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Abstract. Prior to their use under future changing climate
conditions, all hydrological models should be thoroughly
evaluated regarding their temporal transferability (applica-
tion in different time periods) and extrapolation capacity (ap-
plication beyond the range of known past conditions). This
note presents a straightforward evaluation framework aimed
at detecting potential undesirable climate dependencies in
hydrological models: the robustness assessment test (RAT).
Although it is conceptually inspired by the classic differen-
tial split-sample test of Klemeš (1986), the RAT presents the
advantage of being applicable to all types of models, be they
calibrated or not (i.e. regionalized or physically based). In
this note, we present the RAT, illustrate its application on a
set of 21 catchments, verify its applicability hypotheses and
compare it to previously published tests. Results show that
the RAT is an efficient evaluation approach, passing it suc-
cessfully can be considered a prerequisite for any hydrologi-
cal model to be used for climate change impact studies.

Highlights.

– A new method (RAT) is proposed to assess the robustness of
hydrological models, as an alternative to the classical split-
sample test.

– The RAT method does not require multiple calibrations of hy-
drological models: it is therefore applicable to uncalibrated
models.

– The RAT method can be used to determine whether a hydro-
logical model cannot be safely used for climate change impact
studies.

– Success at the RAT test is a necessary (but not sufficient) con-
dition of model robustness.

1 Introduction

1.1 All hydrological models should be evaluated for
their robustness

Hydrologists are increasingly requested to provide predic-
tions of the impact of climate change (Wilby, 2019). Given
the expected evolution of climate conditions, the actual abil-
ity of models to predict the corresponding evolution of hy-
drological variables should be verified (Beven, 2016). In-
deed, when using a hydrological model for climate change
impact assessment, we make two implicit hypotheses con-
cerning the following:

– Capacity of extrapolation beyond known hydroclimatic
conditions. We assume that the hydrological model used
is able to extrapolate catchment behaviour under condi-
tions not or rarely seen in the past. While we do not
expect hydrological models to be able to simulate a
behaviour which would result from a modification of
catchment physical characteristics, we do expect them
to be able to represent the catchment response to ex-
treme climatic conditions (and possibly to conditions
more extreme than those observed in the past).

– Independence of the model set-up period. We assume
that the model functioning is independent of the climate
it experienced during its set-up/calibration period. For
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those models which are calibrated, we assume that the
parameters are generic and not specific to the calibration
period; i.e. they do not suffer from overcalibration on
this period (Andréassian et al., 2012).

Hydrologists make the hypothesis that model structure and
parameters are well-identified over the calibration period and
that parameters remain relevant over the future period, when
climate conditions are different. Unfortunately, the majority
of hydrological models are not entirely independent of cli-
mate conditions (Refsgaard et al., 2013; Thirel et al., 2015b).
When run under changing climate conditions, they some-
times reveal an unwanted sensitivity to the data used to con-
ceive or calibrate them (Coron et al., 2011).

The diagnostic tool most widely used to assess the robust-
ness of hydrological models is the split-sample test (SST)
(Klemeš, 1986), which is considered by most hydrologists
as a “good modelling practice” (Refsgaard and Henriksen,
2004). The SST stipulates that when a model requires cali-
bration (i.e. when its parameters cannot be deduced directly
from physical measurements or catchment descriptors), it
should be evaluated twice: once on the data used for calibra-
tion and once on an independent dataset. This practice has
been promoted in hydrology by Klemeš (1986), who did not
invent the concept (Arlot and Celisse, 2010; Larson, 1931;
Mosteller and Tukey, 1968), but who formalized it for hy-
drological modelling. Klemeš proposed initially a four-level
testing scheme for evaluating model transposability in time
and space: (i) split-sample test on two independent periods,
(ii) proxy-basin test on neighbouring catchments, (iii) dif-
ferential split-sample test on contrasted independent periods
(DSST), and (iv) proxy-basin differential split-sample test on
neighbouring catchments and contrasted periods.

