space and time.

Traditionally, rainfall is interpolated using point observa-
tions. The shorter the temporal aggregation, the higher the
variability in rainfall becomes and the more the quality of
the interpolation deteriorates (Bárdossy and Pegram, 2013;
Berndt and Haberlandt, 2018). As a consequence, the num-
ber of interpolated precipitation products with a sub-daily
resolution is low, but such data are required for many hydro-
logical applications (Lewis et al., 2018). Additional informa-
tion such as radar measurements can improve interpolation
(Haberlandt, 2007); however, radar rainfall estimates are still
highly prone to different kinds of errors (Villarini and Kra-
jewski, 2010), and the time periods in which radar data are
available are still rather short.

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://www.netatmo.com/en-gb
https://www.netatmo.com/en-gb
https://www.wunderground.com/


584 A. Bárdossy et al.: The use of personal weather station observations to improve precipitation estimation

Against the backdrop of low precipitation station densi-
ties, the additional data from PWSs have a high potential to
improve the information of spatial and temporal precipita-
tion characteristics. However, one of the major drawbacks of
PWSs precipitation data is their trustworthiness. There is lit-
tle systematic control on the placing and correct installation
and maintenance of the PWSs, so it is usually not known
whether a PWS is set up according to the international stan-
dards published by the World Meteorological Organization
(WMO; World Meteorological Organization, 2008). Further-
more, there is no information available about the mainte-
nance of PWSs. Therefore, precipitation data from PWSs
may contain numerous errors resulting from incorrect instal-
lation, poor maintenance, faulty calibration and data transfer
errors (de Vos et al., 2017). This shows that the data from
PWS networks cannot be regarded as being as reliable as
those of professional networks operated by national weather
services or environmental agencies. Consequently, the use of
PWS data requires specific efforts to detect these errors and
take them into account.

For air temperature measurements, Napoly et al. (2018)
developed a quality control (QC) procedure to filter out sus-
picious measurements from PWS stations that are caused, for
example, by solar exposition or incorrect placement. For pre-
cipitation, de Vos et al. (2017) investigated the applicabil-
ity of personal stations for urban hydrology in Amsterdam,
the Netherlands. They reported the results of a systematic
comparison of an official observation by the Royal Nether-
lands Meteorological Institute (KNMI) and three PWS Ne-
tatmo rain gauges. This provides information on the quality
of the measurements in the case of the correct installation
of the devices. As many of the PWSs may be placed with-
out consideration of the WMO standards, the results of these
comparisons cannot be transferred to the other PWS observa-
tions. In a more recent study, de Vos et al. (2019) developed a
QC methodology of PWS precipitation measurements based
on filters which detect faulty zeroes, high influxes and sta-
tions outliers based on a comparison between neighbouring
stations. A subsequent bias correction is based on a compar-
ison of past observations with a combined rain gauge and
radar product (de Vos et al., 2019).

Overall, the data from PWS rain gauges may provide use-
ful information for many precipitation events and may also
be useful for real-time flood forecasting, but data quality is-
sues have to be overcome. In this paper, we focus on the
use of PWS data for the interpolation of intense precipitation
events. We propose a two-fold approach based on indicator
correlations and spatial patterns to filter out suspicious mea-
surements and to use the information from PWSs indirectly.
Thus, the basic assumption is that many of the stations may
be biased but are correct in terms of the temporal order. For
the spatial pattern, information from a reliable precipitation
network, e.g. from a national weather service, is required.
These measurements are considered to be more trustworthy
than the PWS data; however, the number of such stations is

usually much lower. This paper is organized as follows: after
the introduction, the methodology for finding useful infor-
mation and the subsequent interpolation steps is described.
The described procedure was used for precipitation events of
the last 4 years in the federal state of Baden-Württemberg
in southwestern Germany. The results of the interpolation
and the corresponding quality of the method are discussed
in Sect. 4. The paper ends with a discussion and conclusions.

2 Study area and data

The federal state of Baden-Württemberg is located in
southwestern Germany and has an area of approximately
36 000 km2. The annual precipitation varies between 600 and
2100 mm (Deutscher Wetterdienst, 2020), and the highest
amounts are recorded in the higher elevations of the moun-
tain ranges of the Black Forest. The rain gauge network of
the German Weather Service (DWD) in Baden-Württemberg
(referred to as the primary network from here on) currently
comprises 111 stations for the study period, with high tem-
poral resolution data (Fig. 1). The gauges used in this net-
work are predominantly weighing gauges. This precipitation
data are available in different temporal resolutions from the
Climate Data Center of the DWD. For this study, hourly pre-
cipitation data were used.

For the PWS data, the Netatmo network was selected
(https://weathermap.netatmo.com, last access: 3 Febru-
ary 2021). The stations from this PWS network (referred to
as the secondary network from here on) show an uneven dis-
tribution in space, which mainly reflects the population den-
sity and topography of the study area (Fig. 1). The number of
secondary stations is higher in densely populated areas, such
as in the Stuttgart metropolitan area and the Rhine–Neckar
metropolitan region between Karlsruhe and Mannheim. Fur-
thermore, there are no secondary network stations above
1000 m above sea level (a.s.l.); however, the primary network
only has one station above 1000 m (at the Feldberg sum-
mit at 1496 m) as well. The number of gauges from the sec-
ondary network varies over time. The time period from 2015
to 2019 was considered for this study as the number of avail-
able PWSs before 2015 was very low. At the end of this time
period, over 3000 stations from the secondary network were
available. Figure 2 shows the number of secondary stations as
a function of time and the length of the time series. One can
see that many stations have less than 1 year of observations,
which is the reasonable length of a series for the suggested
method. Presently, it cannot accommodate series shorter than
1 year (excluding time periods with snowfall), but as the se-
ries are becoming longer, more and more PWS observations
become useful.

The Netatmo rain gauges are plastic tipping buckets which
have an opening orifice of 125 cm2 (compared to 200 cm2 for
the primary network). A detailed technical description of the
Netatmo PWS is given by de Vos et al. (2019). Since these
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Figure 1. Map of the federal state of Baden-Württemberg, showing the topography and the location of the DWD (primary) and Netatmo
(secondary) gauges.

Figure 2. Development of the number of available online Netatmo rain gauges (a) and length of available valid hourly observations in
Baden-Württemberg (b).

devices are not heated, their usage is limited to liquid precipi-
tation. To take this into account, data from secondary stations
were only used in case the average daily air temperature at
the nearest DWD station was above 5 ◦C. Data from the Ne-
tatmo PWS network can be downloaded from the Netatmo
API either as raw data with irregular time intervals or in dif-
ferent temporal resolutions down to 5 min. Further informa-
tion on how the raw data are processed to different temporal
aggregations is not available on the manufacturer’s website.
For this study, the hourly precipitation data from the Netatmo
API was used.

