Articles | Volume 25, issue 9
Hydrol. Earth Syst. Sci., 25, 5013–5027, 2021
Hydrol. Earth Syst. Sci., 25, 5013–5027, 2021
Technical note
17 Sep 2021
Technical note | 17 Sep 2021

Technical note: RAT – a robustness assessment test for calibrated and uncalibrated hydrological models

Pierre Nicolle et al.

Related authors

A methodological framework for the evaluation of short-range flash-flood hydrometeorological forecasts at the event scale
Maryse Charpentier-Noyer, Daniela Peredo, Axelle Fleury, Hugo Marchal, François Bouttier, Eric Gaume, Pierre Nicolle, Olivier Payrastre, and Maria-Helena Ramos
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2022
Preprint under review for NHESS
Short summary
PREMHYCE: An operational tool for low-flow forecasting
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389,,, 2020
Benchmarking hydrological models for low-flow simulation and forecasting on French catchments
P. Nicolle, R. Pushpalatha, C. Perrin, D. François, D. Thiéry, T. Mathevet, M. Le Lay, F. Besson, J.-M. Soubeyroux, C. Viel, F. Regimbeau, V. Andréassian, P. Maugis, B. Augeard, and E. Morice
Hydrol. Earth Syst. Sci., 18, 2829–2857,,, 2014

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A conceptual-model-based sediment connectivity assessment for patchy agricultural catchments
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770,,, 2022
Short summary
The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL)
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572,,, 2022
Short summary
Spatial extrapolation of stream thermal peaks using heterogeneous time series at a national scale
Aurélien Beaufort, Jacob S. Diamond, Eric Sauquet, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 3477–3495,,, 2022
Short summary
Revisiting parameter sensitivities in the variable infiltration capacity model across a hydroclimatic gradient
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445,,, 2022
Short summary
Deep learning rainfall–runoff predictions of extreme events
Jonathan M. Frame, Frederik Kratzert, Daniel Klotz, Martin Gauch, Guy Shelev, Oren Gilon, Logan M. Qualls, Hoshin V. Gupta, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 26, 3377–3392,,, 2022
Short summary

Cited articles

Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.-H., and Valéry, A.: HESS Opinions ”Crash tests for a standardized evaluation of hydrological models”, Hydrol. Earth Syst. Sci., 13, 1757–1764,, 2009. 
Andréassian, V., Le Moine, N., Perrin, C., Ramos, M.-H., Oudin, L., Mathevet, T., Lerat, J., and Berthet, L.: All that glitters is not gold: the case of calibrating hydrological models, Hydrol Process., 26, 2206–2210,, 2012. 
Bellprat, O., Kotlarski, S., Lüthi, D., and Schär, C.: Physical constraints for temperature biases in climate models: limits of temperature biases, Geophys. Res. Lett., 40, 4042–4047,, 2013. 
Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication, Hydrol. Sci. J., 61, 1652–1665,, 2016. 
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.