For model applications in a changing climate context, Kle-
meš’s DSST procedure is of particular interest. Indeed, when
calibration and evaluation are done over climatically con-
trasted past periods, the model faces the difficulties it will
have to deal with in the future. The power of DSST can be
limited by the climatic variability observed in the past, which
may be far below the drastic changes expected in the future.
However, a satisfactory behaviour during the DSST can be
seen as a prerequisite of model robustness.

1.2 Past applications of the DSST method

The DSST received limited attention up to the 2010s, with
only a few studies which applied it. The studies by Refsgaard
and Knudsen (1996) and Donelly-Makowecki and Moore
(1999) investigated to which extent Klemeš’s hierarchical
testing scheme could be used to improve the conclusions of
model intercomparisons. The study by Xu (1999) questioned
the applicability of models in nonstationary conditions and
was one of the early attempts to apply the Klemeš’s test-
ing scheme in this perspective. Similarly, tests carried out
by Seibert (2003) explicitly intended to test the ability of a
model to extrapolate beyond calibration range and showed

limitations of the tested model, stressing the need for im-
proved calibration strategies. Last, Vaze et al. (2010) also in-
vestigated the behaviour of four rainfall–runoff models under
contrasting conditions, using wet and dry periods in catch-
ments in Australia that experienced a prolonged drought pe-
riod. They observed different model behaviours when going
from wet to dry or dry to wet conditions.

More recently, Coron et al. (2012) proposed a generalized
SST (GSST) allowing for an exhaustive DSST to evaluate
model transposability over time under various climate con-
ditions. The concept of GSST consists in testing “the model
in as many and as varied climatic configurations as possi-
ble, including similar and contrasted conditions between cal-
ibration and validation”. Seifert et al. (2012) used a differ-
ential split-sample approach to test a hydrogeological model
(differential being understood with respect to differences in
groundwater abstractions). Li et al. (2012) identified two dry
and two wet periods in long hydroclimatic series to under-
stand how a model should be parameterized to work under
nonstationary climatic conditions. Teutschbein and Seibert
(2013) performed differential split-sample tests by dividing
the data series into cold and warm as well as dry and wet
years, in order to evaluate bias correction methods. Thirel
et al. (2015a) put forward an SST-based protocol to inves-
tigate how hydrological models deal with changing condi-
tions, which was widely used during a workshop of the Inter-
national Association of Hydrological Sciences (IAHS), with
physically oriented models (Gelfan et al., 2015; Magand et
al., 2015), conceptual models (Brigode et al., 2015; Efstra-
tiadis et al., 2015; Hughes, 2015; Kling et al., 2015; Li et al.,
2015; Yu and Zhu, 2015) or data-based models (Tanaka and
Tachikawa, 2015; Taver et al., 2015).

Recently, with the growing concern on model robustness
in link with the Panta Rhei decade of the IAHS (Montanari et
al., 2013), a slow but steadily increasing interest is noticeable
for procedures inspired by Klemeš’s DSST (see e.g. the Un-
solved Hydrological Problem no. 19 in the paper by Blöschl
et al., 2019: “How can hydrological models be adapted to be
able to extrapolate to changing conditions?”). A few stud-
ies used the original DSST or GSST to implement more de-
manding model tests (Bisselink et al., 2016; Gelfan and Mil-
lionshchikova, 2018; Rau et al., 2019; Vormoor et al., 2018).
For example, based on an ensemble approach using six hy-
drological models, Broderick et al. (2016) investigated un-
der DSST conditions how the robustness can be improved by
multi-model combinations.