In order to assess the spatial variability within a dense net-
work of primary gauges, the precipitation data from the mu-
nicipality of Reutlingen (located about 30 km south of the
state capital of Stuttgart) was additionally used. This city
has operated a dense network of 12 weighing rain gauges
(OTT Pluvio2) since 2014 in an area of 87 km2 (not shown
in Fig. 1). Furthermore, three Netatmo rain gauges were in-
stalled at the institute’s own weather station on the campus
of the University of Stuttgart, where a Pluvio2 weighing rain
gauge is installed as well. This allows a direct comparison
between the gauges from the primary network and the sec-

https://doi.org/10.5194/hess-25-583-2021 Hydrol. Earth Syst. Sci., 25, 583–601, 2021



586 A. Bárdossy et al.: The use of personal weather station observations to improve precipitation estimation

ondary network in cases where the latter are installed and
maintained correctly.

3 Methodology

It is assumed that the secondary stations may have individ-
ual measurement problems (e.g. incorrect placement, lack of
and/or wrong maintenance and data transmission problems),
and due to their large number, there is no possibility to di-
rectly check their proper placing and functioning. Further-
more, at many locations (especially in urban areas) there is
no possibility to set up the rain gauges in such a way that they
fulfil the WMO standards. Therefore, the goal is to filter out
stations which deliver data contradicting the observations of
the primary network which meet the WMO standards.

Observations from the primary and secondary network
were used in hourly time steps and can be aggregated to dif-
ferent durations 1t . The usefulness of the secondary data is
investigated for different temporal aggregations. Z1t (x, t) is
the (partly unknown) precipitation at location x and time t in-
tegrated over the time interval1t . It is assumed that this pre-
cipitation is measured by the primary network at locations
{x1, . . . , xN }. The measurements of the secondary network
are indicated by Y1t (yj , t) at locations {y1, . . . , yM}. Note
that Y is not considered to be a spatially stationary random
field. The basic assumption for the suggested quality control
and bias correction method is that the measured precipita-
tion data from the secondary network may be biased in their
values but correct in terms of their order – at least for high
precipitation intensities. This means that at times t1 and t2
the following inequality holds:

Y1t (yi, t1) < Y1t (yi, t2)⇒ Z1t (yi, t1) < Z1t (yi, t2) . (1)

This means that the measured precipitation amount from the
secondary network is likely to have an unknown, location-
specific bias, but the order of the values at a location is
preserved. This assumption is reasonable, specifically for
high precipitation intensities, and supported by measure-
ments presented in the results section.

For QC, two filters are applied. The first one is an
indicator-based filter (IBF) which compares the secondary
time series with the closest primary series and focuses on
intense precipitation. The precipitation values of the remain-
ing PWS stations are then bias corrected using quantile map-
ping. The second filter is an event-based filter (EBF) de-
signed to remove individual contradictory observations for
a given time step using a spatial comparison. These two fil-
ters and the bias correction are described in the following
sections.

3.1 High intensity indicator-based filtering (IBF)

As a first step in quality control, all PWSs with notoriously
inconsistent rainfall values are removed. For this purpose, the
dependence between neighbouring stations is investigated.

In order to identify stations which are likely to deliver rea-
sonable data for high intensities, indicator correlations are
used. The distribution function of precipitation at location x
is denoted as Fx,1t (z), and the one for secondary observa-
tions at locations yj is denoted as Gyj ,1t (z), respectively.
For a selected probability α, the indicator series is as follows:

Iα,1t,Z(x, t)=

{
1 if Fx,1t (U1t (x, t)) > α
0 else . (2)

For a secondary location yj , it is as follows:

Iα,1t,Y
(
yj , t

)
=

{
1 if Gyj ,1t

(
Y1t

(
yj , t

))
> α

0 else
. (3)

Under the order assumptions of Eq. (1), for any sec-
ondary location yj the two indicator series are identical
Iα,1t,Z(yj , t)= Iα,1t,Y (yj , t). Thus, the spatial variability
in Iα,1t,Z and Iα,1t,Y has to be the same.

For any two locations corresponding to the primary net-
work xi and xj and any α and1t , the correlation (in time) of
the indicator series is ρZ,α,1t (xi , xj ) and provides informa-
tion on how precipitation series vary in space. This indicator
correlation usually decreases with increasing separation dis-
tance. This decrease is not at the same rate everywhere and
is not the same for different thresholds and aggregations. For
the secondary network, indicator correlations ρZ,Y,α,1t (xi ,
yj ) with the series in the primary network can be calcu-
lated. Following the hypothesis from Eq. (1), these correla-
tions should be similar and can be compared to the indicator
correlations calculated from pairs of the primary network.

The sample size has a big influence on the variance in
the indicator correlations. Therefore, to take into account the
limited interval of availability of the secondary observations,
indicator correlations of the primary network, corresponding
to the same periods for which the secondary variable is avail-
able, are used for the comparison. This is done individually
for each secondary site. A secondary station is flagged as sus-
picious if its indicator correlations with the nearest primary
network points are below the lowest indicator correlation cor-
responding to the primary network for the same time steps
and at the nearly same separation distance. A certain toler-
ance 1d for the selection of the pairs of the primary network
is needed due to the irregular spacing of the secondary sta-
tions and the natural variability in precipitation. This means
that if, in the following:

ρZ,Y,α,1t
(
xi,yj

)
<min

{
ρZ,α,1t (xk,xm) ;

‖(xk − xm)−
(
xi − yj

)
‖<1d

}
, (4)

then the secondary station shows a weaker association to the
primary than what one would expect from primary observa-
tions. In this case, it is reasonable to discard the measured
time series corresponding to the secondary network at loca-
tion yi . This procedure can be repeated for a set of selected
α values.
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Under the assumption that the temporal order of the pre-
cipitation at secondary locations is correct (Eq. 1), one could
have used rank correlations instead of the indicator correla-
tions. The indicator approach is preferred, however, as the
sensitivity of the devices of the primary and secondary net-
works is different, and this would influence the order of the
small values strongly. Furthermore, random measurement er-
rors would also influence the order of low values. In order to
have a sufficient sample size and to have robust results, high
α values and low temporal aggregations 1t are preferred.

3.2 Bias correction – precipitation amount estimation
for secondary observations

After the selection of the potentially useful secondary sta-
tions, the next step is to correct their observations. The as-
sumption in Eq. (1) means that the measured precipitation
amounts from the secondary network are likely to have an
unknown bias, but the order of the values at a location is pre-
served. This assumption is likely to be reasonable for high
precipitation intensities. Thus, the percentile of the precipi-
tation observed at a given time at a secondary location can
be used for the estimation of the true precipitation amounts.
Since this is a percentile and not a precipitation amount, it
has to be converted to a precipitation amount for further use.
This can be done using the distribution function of precipita-
tion amounts corresponding to the location yj and the aggre-
gation 1t . As the observations from the secondary network
could be biased, their distribution Gyj ,1t cannot be used for
this purpose. Thus, one needs an unbiased estimation of the
local distribution functions.