A few authors also tried to propose improved implemen-
tations of these testing schemes. Seiller et al. (2012) used
non-continuous periods or years selected on mean tempera-
ture and precipitation to enhance the contrast between test-
ing periods. This idea to jointly use these two climate vari-
ables to select periods was further investigated by Gaborit
et al. (2015), who assessed how the temporal model robust-
ness can be improved by advanced calibration schemes. They
showed that the robustness of the tested model was improved
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when going from humid–cold to dry–warm or from dry–cold
to humid–warm conditions when using regional calibration
instead of local calibration. Dakhlaoui et al. (2017) investi-
gated the impact of DSST on model robustness by selecting
dry/wet and cold/hot hydrological years to increase the con-
trast in climate conditions between calibration and validation
periods. These authors later proposed a bootstrap technique
to widen the testing conditions (Dakhlaoui et al., 2019). The
investigations of Fowler et al. (2018) identified some limits
of the DSST procedure and concluded that “model evalua-
tion based solely on the DSST is hampered due to contin-
gency on the chosen calibration method, and it is difficult to
distinguish which cases of DSST failure are truly caused by
model structural inadequacy”. Last, Motavita et al. (2019)
combined DSST with periods of variable length and con-
cluded that parameters obtained in dry periods may be more
robust.

All these past studies show that there is still methodologi-
cal work needed on the issue of model testing and robustness
assessment. This note is a further step in that direction.

1.3 Scope of the technical note

This note presents a new generic diagnostic framework in-
spired by Klemeš’s DSST procedure and by our own pre-
vious attempts (Coron et al., 2012; Thirel et al., 2015a) to
assess the relative confidence one may have with a hydrolog-
ical model to be used in a changing climate context. One of
the problems of existing methods is the requirement of mul-
tiple calibrations of hydrological models: these are relatively
easy to implement with parsimonious conceptual models but
definitively not with complex models that require long inter-
ventions by expert modellers and, obviously, not for those
models with a once-for-all parameterization.

Here, we propose a framework that is applicable with only
one long period for which a model simulation is available.
Thus, the proposed test is even applicable to those models
that do not require calibration (or to those for which only a
single calibration exists).

Section 2 presents and discusses the concept of the pro-
posed test, Sect. 3 presents the catchment set and the eval-
uation method, and Sect. 4 illustrates the application of the
test on a set of French catchments, with a comparison to a
reference procedure.

2 The robustness assessment test (RAT) concept

The robustness assessment test (RAT) proposed in this note
is inspired by the work of Coron et al. (2014). The specificity
of the RAT is that it requires only one simulation covering
a sufficiently long period (at least 20 years) with as much
climatic variability as possible. Thus, it applies at the same
time to simple conceptual models that can be calibrated au-
tomatically, to more complex models requiring expert cali-

Figure 1. Flowchart of the robustness assessment test.

bration, and to uncalibrated models for which parameters are
derived from the measurement of certain physical properties.
The RAT consists in computing a relevant numeric bias cri-
terion repeatedly each year and then exploring its correlation
with a climatic factor deemed meaningful, in order to iden-
tify undesirable dependencies and thus to assess the extrap-
olation capacity (Roberts et al., 2017) of any hydrological
model. Indeed, if the performances of a model are shown to
be dependent on a given climate variable, this can be an issue
when the model is used in a period with a changing climate.
The flowchart in Fig. 1 summarizes the concept.

An example is shown in Fig. 2, with a daily time step hy-
drological model calibrated on a 47-year streamflow record.
Note that this plot could be obtained from any hydrolog-
ical model calibrated or not. The relative streamflow bias
((Qsim/Qobs−1), withQsim andQobs being the mean simu-
lated and observed streamflows respectively) is calculated on
an annual basis (47 values in total). Then, the annual bias val-
ues are plotted against climate descriptors, typically the an-
nual temperature absolute anomaly (T−T , where T is the an-
nual mean and T is the long-term mean annual temperature),
the annual precipitation relative anomaly P/P−1 and the hu-
midity index relative anomaly HI/HI−1, where HI= P/E0,
E0 being the potential evaporation. Note that the mean an-
nual values are computed on hydrological years (here from
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1 August of year n−1 to 31 July of year n). In this example,
there is a slight dependency of model bias on precipitation
and humidity index. Clearly, this could be a problem if we
were to use this model in an extrapolation mode.

Whereas the methods based on the split-sample test
(i.e. Coron et al., 2012; Thirel et al., 2015b) evaluate model
robustness in periods that are independent of the calibration
period, it is not the case for the RAT. Consequently, one
could fear that the results of the RAT evaluation may be influ-
enced by the calibration process. However, because the RAT
uses a very long period for calibration, we hypothesize that
the weight of each individual year in the overall calibration
process is small, almost negligible. This assumption can be
checked by comparing the RAT with a leave-one-out SST
(see Appendix). The analysis showed that this hypothesis is
reasonable for long time series but that the RAT is not appli-
cable when the available time period is too short (less than
20 years).

Last, we would like to mention that the RAT procedure is
different from the proxy metric for model robustness (PMR)
presented by Royer-Gaspard et al. (2021), even if both meth-
ods aim to evaluate hydrological model robustness without
employing a multiple calibrations process: the PMR is a sim-
ple metric to estimate the robustness of a hydrological model,
while the RAT is a method to diagnose the dependencies of
model errors to certain types of climatic changes. Thus, the
RAT and the PMR may be seen as complementary tools to
assess a variety of aspects about model robustness.

3 Material and methods

3.1 Catchment set

We employed the dataset previously used by Nicolle et
al. (2014), comprising 21 French catchments (Fig. 3), ex-
tended up to 2020. Catchments were chosen to represent a
large range of physical and climatic conditions in France,
with sufficiently long observation time series (daily stream-
flow from 1974 to 2020) in order to provide a diverse repre-
sentation of past hydroclimatic conditions. Streamflow data
come from the French HYDRO database (Leleu et al., 2014)
and with quality control performed by the operational hydro-
metric services. Catchment size ranges from 380 to 4300 km2

and median elevation from 70 to 1020 m.
The daily precipitation and temperature data originate

from the gridded SAFRAN climate reanalysis (Vidal et al.,
2010) over the 1959–2020 period. More information about
the catchment set can be found in Nicolle et al. (2014). Ag-
gregated catchment files and computation of Oudin potential
evaporation (Oudin et al., 2005) were done as described in
Delaigue et al. (2018).

3.2 Hydrological model

The RAT diagnostic framework is generic and can be applied
to any type of model. Here daily streamflow was simulated
using the daily lumped GR4J rainfall–runoff model (Perrin et
al., 2003). The objective function used for calibration is the
Kling–Gupta efficiency criterion (Gupta et al., 2009) com-
puted on square-root-transformed flows. Model implementa-
tion was done with the airGR R package (Coron et al., 2017,
2020).

3.3 Evaluation of the RAT framework

The RAT was evaluated against the GSST of Coron et
al. (2012) used as a benchmark, in order to check whether
it yields similar results. The GSST procedure was applied to
each catchment using a 10-year period to calibrate the model.
For each calibration, each 10-year sliding period over the
remaining available period, strictly independent of the cal-
ibration one, was used to evaluate the model. The results of
the two approaches were compared by plotting on the same
graph the annual streamflow bias obtained from the unique
simulation period for the RAT, and the average streamflow
bias over the sliding calibration–validation time periods for
GSST, as a function of temperature, precipitation and humid-
ity anomalies as in Fig. 2. The similarity of the trends (be-
tween streamflow bias and climatic anomaly) obtained by the
two methods was evaluated on the catchment set by compar-
ing the slope and intercept of the linear regressions obtained
in each case.

We then identified the catchments where the RAT pro-
cedure detected a dependency of streamflow bias to one or
several climate variables. The Spearman correlation between
model bias and climate variables was computed, and a sig-
nificance threshold of 5 % was used (p value 0.05).