Distribution functions based on long observation series are
available for the locations of the primary network. For loca-
tions of the secondary network, they have to be estimated
via interpolation. This can be done by using different geo-
statistical methods. A method for interpolating distribution
functions for short aggregation times is presented in Mosthaf
and Bárdossy (2017). Another possibility is to interpolate the
quantiles corresponding to selected percentiles or interpolat-
ing percentiles for selected precipitation amounts. Another
option for estimating distribution functions corresponding to
arbitrary locations is to use functional Kriging (Giraldo et al.,
2011) to interpolate the distribution functions directly. The
advantage of interpolating distribution functions is that they
are strongly related to the geographical locations of the se-
lected location and also to topography. These variables are
available in a high spatial resolution for the whole investiga-
tion domain. Additionally, observations from different time
periods and temporal aggregations can also be taken into ac-
count as co-variates.

In this paper, ordinary Kriging (OK) is used for the inter-
polation of the quantiles and for the percentiles to construct
the distribution functions for both the locations of the sec-
ondary observations and for the whole interpolation grid. For
a given temporal aggregation1t , time t and target secondary

location yj , the observed percentile of precipitation is as fol-
lows:

P1t
(
yj , t

)
=Gyj ,1t

(
Y1t

(
yj , t

))
. (5)

For the observations of the primary network, the quantiles of
the precipitation distribution at the primary stations are se-
lected. The distributions at the primary stations are based on
the same time steps as those which have valid observations at
the target secondary station. In this way, a possible bias due
to the short observation period at the secondary location can
be avoided. The quantiles are as follows:

Q1t (xi)= F
−1
1t,xi

(
P1t

(
yj , t

))
. (6)

These quantiles are interpolated using OK to obtain an esti-
mate of the precipitation at the target location.

Zo1t
(
yj , t

)
=

n∑
i=1

λiQ1t (xi) . (7)

Here, the λi − s are the weights calculated using the Kriging
equations. Note that the precipitation amount at the target lo-
cation is obtained via interpolation, but the interpolation is
not done by using the primary observations corresponding to
the same time but by using the quantiles corresponding to the
percentile of the target secondary station observation. Thus,
these values may exceed all values observed at the primary
stations at time t . Note that this correction of the secondary
observations is non-linear. This procedure is used for all loca-
tions which were accepted after application of the indicator
filter. In this way, the bias from observed precipitation val-
ues at the secondary stations is removed using the observed
percentiles and the distributions at the primary stations. This
transformation does not require an independent ground truth
of best estimation of precipitation at the secondary locations.

3.3 Event-based spatial filtering (EBF)

While some stations may work properly in general, due to
unforeseen events (such as battery failure or transmission
errors) they may deliver individual faulty values at certain
times. In order to filter out these errors, a simple geostatis-
tical outlier detection method is used, as described in Bár-
dossy and Kundzewicz (1990). The geostatistical methods
used for outlier detection and the interpolation of rainfall
amounts require the knowledge of the corresponding vari-
ogram. However, the highly skewed distribution of the pre-
cipitation amounts makes the estimation of the variogram
difficult. Instead, one can use rank-based methods for this
purpose, as suggested in Lebrenz and Bárdossy (2017), and
rescale the rank-based variogram.

For a given temporal aggregation1t , time t and target sec-
ondary location yj , the precipitation amount is estimated via
OK using the observations of aggregation 1t at time t of
primary stations. This value is denoted as Z∗1t (yj , t). If the
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precipitation amount at the secondary station estimated us-
ing Eq. (7) differs very much from Z∗1t (yj , t), the secondary
location is discarded for the interpolation. As a limit for the
difference, three times the Kriging standard deviation was
selected. Formally, in the following:∣∣∣∣∣Z∗1t

(
yj , t

)
−Zo1t

(
yj , t

)
σ1t

(
yj , t

) ∣∣∣∣∣> 3. (8)

This means that if the estimated precipitation at the sec-
ondary location does not fit into the pattern of the primary
observations then it is discarded. Note that this filter is not
necessarily discarding secondary observations which differ
from the primary ones – it only removes those for which
there is a strong local disagreement. This procedure is pre-
dominantly removing false zeros at secondary observations
which are, for example, due to a temporary loss in connec-
tion between the rain gauge module and the Netatmo base
station.

3.4 Interpolation of precipitation amounts

After the application of the two filters and the bias correction,
the remaining PWS data can be used for spatial interpola-
tion. Once the percentiles of the secondary locations are con-
verted to precipitation amounts, different Kriging procedures
can be used for the interpolation over a grid in the target re-
gion. The simplest solution is to use OK. For aggregations of
1 d or longer, the orographic influence should be taken into
account. This can be done by using external drift Kriging
(Ahmed and de Marsily, 1987).

A problem that remains when using these Kriging proce-
dures is that the precipitation amounts of the secondary net-
work are more uncertain than those of the primary network.
To reflect this difference, a modified version of Kriging, as
described in Delhomme (1978), is applied. This allows for a
reduction in the weights for the secondary stations.

Suppose that, for each point yi time t and temporal aggre-
gation 1t , there is an unknown error of the percentiles ε(yi ,
t) which has the following properties:

1. unbiased, i.e.

E
[
ε (yi, t)

]
= 0; (9)

2. uncorrelated, i.e.

E
[
ε (yi, t)ε

(
yj , t

)]
= 0 if i 6= j ; (10)

3. uncorrelated with the parameter value, i.e.

E
[
ε (yi, t)Z (yi, t)

]
= 0. (11)

For the primary network, we assume that ε(xi , t)= 0.

The interpolation is based on the following observations:

{u1, . . ., uN } = {x1, . . ., xN } ∪ {y1, . . ., yM} . (12)

For any location x, we calculate as follows:

Z∗1t (x, t)=

n∑
i=1

λi (Z (ui, t)+ ε (ui, t)) . (13)

To minimize the estimation variance, an equation system
similar to the OK system has to be solved as in the following:

n∑
j=1

λjγ
(
ui − uj

)
+ λiE

[
ε(ui, t)

2
]
+µ= γ (ui − x)

i = 1, . . ., n
n∑
j=1

λj = 1. (14)

Note that OK is a special case of this procedure, with the
additional assumption ε(yj , t)= 0. This system leads to an
increase in the weights for the primary network and a de-
crease in the weights for the secondary network. For each
time step and percentile, the variances in the random error
terms ε(yi , t) are estimated from the interpolation error of
the distribution functions. This interpolation method is re-
ferred to as Kriging using uncertain data (KU) (Delhomme,
1978). The variograms used for interpolation were calculated
in the rank space using the observations of the primary net-
work only, which leads to more robust results (Lebrenz and
Bárdossy, 2017). Anisotropy was not considered; the main
reason for this was that the primary network did not give ro-
bust results.