4 Results

4.1 Comparison between the RAT and the GSST
procedure

Figure 4 presents an example for the Orge River at Morsang-
sur-Orge: GSST points are represented by black dots and
RAT points by red squares. Let us first note that since red
points represent only each of the N years of the period for
the RAT and black points represent all GSST possible in-
dependent calibration–validation pairs (a number close to
N(N − 1)), black points are much more numerous. We can
observe that the amplitude of both streamflow bias and cli-
matic variable change is larger for the GSST than for the RAT
as there are more calibration periods, whatever the climatic
variable (P , T or HI). However, the trends in the scatterplot
are quite similar. Graphs for all catchments are provided as
Supplement.
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Figure 2. Robustness assessment test (RAT) applied to a hydrological model: the upper graph presents the evolution in time (year by year) of
model streamflow bias; the lower scatterplots present the relationship between model bias and climatic variables (temperature T , precipitation
P and humidity index HI, from left to right).

Figure 3. Location of the 21 catchments in France. Red dots repre-
sent the catchment outlets.

To summarize the results in the 21 catchments, we present
in Fig. 5 the slope and intercept of a linear regression com-
puted between model streamflow bias and climatic variable
anomaly, for the GSST and the RAT over the 21 catchments:
the slopes of the regressions obtained for both methods are

very similar, and the intercept also exhibits a good match (al-
though somewhat larger differences).

We can thus conclude that the RAT reproduces the results
of GSST, but at a much lower computational cost, and this is
what we were aiming at. One should however acknowledge
that switching from the GSST to the RAT unavoidably re-
duces the severity of the climate anomalies we can expose
the hydrological models to: indeed, the climate anomalies
with the RAT are computed with respect to the mean over
the whole period, whilst with the GSST they are computed
between two shorter (and hence potentially more different)
periods.

4.2 Application of the RAT procedure to the detection
of climate dependencies

We now illustrate the different behaviours found among the
21 catchments when applying the RAT procedure. The sig-
nificance of the link between model bias and climate anoma-
lies was based on the Spearman correlation and a 5 % thresh-
old. Five cases were identified:

1. No climate dependency (Fig. 6). This is the case for 6
catchments out of 21 and the expected situation of a
“robust” model. The different plots show a lack of de-
pendence, for temperature, precipitation and humidity
index alike. For the catchment of Fig. 6, the p value
of the Spearman correlation is high (between 0.23 and
0.98) and thus not significant.
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Figure 4. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and
humidity index anomalies, for the Orge River at Morsang-sur-Orge (H4252010) (934 km2).

Figure 5. Comparison of slopes and intercept of linear regressions between streamflow bias and temperature (T ), precipitation (P ) and
humidity index (HI) anomalies (from left to right) obtained by the GSST and the RAT procedures (each point represents 1 of the 21 test
catchments).

2. Significant dependency on annual temperature, precipi-
tation and humidity index (Fig. 7). This is a clearly un-
desirable situation illustrating a lack of robustness of the
hydrological model. It happens in only 2 catchments
out of 21. The Spearman correlation between model
bias and temperature, precipitation and humidity index
anomalies (respectively 0.49, −0.36 and −0.46) is sig-
nificant (i.e. below the classic significance threshold of
5 %). In Fig. 7, the annual streamflow bias shows an in-
creasing trend with annual temperature and a decreasing
trend with annual precipitation and humidity index.

3. Significant climate dependency on precipitation and hu-
midity index but not on temperature (Fig. 8). This case
happens in 5 of the 21 catchments.

4. Significant climate dependency on temperature but not
on precipitation and humidity index (Fig. 9). This case
happens in 3 of the 21 catchments.

5. Significant climate dependency on temperature and hu-
midity index but not on precipitation (Fig. 10). This case
happens in 5 of the 21 catchments.
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Figure 6. Streamflow annual bias obtained with the RAT function of time (a), temperature absolute anomalies (b), and precipitation P (c)
and humidity index P/E0 (d) anomalies, for the Orne Saosnoise River at Montbizot (M0243010) (510 km2).