3.5 Step-by-step summary of the methodology

Figure 3 shows a flow chart of the procedure for obtaining
interpolated precipitation grids from raw PWS data. In sum-
mary, the procedure for using secondary observations is as
follows:

1. Select a percentile threshold for a selected temporal ag-
gregation. The threshold should be adapted to the tem-
poral aggregation, e.g. 98 % or 99 % for 1 h or 95 % for
3 h data.

2. Calculate the indicator series for primary and secondary
stations corresponding to the percentile threshold.

3. Implement the following procedure for each individual
secondary station:

a. calculate the indicator correlation of the given sec-
ondary and the closest primary station;

b. calculate the indicator correlations of all primary
stations using data corresponding to the time steps
of the selected secondary station;
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Figure 3. Flow chart illustrating the procedure from raw PWS data to interpolated precipitation grids.

c. compare the correlations and keep the secondary
station if its indicator correlation is in the same
range as the indicator correlations of the primary
stations approximately at the same distance (i.e.
IBF).

4. Perform a bias correction by interpolating the distribu-
tion function values of the primary network.

5. Select an event to be interpolated, and calculate the cor-
responding variogram of precipitation (based on rank
statistics).

a. Calculate the percentile of observed precipitation
(based on the corresponding time series).

b. Calculate the quantiles corresponding to the above
secondary percentile for the closest M primary sta-
tions of observed precipitation (based on the corre-
sponding time series).

c. Interpolate the quantiles for the location of the sec-
ondary station using the above primary values, us-
ing OK, and assign the obtained value to the sec-
ondary location.

6. Interpolate precipitation for each secondary location us-
ing OK, excluding the value assigned to the location
(cross validation mode).

7. Compare the interpolated and the assigned value from
step 5.c and remove station if condition of inequality
(Eq. 8) indicates outlier.

8. Interpolate precipitation for a target grid using all re-
maining values.

4 Application and results

The section describing the application of the methodology is
divided into three parts. First, the rationale of the assump-
tions is investigated. In a second step, the methodology is
applied on a large number of intense precipitation events on
different temporal aggregations using a cross validation ap-
proach. This allows for an objective judgement of the appli-
cability of the results. Finally, the results of the interpolation
on a regular grid are shown and compared.

4.1 Justification of the methods

For a direct comparison between the secondary rain gauges
and devices from the primary network, three Netatmo rain
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gauges were installed next to a Pluvio2 weighing rain gauge
(the same type as regularly used by the DWD) at the weather
station of the Institute for Modelling Hydraulic and Environ-
mental Systems (IWS) on the campus of the University of
Stuttgart. With this data from 15 May to 15 October 2019, a
direct comparison between the different devices used in the
primary and secondary network was possible.

Table 1 shows statistics of the three devices compared to
those of the reference station. The secondary stations overes-
timated precipitation amounts by about 20 %. It can be ob-
served that the differences between the reference and the
Netatmo gauge are not linear; hence, a data correction of
the secondary gauges, using a linear scaling factor, is not
sufficient. Furthermore, the maximum in the sub-daily ag-
gregations from N10 shows an outlier. This was caused by
an interrupted connection between the rain sensor and the
base station. In this case, the total sum of the precipitation
over a longer time period was transferred at once (i.e. in one
single measurement interval) when the connection was re-
established. Such transmission errors lead to outliers which
falsify the results. Figure 4 shows scatter plots of hourly rain-
fall data and the corresponding percentiles from these three
Netatmo gauges and the reference station. The occurrence of
high values and percentiles is similar for the primary and the
secondary devices. The Netatmo station N10, however, devi-
ates substantially from the other measurements in the quan-
tile plot (Fig. 4b), which also points to data transmission er-
rors in which the station failed to transmit data during rain
events. The indicator-filtering procedure (i.e. IBF) can iden-
tify such problems effectively.

The secondary measurement devices can also have very
different biases, depending on where and how they are in-
stalled. This can be seen by comparing the distribution func-
tions of hourly precipitation data from nearby primary and
secondary stations in the same area. Figure 5 shows the em-
pirical distribution functions of three primary and four sec-
ondary stations in the city of Reutlingen. While the distri-
bution functions of the primary network are nearly identi-
cal, those of the nearest secondary stations vary strongly.
Some overestimate and others underestimate the amounts
significantly. This example supports the concept of the pa-
per, namely that secondary data require filtering and data
transformations before use. While the distributions differ,
the probability of no precipitation p0 (defined as precipita-
tion< 0.1 mm) ranges from 0.90 to 0.91 and is thus very
similar for both types of stations, indicating that the occur-
rence of precipitation can be well detected by the secondary
network.

4.2 Application of the filters

Indicator correlations were calculated for different temporal
aggregations and for a large number of different α values in
the range between 95 % and 99 %. Figure 6 shows the in-
dicator correlations for 1 h aggregation and the 99 % quan-

tile, using pairs of observations from the primary–primary
and the primary and secondary network as a function of sta-
tion distance. The indicator correlations of the pairs of the
primary network show relatively high values and a slow de-
crease with increasing distance. In contrast, if the indicator
correlations are calculated using pairs with one location cor-
responding to the primary network and one to the secondary
network, the scatter increased substantially. Secondary sta-
tions for which the indicator correlations are very small in
the sense of Eq. (4) are considered as unreliable and are re-
moved from further processing. A relatively large distance
tolerance was used, as the density of the primary stations
is much lower than the density of the secondary stations.
In Fig. 6, the indicator correlations corresponding to the re-
maining secondary stations show a similar spatial behaviour
as the primary network. In our case, 2462 of the originally
available 3082 stations remained, with a time series length
of more than 2 months. After applying the IBF filter, a set
of 862 (35 %) PWSs remained. This is a relatively small frac-
tion of the total number of secondary stations, but note that
the shortest records were removed, and low correlations may
occur as a consequence of the short observation periods. In
the future, with an increasing number of measurements, some
of these stations may be reconsidered.

The effect of the IBF was checked by calculating the rank
correlations between pairs of primary and PWS stations with
a distance below 2500 m. Figure 7 shows that the removed
PWSs have a low rank correlation to their primary neigh-
bours, while, for the accepted ones, the majority of the rank
correlations is high. These high rank correlations support the
rank-based hypothesis formulated in Eq. (1).

The EBF was applied for each event individually. The
number of discarded secondary stations is this study varied
from event to event and was on average around 5 %.

4.3 Bias correction

The bias correction method is illustrated using the example
shown in Fig. 8. For simplicity, the four primary stations in
the corners of a square and the secondary station in the centre
of this square are considered. This configuration ensures that
the OK weights of the primary station with respect to the sec-
ondary station are all equal to one-quarter, independent of the
variogram. The observed precipitation amounts at the corner
stations are 3.1, 1.8, 3.0 and 2.1 mm for a selected event. The
secondary station in the centre recorded 1.7 mm of rainfall.
This corresponds to the 0.99 non-exceedance probability of
precipitation for the specific secondary station. The precipi-
tation quantiles at the primary stations corresponding to the
0.99 probability are 3.2, 3.5, 3.1 and 3.0 mm. Interpolation of
these values gives 3.2 mm, which is the value assigned to the
secondary station instead of the value of 1.7 mm. This value
is greater than all the four primary observations. The rea-
son for this is that the primary observations all correspond to
lower percentiles. Note that the interpolation of the primary
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Table 1. Statistics of three Netatmo stations (N07, N10 and N11) compared to a Pluvio2 weighing gauge for April to October 2019 at the
IWS meteorological station for different temporal aggregations.

1 h 6 h 24 h

Pluvio2 N07 N10 N11 Pluvio2 N07 N10 N11 Pluvio2 N07 N10 N11

p0 (–) 0.92 0.84 0.94 0.91 0.82 0.75 0.84 0.82 0.59 0.56 0.65 0.59
Mean (mm) 1.24 1.46 1.80 1.41 3.46 4.04 4.24 3.89 5.78 7.28 7.51 7.02
Standard deviation (mm) 2.15 2.52 4.49 2.52 4.86 5.77 7.55 5.71 8.46 10.49 11.52 10.33
25th percentile (mm) 0.18 0.20 0.10 0.20 0.39 0.33 0.30 0.40 0.48 0.63 0.58 0.58
50th percentile (mm) 0.51 0.71 0.50 0.61 1.49 1.41 0.91 1.21 2.36 2.78 1.62 2.58
75th percentile (mm) 1.34 1.72 1.41 1.52 4.60 5.33 4.14 4.95 7.82 9.87 11.26 9.95
Maximum (mm) 19.84 22.62 44.74 22.22 23.28 28.58 44.74 27.98 45.62 55.55 56.16 55.55

All statistics, except for the p0 values, are based on non-zero values. p0 is the non-exceedance probability of precipitation< 0.1 mm.

Figure 4. Scatter plot showing (a) the hourly rainfall values (axes log scaled) and (b) the corresponding upper percentiles> 0.92 (b) between
the Pluvio2 weighing gauge and three Netatmo gauges (N07, N10 and N11) at the IWS meteorological station.

values corresponding to the event for the secondary observa-
tion location would be 2.5 mm.

The bias in the PWS observations can be recognized by in-
vestigating data with a higher temporal aggregation. A com-
parison of monthly or seasonal precipitation amounts at pri-
mary stations and PWSs reveals whether there is a systematic
difference or not. As monthly or seasonal precipitation can
be well interpolated by using primary stations only (temporal
aggregation increases the quality of interpolation; Bárdossy
and Pegram, 2013), this comparison provides a good indica-
tion of bias. The difference between the interpolated and the
PWS aggregations is different from PWS to PWS and often
exceeds 20 %. Both positive and negative deviations occur.
This points out that bias correction has to be done for each
station separately.

4.4 Cross validation results

As there is no ground truth available, the quality of the proce-
dure had to be tested by comparing omitted observations and
their estimates obtained after the application of the method.

The cross validation was carried out for a set of different
temporal aggregations 1t and a set of selected events. Only
times with intense precipitation were selected. Table 2 shows
some characteristics of the selected events. For short time pe-
riods, nearly all events were from the summer season, while
for higher aggregation the number of winter season events
increased, but their portion remained below 30 %.

The improvement obtained through the use of secondary
data is demonstrated using a cross validation procedure. The
primary network is randomly split into 10 subsets of 10 or
11 stations each. The data of each of these subsets were
removed and subsequently interpolated using two different
configurations of the data used, namely (a) only other pri-
mary network stations and (b) using the other primary and
the secondary network stations. For the latter case, the inter-
polations were carried out using the primary station data and
the following configurations:
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Figure 5. Probability of no precipitation (a) and the upper part of the empirical distribution functions (b) for three primary stations (solid
lines) and four secondary stations (dashed lines) from a small area in the city of Reutlingen, based on a sample size of 15 990 data pairs
(hourly precipitation). The distance between the primary stations is between 5.5 and 9 km, and the distances from the secondary stations to
the next primary stations range from 1 to 3 km.

Figure 6. Indicator correlations for 1 h temporal resolution and α = 0.99 between the secondary network and the nearest primary network
stations before (a) and after (b), applying the IBF (red crosses). The black dots refer to the indicator correlation between the primary network
stations.

– C1 – all secondary stations;

– C2 – secondary stations remaining after the application
of the IBF;

– C3 – secondary stations remaining after application of
the IBF and the EBF;

– C4 – secondary stations remaining after application of
the IBF and the EBF and considering uncertainty (KU).

The results were compared to the observations of the re-
moved stations. The comparison was done for each location
using all time steps and at each time step using all locations.
Different measures, including those introduced in Bárdossy
and Pegram (2013), were used to compare the different in-
terpolations. The results were evaluated for each temporal
aggregation.

First, the measured and interpolated values were compared
for each individual station, and the Pearson (r) and Spearman
correlations (rS) of the observed and interpolated series were
calculated. Table 3 shows the results for the different config-
urations used for the interpolation.

There is no improvement if no filter is applied – except for
a very slight improvement for 1 h durations. This is mainly
due to the better identification of the wet and dry areas. The
use of the filters (and the subsequent transformation of the
precipitation values) leads to an improvement in the estima-
tion, with the IBF being the most important. The spatial filter
further improves the correlation, while the additional con-
sideration of the uncertainty of the corrected values at the
secondary network results in a marginal improvement for the
selected events. As the secondary stations are not uniformly
distributed over the investigated domain, the gain from us-
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Table 2. Statistics of the selected intense precipitation events based on the primary network.

Temporal resolution 1 h 3 h 6 h 12 h 24 h

Number of intense events 185 190 190 195 195
Events between October–March 1 16 29 48 57
Events between April–September 184 174 161 147 138
Minimum of the maxim (mm) 28.01 31.2 33.35 34.9 35.5
Maximum of the maxima (mm) 122.3 158.2 158.4 160 210.3
p0 (mean of all stations and events) 0.9 0.84 0.77 0.68 0.55

p0 is defined here as precipitation< 0.1 mm.

Table 3. Percentage of the stations with improved temporal correlation (compared to interpolation using primary stations only) for the
configurations C1–C4.