Figure 7. Streamflow annual bias obtained with the RAT function of time (a), temperature absolute anomalies (b), and precipitation P (c)
and humidity index P/E0 (d) anomalies, for the Arroux River at Étang-sur-Arroux (K1321810) (1790 km2).
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Figure 8. Streamflow annual bias obtained with the RAT function of time (a), temperature absolute anomalies (b), and precipitation P (c)
and humidity index P/E0 (d) anomalies, for the Seiche River at Bruz (J7483010) (810 km2).

Figure 9. Streamflow annual bias obtained with the RAT function of time (a), temperature absolute changes (b), and precipitation P (c) and
humidity index P/E0 (d) anomalies, for the Ill at Didenheim (A1080330) (670 km2).
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Figure 10. Streamflow annual bias obtained with the RAT function of time (a), temperature absolute changes (b), and precipitation P (c)
and humidity index P/E0 (d) anomalies, for the Briance River at Condat-sur-Vienne (L0563010) (597 km2).

4.3 How to use RAT results?

A question that many modellers may ask us is “what can be
done when different types of model failure are identified?”
Some of the authors of this paper have long be fond of the
concept of a crash test (Andréassian et al., 2009), and we
would like to argue here that the RAT too can be seen as a
kind of crash test. As all crash tests, it will end up identifying
failures. But the fact that a car may be destroyed when pro-
jected against a wall does not mean that it is entirely unsafe; it
rather means that it is not entirely safe. Although we are con-
scious of this, we keep driving cars, but we are also willing
to pay (invest) more for a safer car (even if this safer-and-
more-expensive toy did also ultimately fail the crash test).
We believe that the same will occur with hydrological mod-
els: the RAT may help identify safer models or safer ways
to parameterize models. If applied to large datasets, it may
help identify model flaws and thus help us work to eliminate
them. It will not however help identify perfect models: these
do not exist.

5 Conclusion

The proposed robustness assessment test (RAT) is an easy-to-
implement evaluation framework that allows robustness eval-
uation from all types of hydrological models to be compared,

by using only one long period for which model simulations
are available. The RAT consists in identifying undesired de-
pendencies of model errors to the variations of some climate
variables over time. Such dependencies can indeed be detri-
mental for model performance in a changing climate con-
text. This test can be particularly useful for climate change
impact studies where the robustness of hydrological mod-
els is often not evaluated at all: as such, our test can help
users to discriminate alternative models and select the most
reliable models for climate change studies, which ultimately
should reduce uncertainties on climate change impact predic-
tions (Krysanova et al., 2018).

The proposed test obviously has its limits, and a first diffi-
culty that we see in using the RAT is that it is only applicable
in cases where the hypothesis of independence between the
1-year subperiods and the whole period is sufficient. This is
the case when long series are available (at least 20 years, see
last graph in Appendix). If it is not the case, the RAT proce-
dure should not be used. Therefore, we would indeed recom-
mend its use in cases where modellers cannot “afford” mul-
tiple calibrations or where the parameterization strategy is
considered (by the modeller) as “calibration free” (i.e. physi-
cally based models). A few other limitations should be men-
tioned:

1. In this note, the RAT concept was illustrated with a
rank-based test (Spearman correlation) and a signifi-
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cance threshold of 0.05. Like all thresholds, this one is
arbitrary. Moreover, other non-parametric tests could be
used and would probably yield slightly different results
(we also tested the Kendall τ test, with very similar re-
sults, but do not show the results here).

2. Detecting a relationship between model bias and a cli-
mate variable using the RAT does not allow us to di-
rectly conclude on a lack of model robustness, because
even a robust model will be affected by a trend in in-
put data, yielding the impression that the hydrological
model lacks robustness. Such an erroneous conclusion
could also be due to widespread changes in land use,
construction of an unaccounted storage reservoir or the
evolution of water uses. Some of the lack of robustness
detected among the 21 catchments presented here could
be in fact due to metrological causes.