Temporal aggregation 1 h 3 h 6 h 12 h 24 h

Number of events 185 190 190 195 195

Correlation measure r rS r rS r rS r rS r rS

C1 – primary and all secondary, without filter and OK 60 68 40 57 31 49 22 34 17 32
C2 – primary and secondary, using IBF and OK 81 91 75 90 73 90 64 84 52 81
C3 – primary and secondary, using IBF, EBF and OK 81 92 75 93 73 92 69 92 56 87
C4 – primary and secondary, using IBF, EBF and KU 81 92 75 92 74 91 70 91 56 86

r – Pearson correlation; rS – Spearman correlation.

Figure 7. Histograms of the rank correlations between primary sta-
tions and PWSs for pairs with a distance less than 2500 m. Panel (a)
shows the rank correlations for the stations removed by the filter,
and panel (b) shows those which were accepted.

ing them is also not uniform. The highest improvements
were achieved in and near urban areas with a high density
of secondary stations; a lesser improvement was achieved in
forested areas with few secondary stations.

The measured and interpolated results were also compared
for each event in space, and the correlations between the ob-
served and the interpolated spatial patterns were calculated as
well. Table 4 shows the frequency of improvements for the
different configurations, C1 to C4, used for the interpolation.

The use of secondary stations leads to a frequent im-
provement in the spatial interpolation, even in the unfiltered

Figure 8. Example of transformation and bias correction of precip-
itation amounts at a secondary station.

case. The reason for this is that the spatial pattern is reason-
ably well captured by the secondary network. With increas-
ing temporal aggregation, the improvement disappears as the
role of the bias increases due to the decreasing number of
data, which can be used for bias correction. As in the case of
the temporal evaluation, the IBF (and the subsequent trans-
formation of the precipitation values) leads to the highest im-
provement. The EBF plays a marginal role, and the consid-
eration of the uncertainty leads to a slight reduction in the
quality of the spatial pattern. The improvement is smaller for
higher temporal aggregations. Kriging with uncertainty did
not improve the results.
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Table 4. Percentage of the stations with improved spatial correlation (compared to interpolation using primary stations only) for the config-
urations C1–C4 (r – Pearson correlation; rS – Spearman correlation).

Temporal aggregation 1 h 3 h 6 h 12 h 24 h

Number of events 185 190 190 195 195

Correlation measure r rS r rS r rS r rS r rS

C1 – primary and all secondary, without filter and OK 83 68 72 52 63 49 53 49 49 46
C2 – primary and secondary, using IBF and OK 96 97 90 93 90 93 84 89 80 85
C3 – primary and secondary, using IBF, EBF and OK 96 97 92 94 93 94 89 92 84 89
C4 – primary and secondary, using IBF, EBF and KU 93 94 90 92 90 93 84 89 80 87

Finally, all results were compared in both space and time.
Here the root mean squared error (RMSE) was calculated for
all events and control stations. Table 5 shows the results for
the different configurations used for the interpolation.

The improvement using the filters is high for each aggre-
gation. The IBF is important for improving the interpolation
quality. The EBF and the consideration of the uncertainty
of the secondary stations are of minor importance. The im-
provement is the largest for the shortest aggregation (1 h),
where the RMSE decreased by 20 %, and the smallest for the
24 h aggregation, with an improvement of 4 %. This deterio-
ration is caused by the decreasing spatial variability in pre-
cipitation at higher temporal aggregations. The processes that
lead to long-lasting precipitation are predominantly accom-
panied by a more even distribution in precipitation in space
and time. The use of KU for interpolation resulted only in a
minor improvement. Nevertheless, it is reasonable to assign
lower weights to the less reliable PWS data. In order to check
whether the selection of the events led to this result, a cross
validation for all 1 h time steps during the period from April
to October 2019 (5136 time steps) was carried out. The re-
sults are shown in Table 6. In this case, OK with secondary
data did not lead to an improvement. This is mainly caused
by the irregular spatial distribution of the PWSs. Stations lo-
cated very close to each other can cause instabilities in the so-
lution of the Kriging equations, leading to high positive and
negative weights. Introducing a small random error (1 %) to
the PWSs stabilizes the solution and leads to an improvement
in the interpolation. The more realistic random error of 10 %
further improves the results.

Note that the use of the filtered and bias-corrected sec-
ondary stations improves the interpolation quality even for
other interpolation methods. Table 7 shows the results for
the 185 events with 1 h aggregation. One can observe that
KU gives the best results, but the simple interpolations of
nearest neighbour or inverse distance also lead to better re-
sults than using primary stations only. The poor performance
of the co-Kriging is surprising. For this study, we used the
observations from the secondary stations as co-variables. The
linear relationship which is supposed to exist between the in-
vestigated variable (precipitation) and the secondary variable

(precipitation measured at PWSs) for the application of co-
Kriging may not be appropriate for this combination of vari-
ables. Considering the ranks of the secondary observations
or other transformed values as co-variables may improve the
co-Kriging results, but this is not the primary topic of this
paper.

4.5 Selected events

As the cross validation results were showing improvements,
the data transformations and subsequent interpolations were
carried out for all selected events. As an illustration, four se-
lected events are shown and discussed here.

The first example (Fig. 9) shows the results of the interpo-
lation of a 1 h aggregated precipitation amount for the time
period from 15:00 to 16:00 LT on 11 June 2018. For this
event, 531 out of 862 PWSs had valid data (i.e. no miss-
ing values) from which 476 remained after the EBF. Fig-
ure. 9a–c show three different precipitation interpolations for
this event, as follows:

a. using the combination of the two station networks after
application of the filters and transformation of the sec-
ondary data;

b. using the primary network only;

c. using all raw unfiltered and uncorrected data from the
secondary network only.

In Fig. 9, panel (d) shows the difference between (a)
and (b), and panel (e) shows the difference between (c)
and (b). The three panels from (a) to (c) are similar in their
rough structure, but there are important differences in the de-
tails. The interpolation using the primary network leads to a
relatively smooth surface. The unfiltered secondary-station-
based interpolation is highly variable and shows distinct pat-
terns such as small dry and wet areas. The combination af-
ter filtering and transformation is more detailed than the pri-
mary interpolation, and in some regions, these differences are
high. The map of the difference between the primary and the
secondary-station-based interpolation (Fig. 9e) shows large
regions of underestimation and overestimation by the sec-
ondary network. The differences between the primary and
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Table 5. RMSE (mm) for all stations and events.

Temporal aggregation 1 h 3 h 6 h 12 h 24 h

Number of events 185 190 190 195 195

C0 – primary stations only and OK (reference) 5.97 6.97 7.34 7.71 8.35
C1 – primary and all secondary, without filter and OK 6.21 44.79 18.43 10.01 24.16
C2 – primary and secondary, using IBF and OK 4.83 6.05 6.61 7.33 8.29
C3 – primary and secondary, using IBF, EBF and OK 4.84 6.07 6.58 7.19 8.12
C4 – primary and secondary, using IBF, EBF and KU 4.82 6.02 6.53 7.15 8.08

Figure 9. Interpolated precipitation for the time period from 15:00 to 16:00 LT on 11 June 2018 (a–c) and the differences between primary and
combination and primary and secondary data-based interpolations. Panel (a) shows the result after applying the filtering, (b) the interpolation
from the primary network and (c) the one from the secondary network. Panels (d) and (e) depict the differences between (a) and (b) and (c)
and (b), respectively.

Table 6. RMSE (in millimetres) and correlations for all stations
for all time steps (5136) between April and October 2019 for OK
and KU, with different error assumptions for 1 h aggregation.

Interpolation method RMSE Correlation Rank
correlation

Primary stations OK 0.331 0.640 0.443
Primary and PWS OK 3.862 0.644 0.402
Primary and PWS EK (1 % error) 0.314 0.759 0.578
Primary and PWS EK (10 % error) 0.158 0.809 0.631

the filtered interpolations, using transformed secondary data
in panel (d), is much smaller, but in some regions, the dif-
ferences are still quite large, e.g. in the northeastern part
of the study area. In both cases, negative and positive dif-
ferences occur. Note that, for this data, the cross validation
based on the primary observations showed an improvement

Table 7. Bias and RMSE (in millimetres) for all stations and events
for different interpolation methods for 1 h aggregation.

Interpolation method Bias RMSE

Ordinary Kriging; primary data only 0.05 5.97
Kriging with uncertainty; primary and PWSs 0.50 4.82
Nearest neighbour; primary and PWSs 0.89 5.06
Inverse distance; primary and PWSs 0.89 5.27
Co-Kriging; primary and PWSs 0.16 5.32

of r from 0.36 to 0.77, of rS from 0.55 to 0.76 and a reduction
in the RMSE from 12.5 to 8.2 mm.

Figure 10 shows the distributions of the cross validation
errors for the different interpolations for this event. This is
a typical case in which all methods yield unbiased results.
The use of unfiltered and uncorrected secondary observa-
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Figure 10. Distribution of the cross validation errors for the time
period from 15:00 to 16:00 LT on 11 June 2018 for the five inter-
polation methods. C0 – using primary stations only and OK; C1
– primary and all secondary, without filter and OK; C2 – primary
and secondary, using IBF and OK; C3 – primary and secondary, us-
ing IBF, EBF and OK; C4 – primary and secondary, using IBF, EBF
and KU.

tions (C1) shows the highest variance, followed by the in-
terpolation using only primary observations (C0). The other
three methods (C2–C4) have very similar results with signif-
icantly lower variance.

Another interpolated 1 h accumulation corresponding to
17:00 to 18:00 LT on 6 September 2018 is shown in Fig. 11.
For this event, from the 862 PWSs remaining after the IBF,
576 PWSs had available data, from which 513 remained af-
ter the EBF. These pictures show a similar behaviour to those
obtained for 11 June 2018 (Fig. 9). Here, a high local rain-
fall in the southern central part of the study area was obvi-
ously not captured by the secondary network, leading to a
large local underestimation in Fig. 9e. Furthermore, a larger
area with precipitation in the primary network in the northern
central region in Fig. 9b is significantly reduced in size by the
rainfall/no-rainfall information from the secondary network
in Fig. 9c. For this case, the cross validation based on the pri-
mary observations showed an improvement of r from 0.61
to 0.86, of rS from 0.59 to 0.72 and a reduction in the RMSE
from 5.65 to 3.75 mm.

The following two case studies show two interpolation ex-
amples for 24 h, which was the highest temporal aggrega-
tion in this study. Figure 12 shows the maps corresponding
to the precipitation from 00:00 to 24:00 LT on 14 May 2018.
For this event, 515 PWS valid stations remained. This num-
ber was reduced to 499 after the EBF. The behaviour of the
interpolations is similar to the 1 h cases shown above; the
unfiltered and untransformed secondary interpolation is ir-
regular and shows a systematic underestimation. Due to the
higher temporal aggregation, the local differences have less
of a contrast than in the case of the hourly maps. The combi-
nation contains more details, and the transition between high-
and low-intensity precipitation is more complex. The differ-
ence between the primary (Fig. 12b) and the combination-
based interpolation in Fig. 12a is relatively smaller than for

the 1 h aggregations. This is caused by the reduction in the
variability with an increasing number of observations. Note
that, for this event, the cross validation based on the primary
observations showed an improvement of r from 0.57 to 0.8,
of rS from 0.57 to 0.82 and a reduction in the RMSE from
15.99 to 13.61 mm.

Another interesting 24 h event which was recorded on
28 July 2019 is shown in Fig. 13. For this event, 734 valid
PWSs remained from IBF and 703 after EBF. The map based
on the raw secondary data in Fig. 13c shows very scattered
intense rainfall. The combination of the primary and sec-
ondary observations changes the structure and the connec-
tivity of these area with intense precipitation. The cross vali-
dation for this event showed an improvement of r from 0.32
to 0.75, of rS from 0.42 to 0.77 and a reduction in the RMSE
from 14.77 to 10.21 mm.

The results of the filtering algorithm for the other events
show a similar behaviour. The differences between primary
and combined interpolation can be both positive and nega-
tive for all temporal aggregations. In general, the secondary
network provides more spatial details, which could be very
important for the hydrological modelling of mesoscale catch-
ments.

Figure 14 shows the distributions in the cross validation
errors for the different interpolations for this event. The re-
sults are different from the case presented in Fig. 10. In this
case, all methods are slightly biased. The interpolation using
only primary observations (C0) shows the highest bias and
variance. In this case, the use of unfiltered and uncorrected
secondary observations (C1) yields a lower bias and a lower
variance. The other three methods (C2–C4) have very similar
results with significantly lower variance.

5 Discussion

The use of observations from such PWS networks has the
potential to improve the quality of precipitation estimations.
However, the results from this study, and the ones from
de Vos et al. (2019), show that it is necessary to check the
data quality from PWS precipitation records and to discard
erroneous measurements before using these data further.

There are already several approaches to using the precipi-
tation data from PWSs (e.g. Chen et al., 2018; Cifelli et al.,
2005), but they are generally based on daily data and simple
QC approaches. Studies using more sophisticated QC work-
flows for hourly or sub-hourly precipitation data from PWSs
are still limited. The approach presented by de Vos et al.
(2019) uses a comparison of the data with those of the nearby
stations to remove unreasonable values, with a separate pro-
cedure for identifying and removing false zeros and another
filter for finding unreasonably high values. Subsequently, the
bias is corrected by comparing past local observations to
a high-quality merged radar and point observation product.
The bias correction is performed uniformly in neighbour-

Hydrol. Earth Syst. Sci., 25, 583–601, 2021 https://doi.org/10.5194/hess-25-583-2021



A. Bárdossy et al.: The use of personal weather station observations to improve precipitation estimation 597

Figure 11. Interpolated precipitation for the time period from 17:00 to 18:00 LT on 6 September 2018 (a–c) and the differences between
primary and combination and primary and secondary data-based interpolations. Panel (a) shows the result after applying the filtering, (b) the
interpolation from the primary network and (c) the one from the secondary network. Panels (d) and (e) depict the differences between (a)
and (b) and (c) and (b), respectively.