3. Also, because of the ongoing rise of temperatures (over
the last 40 years at least), we have a correlation between
temperature and time since the beginning of stream gag-
ing. If for any reason, time is having an impact on model
bias, this may cause an artefact in the RAT in the form
of a dependency between model bias and temperature.

4. Similarly to the differential split sample test, the diag-
nostic of model climatic robustness is limited to the cli-
matic variable against which the bias is compared. As
such, the RAT should not be seen as an absolute test but
rather as a necessary but not sufficient condition to use a
model for climate change studies: because the climatic
variability present in the past observations is limited to
the historic range, so is the extrapolation test. In Pop-
per’s words (Popper, 1959), the RAT can only allow fal-
sifying a hydrological model. . . but not proving it right.

5. Although it would be tempting to transform the RAT
into a post-processing method, we do not recommend
it. Indeed, detecting a relationship between model bias
and a climate variable using the RAT does not necessar-
ily mean that a simple (linear) debiasing solution can be
proposed to solve the issue (see e.g. the paper by Bell-
prat et al. (2013) on this topic). What we do recommend
is to work as much as possible on the model structure,
to make it less climate dependent.

6. Some of the modalities of the RAT, which we ini-
tially thought of importance, are not really important:
this is for example the case with the use of hydrolog-
ical years. We tested the 12 possible annual aggrega-
tions schemes (see https://doi.org/10.5194/hess-2021-
147-AC6) and found no significant impact.

7. Upon recommendation by one of the reviewers, we
tried to assess the possible impact of the qual-
ity of the precipitation forcing on RAT results (see
https://doi.org/10.5194/hess-2021-147-AC5) and found

that the type of forcing used does have an impact on
RAT results (interestingly, the climatic dataset yielding
the best simulation results was also the dataset yield-
ing the fewer catchments failing the robustness test). It
seems unavoidable that forcing data quality will impact
the results of RAT, but we would argue that it would
similarly have an impact on the results of a differen-
tial split sample test. We believe that there is no way to
avoid entirely this dependency and that evaluating the
quality of input data should be done before looking at
model robustness.

8. Last, we could mention that a model showing a small
overall annual bias (but linked to a climate variable)
could still be preferred to one showing a large overall
annual bias (but independent of the tested climate vari-
ables): the RAT should not be seen as the only basis for
model choice.

Beyond the limitations, we also see the perspective for fur-
ther development of the method: although this note only con-
sidered overall model bias (as the most basic requirement for
a model to be used to predict the impact of a future climate),
we think that this methodology could be applied to bias in
different flow ranges (low or high flows) or to statistical in-
dicators describing low-flow characteristics or maximum an-
nual streamflow. And characteristics other than bias could be
tested, e.g. ratios pertaining to the variability of flows. Fur-
ther, while we only tested the dependency on mean annual
temperature, precipitation and humidity index, other charac-
teristics, such as precipitation intensity or fraction of snow-
fall, could be considered in this framework.
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Appendix A: Checking the impact of the partial overlap
between calibration and validation periods in the RAT

In this Appendix, we deal with calibrated models, for which
we verify that the main hypothesis underlying the RAT is rea-
sonable, i.e. that when considering a long calibration period,
the weight of each individual year in the overall calibration
process is almost negligible. We then explore the limits of
this hypothesis when reducing the length of the overall cali-
bration period.

A1 Evaluation method

In order to check the impact of the partial overlap between
calibration and validation periods in the RAT, it is possible
(provided one works with a calibrated model) to compare the
RAT with a “leave-one out” version of it, which is a classical
variant of the split sample test (SST): instead of computing
the annual bias after a single calibration encompassing the
whole period (RAT), we compute the annual bias with a dif-
ferent calibration each time, encompassing the whole period
minus the year in question (“leave-one-out SST”).