Figure 12. Interpolated precipitation for the time period for a 24 h event from 00:00 to 24:00 LT on 14 May 2018 (a–c) and the differences
between primary and combination and primary and secondary data-based interpolations. Panel (a) shows the result after applying the filtering,
(b) the interpolation from the primary network and (c) the one from the secondary network. Panels (d) and (e) depict the differences
between (a) and (b) and (c) and (b), respectively.
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Figure 13. Interpolated precipitation for the time period for a 24 h event from 00:00 to 24:00 LT on 28 July 2019 (a–c) and the differences
between primary and combination and primary and secondary data-based interpolations. Panel (a) shows the result after applying the filtering,
(b) the interpolation from the primary network and (c) the one from the secondary network. Panels (d) and (e) depict the differences
between (a) and (b) and (c) and (b), respectively.

Figure 14. Distribution of the cross validation errors for the 24 h
event from 00:00 to 24:00 LT on 28 July 2018, for the five inter-
polation methods. C0 – using primary stations only and OK; C1
– primary and all secondary, without filter and OK; C2 – primary
and secondary, using IBF and OK; C3 – primary and secondary, us-
ing IBF, EBF and OK; C4 – primary and secondary, using IBF, EBF
and KU.

hoods. Finally, another filter using correlations of time se-
ries serves to remove remaining suspicious data. In the study
presented here, a geostatistical method combined with rank
statistics was developed. One of the main differences, com-
pared to the method presented by de Vos et al. (2019), is that
a set of trustworthy precipitation data (primary stations) is re-
quired for the rank correlation and the bias correction. First,
PWSs which have indicator time series with low correlations

compared to the primary network are removed. The remain-
ing secondary stations are tested for each event separately
using OK in a cross validation mode. Finally the data are
bias corrected using interpolated quantiles of the primary ob-
servations. This is an important aspect, since PWSs that are
close to each other do not necessarily have a similar bias. Ex-
amples from the Reutlingen data show that positive and neg-
ative biases can occur at neighbouring PWSs. The bias cor-
rection in this study does not use simultaneous observations
of the primary and the PWS stations but, instead, is based
on their distributions. A detailed cross validation of differ-
ent filter combinations and temporal aggregations shows that
the IBF is the most important step and yields the highest
improvement in interpolation quality, whereas the EBF and
bias correction only have a minor contribution. Furthermore,
the performance of the presented method is better at smaller
temporal aggregations. The applied filters in this study may
be conservative in terms of rejecting more stations than ab-
solutely necessary, but this proved to be useful in order to
obtain robust results. The length of the time series from the
current secondary network will increase, and subsequently,
more observations which were discarded during this study
may become useful in future studies. Furthermore, it can be
expected that the number of secondary stations will continue
to increase; thus, one can expect further improvements in the
quality of precipitation maps for all temporal aggregations.
Overall, the use of secondary stations after filtering and data
transformation improves the results of interpolation for other
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possible interpolation methods, such as nearest neighbour
or inverse distance weighting. However, in this study these
methods yielded worse results than OK. An advantage of the
KU interpolation method is that a combination of different
measurements, such as radar estimates or commercial mi-
crowave links, which are based on indirect information, can
be accommodated in the same framework. By using KU for
interpolation, the weights for data from secondary networks
can be reduced to account for the higher uncertainty of these
data. Other procedures for the efficient use of secondary data
may also be considered. Specifically, the interpolation of pre-
cipitation amounts with co-Kriging using non-collocated ob-
servations (Clark et al., 1989), using percentiles P1t (yj , t) as
co-variates (Eq. 5) or using quantile Kriging (QK) (Lebrenz
and Bárdossy, 2019) may lead to better results. However,
QK has to be modified due to the large number of zeros oc-
curring for short temporal aggregations, for example by com-
bining it with the approach developed by Bárdossy (2011).

A problem that affects both primary and PWS stations is
errors caused by wind. In general, this has a major effect
on precipitation measurements, leading to a systematic un-
dercatch. These effects might differ from station to station
and cannot be corrected. The suggested methodology uses
ranks and not the measured precipitation values of the PWSs.
Thus, the problem related to wind only affects the results if it
changes the order of the precipitation measured at the same
location. This order, however, is relatively stable for high pre-
cipitation values as, due to the skewness of the distribution,
the difference between the measured values is high.

6 Conclusions and outlook

As precipitation uncertainty is possibly the most important
factor for the uncertainty in rainfall/run-off modelling, the in-
creasing number of online available private weather stations
offers the possibility to increase the accuracy of precipita-
tion estimation. Furthermore, the near real-time availability
of the data of secondary networks may help to improve the
quality of flood forecasts. In any case, a QC of these data
is required since the use of raw data of the secondary net-
work does not improve interpolation quality; on the contrary,
it often increases uncertainty. In this study, a geostatistical
method combined with rank statistics was applied to com-
bine data from primary and PWS networks. In particular, in
the following:

– An assumption on the rank stability of the PWS stations
was introduced.

– A new method to filter out erroneous PWS data based
on indicator correlations was developed.

– A second geostatistical filter to remove individual PWS
observations was applied.

– A rank-statistics-based bias correction was developed.
The bias correction does not use simultaneous observa-
tions of the primary and the PWS stations but, instead,
is based on their distributions.

– A Kriging interpolation with uncertain data was
used (KU). This method allows for a down-weighting
of the PWS stations and leads to an improvement in the
interpolation quality.

This approach was tested on a set of observations, and the
improvement of the quality of interpolation was quantified.
A detailed cross validation experiment showed that, after QC
and bias correction, interpolation quality was improved in a
large number of cases. This improvement is the biggest for
hourly temporal aggregations, with a reduction in the RMSE
by 20 % , while for daily values the improvement is around
4 %. The results of this study, in terms of improving the in-
terpolation of precipitation, are encouraging, but the authors
believe that further improvements can be achieved. In this
context, the following aspects would be of interest:

1. In this study, the number of primary stations was suf-
ficient to improve the interpolation quality. However, it
would be interesting to investigate which density of pri-
mary stations is necessary to improve the precipitation
interpolation.

2. For applying this approach to shorter time steps
(e.g. 5 min for which the PWS data are available), the
effect of advection would have to be taken into account.
This requires further research.

3. By applying a rather strict threshold of 5 ◦C average
daily temperature, many rainfall events were rejected. It
would be conceivable to include the hourly temperature
data from PWSs in order to estimate whether a given
precipitation event corresponds to rain or snow.
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