The comparison between the RAT and the SST can be
quantified using the root mean square difference (RMSD) of
annual biases:

RMSDBias =

√
(BiasRAT−BiasSST)

2, (A1)

where BiasRAT is the bias of validation year n when cali-
brating the model over the entire period (RAT procedure),
and BiasSST is the bias of validation year n when calibrating
the model over the entire period minus year n (leave-one-out
SST procedure).

The difference between the two approaches is schematized
in Fig. A1: the leave-one-out procedure consists in perform-
ing N calibrations over (N − 1)-year-long periods followed
by an independent evaluation on the remaining 1-year-long
period. As shown in Fig. A1, the two procedures result in
the same number of validation points (N ). Equation (A1)
provides a way to quantify whether both methods differ,
i.e. whether the partial overlap between calibration and vali-
dation periods in the RAT makes a difference.

A2 Comparison between the RAT and the
leave-one-out SST

Figure A2 plots the annual bias values obtained with the RAT
versus the annual bias obtained with the leave-one-out SST
for the 21 test catchments, showing a total of 21× 47 points.
The almost perfect alignment confirms that our underlying
“negligibility” hypothesis is reasonable (at least on our catch-
ment set).

Figure A3 presents the Spearman correlation p values for
the correlation between annual bias and changes in annual
temperature, precipitation, and humidity index (P/E0), for
the RAT and the leave-one-out SST. The results from the

Figure A1. Comparison of the RAT procedure with a leave-one-out
split-sample test (SST). Both methods have N validation periods
(one per year). The RAT needs only one calibration, whereas the
SST requires N calibrations. Dark grey squares represent the years
used for calibration or validation.

Figure A2. Comparison of the annual bias obtained with the RAT
with the annual bias obtained with the leave-one-out SST. Each of
the 21 catchments is represented with annual bias values (47 points
by catchment, 21× 47 points in total).

RAT and the SST show the same dependencies on climate
variables (similar p values).

A3 Sensitivity of the RAT procedure to the period
length

It is also interesting to investigate the limit of our hypoth-
esis (i.e. that the relative weight of one year within a long
time series is very small) by progressively reducing the pe-
riod length: indeed, the shorter the data series available to
calibrate the model, the more important the relative weight
of each individual year. Figure A4 compares the annual bias
obtained with the RAT procedure with the annual bias ob-
tained with the leave-one-out SST, for 10-, 20-, 30- and 40-
year period lengths (selection of the shorter periods was real-
ized by sampling 10, 20, 30 and 40 years regularly among the
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Figure A3. Spearman correlation p value from the correlation for annual bias and annual temperature, precipitation, and humidity index
(P/E0). Comparison between RAT and SST (one point per catchment).

Figure A4. Annual bias obtained with the RAT procedure vs. annual bias obtained with leave-one-out SST. Shorter time periods are obtained
by sampling 10, 20, 30 and 40 years regularly among the complete time series. Each of the 21 catchments is represented with annual bias
values.

Figure A5. RMSD between annual bias obtained with the RAT pro-
cedure and with the leave-one-out SST for different calibration pe-
riod lengths for each catchment. The dotted line represents the mean
RMSD for all catchments. Each grey line represents 1 of the 21
catchments.

complete time series). The shorter the calibration period, the
larger the differences between both approaches (wider points
scatter): there, we reach the limit of the single calibration
procedure. We would not advise to use RAT with time series
of less than 20 years.

These differences can be quantitatively measured by com-
puting the RMSD (see Eq. 1) between the annual bias ob-
tained with the RAT procedure and with the SST for different
calibration period lengths (see Fig. A5). The RMSD tends to
increase when the number of years available to calibrate the
model decreases, but it seems to be stable for periods longer
than 20 years.
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